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Continuous Time-Invariant I/S/O System (First Model)

The simplest model for a linear continuous-time-invariant system is of the type

[

ẋ(t)
y(t)

]

=

[

A B

C D

] [

x(t)
u(t)

]

, t ∈ R
+, x(0) = x0. (1)

Here R
+ = [0,∞) and A, B, C, D, are linear operators.
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The simplest model for a linear continuous-time-invariant system is of the type

[

ẋ(t)
y(t)

]

=

[

A B

C D

] [

x(t)
u(t)

]

, t ∈ R
+, x(0) = x0. (1)

Here R
+ = [0,∞) and A, B, C, D, are linear operators.

u(t) ∈ U = the input space,
x(t) ∈ X = the state space,
y(t) ∈ Y = the output space (all Banach spaces).
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Continuous Time-Invariant I/S/O System (Second Model)

In order to include partial differential equations we need A, B, C, and D to be
unbounded, and typically their domains are not independent of each other. Therefore,
we have to replace the model (1) by the more general model

[

ẋ(t)
y(t)

]

= S

[

x(t)
u(t)

]

, t ∈ R
+, x(0) = x0. (2)

Here S is a closed and typically unbounded operator [XU ] →
[

X
Y

]

.
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The I/S/O Model is an Idealization

The i/s/o model is an idealized model of a true system, with “infinite input impedance
and zero output impedance”:
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The I/S/O Model is an Idealization

The i/s/o model is an idealized model of a true system, with “infinite input impedance
and zero output impedance”:

If we connect two such systems in series, then the second system has no influence
on the first system.

In particular, there is no limit on how many inputs can be connected to an output
before the performance degrades (as it always does in practice). In real life,

• every input is also an output, since it influences the output to which it is connected,

• every output is also an input, since the true output depends also on the load.

One way to avoid this problem is to ignore the distinction between an input and an
output, and to replace the i/s/o model by a state/signal model.
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State/Signal Systems: What Are They?
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State/Signal Systems: What Are They?

The state/signal systems that we will define in moment lie half way between standard
input/state/output systems and Willem’s behaviors.

Like in the behavioral setting we do not distinguish between inputs and outputs.

However, in the state/signal setting the state plays a very significant role, whereas
in the behavioral setting the state is either completely ignored or considered to be
an auxiliary (latent) variable of little importance.

A state/signal system is the natural model of a possibly infinite-dimensional linear
cirquit.
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Rewrite the I/S/O System into Graph Form
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Rewrite the I/S/O System into Graph Form

We start by combining the input space U and the output space Y into one signal
space W =

[

Y
U

]

.
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Rewrite the I/S/O System into Graph Form

We start by combining the input space U and the output space Y into one signal
space W =

[

Y
U

]

.

We rewrite the model

[

ẋ(t)
y(t)

]

= S

[

x(t)
u(t)

]

, t ∈ R
+, x(0) = x0, (2)

in graph form to get rid of the explicit input u(t) and output y(t): It is equivalent to





ẋ(t)
x(t)
w(t)



 ∈ V, t ∈ R
+, x(0) = x0, (3)

where w(t) =
[

y(t)
u(t)

]

and V =
{

[ z
x
w

]

∈
[

X
X
W

]
∣

∣

∣
w = [ y

u ] , [ z
y ] = S [ x

u ]
}

.
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State/Signal Node

We end up studying state/signal models of the type





ẋ(t)
x(t)
w(t)



 ∈ V, t ∈ R
+, x(0) = x0. (3)
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State/Signal Node

We end up studying state/signal models of the type





ẋ(t)
x(t)
w(t)



 ∈ V, t ∈ R
+, x(0) = x0. (3)

Here ẋ(t), x(t) ∈ X (the state space) and w(t) ∈ W (the signal space).

The state space X (today a Banach space) represents an internal memory.

The signal space W (today a Banach space) permits connections to the outside
world.

The generating subspace V of
[

X
X
W

]

defines the dynamics.

We call this a state/signal node (the differential form of a state/signal system), and
denote it by Ξ = (V ;X ,W).
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Classical State/Signal Trajectories





ẋ(t)
x(t)
w(t)



 ∈ V, t ∈ R
+, x(0) = x0. (3)

By a classical trajectory of Ξ = (V ;X ,W) on R
+ we mean a pair of functions

[ x
w

]

∈
[

C1(R+;X )

C(R+;W)

]

satisfying (3). We denote this family of trajectories by V.
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Classical State/Signal Trajectories





ẋ(t)
x(t)
w(t)



 ∈ V, t ∈ R
+, x(0) = x0. (3)

By a classical trajectory of Ξ = (V ;X ,W) on R
+ we mean a pair of functions

[ x
w

]

∈
[

C1(R+;X )

C(R+;W)

]

satisfying (3). We denote this family of trajectories by V.

The family V[0, T ] of classical trajectories on a finite time interval [0, T ] is defined
in the same way (replace R

+ by [0, T ] in (3)).

Externally generated classical trajectories: V0[0, T ]=
{

[ x
w ] ∈ V[0, T ]

∣

∣

[

x(0)
w(0)

]

= 0
}

.

(Trajectories in V0[0, T ] start with an empty internal memory, and they are driven
exclusively by the external signal.)
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Generalized State/Signal Trajectories





ẋn(t)
xn(t)
wn(t)



 ∈ V, t ∈ [0, T ].

Fix some p ∈ [1,∞). The pair of functions [ x
w ] ∈

[

C([0,T ];X )
Lp([0,T ];W)

]

is a generalized

trajectory of Ξ on [0, T ] if there exists [ xn
wn ] ∈ V[0, T ] such that [ xn

wn ] → [ x
w ] in

[

C([0,T ];X )
Lp([0,T ];W)

]

. We denote this family of trajectories by W[0, T ].
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Generalized State/Signal Trajectories





ẋn(t)
xn(t)
wn(t)



 ∈ V, t ∈ [0, T ].

Fix some p ∈ [1,∞). The pair of functions [ x
w ] ∈

[

C([0,T ];X )
Lp([0,T ];W)

]

is a generalized

trajectory of Ξ on [0, T ] if there exists [ xn
wn ] ∈ V[0, T ] such that [ xn

wn ] → [ x
w ] in

[

C([0,T ];X )
Lp([0,T ];W)

]

. We denote this family of trajectories by W[0, T ].

The pair of functions [ x
w ] ∈

[

C(R+;X )

L
p
loc

(R+;W)

]

is a generalized trajectory of Ξ on R
+

if the restriction of [ x
w ] to every finite interval [0, T ] is a generalized trajectory on

[0, T ]. We denote this family of trajectories by W.

Externally generated generalized trajectories: W0[0, T ]=
{

[ x
w ] ∈ W[0, T ]

∣

∣ x(0) =
0
}

. (Trajectories in W0[0, T ] start with an empty internal memory, and they are
driven exclusively by the external signal.)
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Conditions Required from a Node

We throughout require a s/s node to satisfy (at least) the following three conditions:

(i) V is a closed subspace of
[

X
X
W

]

.

(ii) If
[

z
0
0

]

∈ V then z = 0.

(iii) There is a T > 0 such that for each
[

z0
x0
w0

]

∈ V there exists at least one classical

trajectory [ x
w ] of Ξ on [0, T ] with

[

ẋ(0)
x(0)
w(0)

]

=
[

z0
x0
w0

]

.
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Well-Posedness of a State/Signal Node

The idea behind well-posedness of a state/signal node: there should exist at least
one well-posed input/state/output representation.
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Well-Posedness of a State/Signal Node

The idea behind well-posedness of a state/signal node: there should exist at least
one well-posed input/state/output representation.

Decompose the signal space W into a direct sum W = U ∔ Y. Let PY
U be the

projection onto U along Y, i.e., R(PY
U ) = U and N (PY

U ) = Y.

Definition 1. The node Ξ = (V ;X ,W) is well-posed if there exists a T > 0 and a
direct sum decomposition W = U ∔ Y of W such that:

(iv) The set {x(0) | [ x
w ] ∈ V[0, T ]} is dense in X .

(v) The set {PY
U w | [ x

w ] ∈ V0[0, T ]} is dense in Lp([0, T ];U).

(vi) there exists a finite constant K such that all [ x
w ] ∈ V([0, T ]) satisfy

‖x(t)‖X + ‖w‖Lp([0,t];W) ≤ K
(

‖x(0)‖X + ‖PY
U w‖Lp([0,t];U)

)

(4)

for all t ∈ [0, T ].
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Admissible I/O Decompositions

A decomposition W = U ∔ Y of W satisfying conditions (iv)–(vi) above for some
T > 0 is called an admissible i/o (input/output) pair for Ξ.
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Admissible I/O Decompositions

A decomposition W = U ∔ Y of W satisfying conditions (iv)–(vi) above for some
T > 0 is called an admissible i/o (input/output) pair for Ξ.

If conditions (iv)–(vi) hold for some T > 0, then they automatically hold for all
T > 0.

In general a well-posed s/s node has more than one admissible i/o pair. The following
result can be used to test when a given decomposition W = U ∔ Y is admissible for
Ξ. (See next slide.)
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Admissibility Theorem

Theorem 1. Let Ξ = (V ;X ,W) be a well-posed state/signal node, and let W =
U ∔ Y be a direct sum decomposition of W. Then the following conditions are
equivalent:
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Admissibility Theorem

Theorem 1. Let Ξ = (V ;X ,W) be a well-posed state/signal node, and let W =
U ∔ Y be a direct sum decomposition of W. Then the following conditions are
equivalent:

(i) (U ,Y) is an admissible i/o pair for Ξ, i.e., conditions (iv)–(vi) in Definition 1 hold
for some T > 0 (or equivalently, for all T > 0).

(ii) The map [ x
w ] → PY

U w is a bijection W0 → Lp([0, T ];U) for some T > 0 (or
equivalently, for all T > 0).
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Repetition

Recall: Every s/s node (well-posed or not) is required to satisfy (at least)

(i) V is a closed subspace of
[

X
X
W

]

.

(ii) If
[

z
0
0

]

∈ V then z = 0.

(iii) There is a T > 0 such that for each
[

z0
x0
w0

]

∈ V there exists at least one classical

trajectory [ x
w ] of Ξ on [0, T ] with

[

ẋ(0)
x(0)
w(0)

]

=
[

z0
x0
w0

]

.
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X
X
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]
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(ii) If
[

z
0
0

]

∈ V then z = 0.

(iii) There is a T > 0 such that for each
[

z0
x0
w0

]

∈ V there exists at least one classical

trajectory [ x
w ] of Ξ on [0, T ] with

[

ẋ(0)
x(0)
w(0)

]

=
[

z0
x0
w0

]

.

V0[0, T ]=
{

[ x
w ] ∈ V[0, T ]

∣

∣

[

x(0)
w(0)

]

= 0
}

(externally generated classical trajectories)

W0[0, T ]=
{

[ x
w ] ∈ W[0, T ]

∣

∣ x(0) = 0
}

(externally generated generalized trajecto-
ries)
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Well-Posedness Theorem

If Ξ = (V ;X ,W) is well-posed, then V0[0, T ] is dense in W0[0, T ] for all T > 0.

Under this assumption we can characterize well-posedness and admissibility of a s/s
node in terms of generalized trajectories (as opposed to the family V[0, T ] of classical
trajectories used in Definition 1). (See next slide.)
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Well-Posedness Theorem

Theorem 2. Let Ξ = (V ;X ,W) be a s/s node. In addition suppose that V0[0, T ] is
dense in W0[0, T ] for some T > 0. Let W = U ∔ Y be a direct sum decomposition
of W. Then the following conditions are equivalent:

18



Well-Posedness Theorem

Theorem 2. Let Ξ = (V ;X ,W) be a s/s node. In addition suppose that V0[0, T ] is
dense in W0[0, T ] for some T > 0. Let W = U ∔ Y be a direct sum decomposition
of W. Then the following conditions are equivalent:

(i) Ξ is well-posed and (U ,Y) is an admissible i/o pair for Ξ.

18



Well-Posedness Theorem

Theorem 2. Let Ξ = (V ;X ,W) be a s/s node. In addition suppose that V0[0, T ] is
dense in W0[0, T ] for some T > 0. Let W = U ∔ Y be a direct sum decomposition
of W. Then the following conditions are equivalent:

(i) Ξ is well-posed and (U ,Y) is an admissible i/o pair for Ξ.

(ii) for some (or equivalently, for all) T > 0 the map [ x
w ] →

[

x(0)

PY
U

w

]

is a bijection

W[0, T ] →
[

X
Lp([0,T ];U)

]

.

18



Well-Posedness Theorem

Theorem 2. Let Ξ = (V ;X ,W) be a s/s node. In addition suppose that V0[0, T ] is
dense in W0[0, T ] for some T > 0. Let W = U ∔ Y be a direct sum decomposition
of W. Then the following conditions are equivalent:

(i) Ξ is well-posed and (U ,Y) is an admissible i/o pair for Ξ.

(ii) for some (or equivalently, for all) T > 0 the map [ x
w ] →

[

x(0)

PY
U

w

]

is a bijection

W[0, T ] →
[

X
Lp([0,T ];U)

]

.

(iii) for some (or equivalently, for all) T > 0 the following two conditions hold:

(a) for each x0 ∈ X there exists at least one [ x
w ] ∈ W[0, T ] such that x(0) = x0.

(b) the map [ x
w ] → PY

U w is a bijection W0 → Lp([0, T ];U).
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Well-Posed State/Signal Systems

Trivially, the s/s node (V ;X ,W) determines the families V and W of classical and
generalized trajectories uniquely.
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Well-Posed State/Signal Systems

Trivially, the s/s node (V ;X ,W) determines the families V and W of classical and
generalized trajectories uniquely.

The converse is true for the family of classical trajectories V: the s/s node (V ;X ,W)
is determined uniquely by V.

The converse need not be true for the family of generalized trajectories W: It may
be true that several different s/s nodes (V ;X ,W) lead to the same families of
generalized trajectories W.

However, in many cases the familiy of generalized trajectories is more important than
the family of classical trajectories.
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Well-Posed State/Signal System

We therefore introduce the notion of a well-posed state/signal system:

Definition 3. By a well-posed state/signal system Σ = (W;X ,W) we mean the
family of generalized trajectories W on [0,∞) of a some well-posed state/signal node
Ξ = (V ;X ,W).
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We therefore introduce the notion of a well-posed state/signal system:

Definition 3. By a well-posed state/signal system Σ = (W;X ,W) we mean the
family of generalized trajectories W on [0,∞) of a some well-posed state/signal node
Ξ = (V ;X ,W).

Thus, a well-posed linear state/signal system Σ = (W;X ,W) may be generated by
more than one well-posed state/signal node (V ;X ,W).

However,

If a decomposition W = U ∔ Y is admissible for some some well-posed s/s node
Ξ = (V ;X ,W) that generates Σ, then it is also admissible for every other well-posed
s/s node that generates Σ. In this case we call (U ,Y) an admissible i/o pair for Σ.

Moreover, there always exists a maximal generating node (see next slide):
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Maximal Well-Posed State/Signal Nodes

Theorem 4. (i) Among all the nodes (V ;X ,W) that generate a well-posed linear
state/signal system Σ = (W;X ,W) there is always a maximal one (Vmax;X ,W).
(Maximality of (Vmax;X ,W) means that if both (V ;X ,W) and (Vmax;X ,W)
generate the same system (W;X ,W), then necessarily V ⊂ Vmax.)
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Theorem 4. (i) Among all the nodes (V ;X ,W) that generate a well-posed linear
state/signal system Σ = (W;X ,W) there is always a maximal one (Vmax;X ,W).
(Maximality of (Vmax;X ,W) means that if both (V ;X ,W) and (Vmax;X ,W)
generate the same system (W;X ,W), then necessarily V ⊂ Vmax.)

(ii) Ξ = (V ;X ,W) is maximal if and only if V = W ∩
[

C1(R+;X )

C(R+;W)

]

, i.e., every

generalized trajectory (x, w) which has the smoothness of a classical trajectory is
actually classical.
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Maximal Well-Posed State/Signal Nodes

Theorem 4. (i) Among all the nodes (V ;X ,W) that generate a well-posed linear
state/signal system Σ = (W;X ,W) there is always a maximal one (Vmax;X ,W).
(Maximality of (Vmax;X ,W) means that if both (V ;X ,W) and (Vmax;X ,W)
generate the same system (W;X ,W), then necessarily V ⊂ Vmax.)

(ii) Ξ = (V ;X ,W) is maximal if and only if V = W ∩
[

C1(R+;X )

C(R+;W)

]

, i.e., every

generalized trajectory (x, w) which has the smoothness of a classical trajectory is
actually classical.

Note, in particular, that Vmax is uniquely determined by Σ, which is uniquely
determined by the node (V ;X ,W).
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Outline

• Continuous time-invariant i/s/o systems

• State/signal nodes

• Well-posed state/signal nodes

• Well-posed state/signal systems

• Input/state/output representations

• Extensions

• Why use a differential formulation?
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Input/State/Output Representations

Let Σ = (W;X ,W) be a well-posed state/signal system, and let (U ,Y) be an
admissible i/o pair for Σ.
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Let Σ = (W;X ,W) be a well-posed state/signal system, and let (U ,Y) be an
admissible i/o pair for Σ.

The admissibility of the decomposition W = U ∔ Y implies that for each x0 ∈ X
and each u ∈ L

p
loc([0,∞);U) there is a unique generalized trajectory (x, w) of Σ on

[0,∞) such that x(0) = x0 and PY
U w = u.
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admissible i/o pair for Σ.

The admissibility of the decomposition W = U ∔ Y implies that for each x0 ∈ X
and each u ∈ L

p
loc([0,∞);U) there is a unique generalized trajectory (x, w) of Σ on

[0,∞) such that x(0) = x0 and PY
U w = u.

Theorem 5. Let Σ = (W;X ,W) be a well-posed state/signal system, and let (U ,Y)
be an admissible i/o pair for Σ. Then the map (x0, u) → (x,PU

Yw) (where (x, w)
is the trajectory described above) defines a well-posed linear i/s/o system Σi/s/o in
the sense of [Sta05], with U as input space and Y as output space.

24



Input/State/Output Representations

Let Σ = (W;X ,W) be a well-posed state/signal system, and let (U ,Y) be an
admissible i/o pair for Σ.

The admissibility of the decomposition W = U ∔ Y implies that for each x0 ∈ X
and each u ∈ L

p
loc([0,∞);U) there is a unique generalized trajectory (x, w) of Σ on

[0,∞) such that x(0) = x0 and PY
U w = u.

Theorem 5. Let Σ = (W;X ,W) be a well-posed state/signal system, and let (U ,Y)
be an admissible i/o pair for Σ. Then the map (x0, u) → (x,PU

Yw) (where (x, w)
is the trajectory described above) defines a well-posed linear i/s/o system Σi/s/o in
the sense of [Sta05], with U as input space and Y as output space.

We call this Σi/s/o the i/s/o representation of Σ corresponding to the i/o pair
(U ,Y).
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Input/State/Output Representations

The converse is also true:
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Input/State/Output Representations

The converse is also true:

Theorem 6. (i) To each well-posed i/s/o system Σi/s/o with input space U and
output space Y there corresponds a unique well-posed state/signal system Σ =
(W;X ,U ×Y) such that Σi/s/o is the i/s/o representation of Σ corresponding to
the i/o pair (U ,Y).

(ii) The maximal generating subspace Vmax of the underlying state/signal node
Ξmax = (Vmax;X ,W) is the graph of the i/o system node which generates
Σi/s/o. (See, e.g., [Sta05] for the definition of an i/o system node.)
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Extensions

• Different representations exist, such as driving-variable and output-nulling repre-
sentations.

• Interconnections of well-posed state/signal systems (in progress)

• Passive well-posed state/signal systems (the main motivation for studying
state/signal systems in the first place).
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Why Use a Differential Formulation?

In the theory of semigroups and well-posed i/s/o systems one usually starts with
the class of generalized trajectories, requires that these satisfy certain algebraic
and well-posedness assumptions, and then prove that they also have a differential
description.
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Why Use a Differential Formulation?

In the theory of semigroups and well-posed i/s/o systems one usually starts with
the class of generalized trajectories, requires that these satisfy certain algebraic
and well-posedness assumptions, and then prove that they also have a differential
description.

Above we proceeded in the opposite way: we start with the differential description of
a state/signal node, and then proceed to prove results about generalized solutions.
Why?
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Why Use a Differential Formulation?

In the theory of semigroups and well-posed i/s/o systems one usually starts with
the class of generalized trajectories, requires that these satisfy certain algebraic
and well-posedness assumptions, and then prove that they also have a differential
description.

Above we proceeded in the opposite way: we start with the differential description of
a state/signal node, and then proceed to prove results about generalized solutions.
Why?

Anwer: The set of needed algebraic conditions becomes too complicated and non-
intuitive! (This is how we originally started out.) It is possible to proceed in the
‘standard’ direction, starting with an ‘integral’ formulation, but already the definition
of what we mean by a well-posed state/signal system becomes too complicated.
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Special Case: dimW = 0

If we take dimW = 0 then we are left with a plain semi-semigroup.
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If we take dimW = 0 then we are left with a plain semi-semigroup.

Standard Definition: By a C0 semigroup one means a family of operators At in B(X )
satisfying

(i) A0 = 1X ,

(ii) AsAt = As+t for all s, t ≥ 0,

(iii) Atx → x as t ↓ 0.
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Special Case: dimW = 0

If we take dimW = 0 then we are left with a plain semi-semigroup.

Standard Definition: By a C0 semigroup one means a family of operators At in B(X )
satisfying

(i) A0 = 1X ,

(ii) AsAt = As+t for all s, t ≥ 0,

(iii) Atx → x as t ↓ 0.

The generator A of this semigroup is given by Ax = limt↓0
1
t(A

tx− x), with domain
D(A) consisting of those x ∈ X for which the above limit exists.
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Construction of a C0-Semigroup by Our Method

Below we explain how we end up with a C0 semigroup if we apply our s/s construction
in the case where dimW = 0.
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trajectories converging to x uniformly on every bounded interval.
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Construction of a C0-Semigroup by Our Method

Below we explain how we end up with a C0 semigroup if we apply our s/s construction
in the case where dimW = 0.

We start with a given operator A in X with domain D(A).

Classical trajectories are functions x ∈ C1(R+,X ) satisfying x(t) ∈ D(A) and
ẋ(t) = Ax(t) for all t ∈ R

+.

x ∈ C(R+;X ) is a generalized trajectory if there exists a sequence of classical
trajectories converging to x uniformly on every bounded interval.

The operator A represents the node, whereas the system is the family of generalized
trajectories.

We do not exclude the possibility that two different operators A1 and A2 may result
in the same system, i.e., they produce same family of generalized trajectories.
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Our Conditions (i)–(vi) in the Case dimW = 0
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Our Conditions (i)–(vi) in the Case dimW = 0

(i) A is closed.

(ii) V is the graph of A.

(iii) To every x0 ∈ D(A) there exists a classical trajectory x with x(0) = x0.

(iv) D(A) is dense in X .

(v) The fifth condition is trivially true since dimW = 0.

(vi) There exist constants T > 0 and KT such that all classical trajectories x satisfy
sup0≤t≤T‖x(t)‖X ≤ KT‖x(0)‖X .
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The Resulting Semigroup

If the above conditions (i)–(vi) hold, then the family At : x0 7→ x(t), where x is the
generalized trajectory with x(0) = x0, is a C0 semigroup.
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If the above conditions (i)–(vi) hold, then the family At : x0 7→ x(t), where x is the
generalized trajectory with x(0) = x0, is a C0 semigroup.

The standard generator of this semigroup is the operator A with the maximal domain
for which the conditions (i)–(vi) hold.
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The Resulting Semigroup

If the above conditions (i)–(vi) hold, then the family At : x0 7→ x(t), where x is the
generalized trajectory with x(0) = x0, is a C0 semigroup.

The standard generator of this semigroup is the operator A with the maximal domain
for which the conditions (i)–(vi) hold.

Open Question: Do conditions (i)–(vi) imply that the domain of A is automatically
maximal?
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