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Abstract— A linear state/signal system in discrete time has
a state space X and a signal space W , where the state space
is used to represent internal properties of the system, and
the signal space describes interactions with the surrounding
world. It resembles an input/state/output system apart from
the fact that inputs and outputs are not separated from each
other. By decomposing the signal space W into a direct sum
of an input space U and an output space Y one gets a stan-
dard input/state/output system, provided the decomposition
is admissible. Here we discuss the nonadmissible case. Instead
of ordinary input/state/output representations of the system
we then get right and left affine representations, both of the
system itself, and of the corresponding transfer function. In
particular, in the case of a passive system we get right and left
coprime representations of the generalized transfer functions
corresponding to nonadmissible decompositions of the signal
space, and we end up with transfer functions which are, e.g.,
generalized Potapov or Nevanlinna class functions.

The evolution of a linear discrete time-invariant s/s (=
state/signal) system Σ with a Hilbert state space X and
a Kreı̆n signal space W is described by the system of
equations

x(n + 1) = F
[

x(n)
w(n)

]
, n ∈ Z+, x(0) = x0, (1)

where the initial state x0 ∈ X may be arbitrary and F is
a bounded linear operator with a closed domain D(F ) ⊂
[ XW ] (Z+ = 0, 1, 2, . . .). By a trajectory (x(·), w(·)) of this
system we mean pairs of sequences x(n) ∈ X and u(n) ∈
W satisfying (1). If W = YuU is any i/o (= input/output)
decomposition of W as the direct sum of an input space
U and an output space Y then it is natural to consider
i/s/o (= input/state/output) trajectories (x(·), u(·), y(·)) of
Σ, where the sequence x(·) is the same as in (1) and

u(n) = PYU w(n), y(n) = PUY w(n), n ∈ Z+;

here PYU is the projection onto U along Y , and PUY is
the complementary projection. A decomposition W =
Y u U is called admissible if the set of i/s/o trajectories
(x(·), u(·), y(·)) has an alternative i/s/o description of the
standard form

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n) + Du(n), n ∈ Z+,

x(0) = x0,

(2)

i.e, if this set coincides with the set of trajectories of the
i/s/o system Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y)

, where [ A B
C D ] ∈

B(
[XU ] ;

[X
Y

])
. In this case we call Σi/s/o an i/s/o rep-

resentation of Σ, corresponding to the i/o decomposition
W = Y u U . The four block function

[
A(z) B(z)
C(z) D(z)

]

=
[

(1X − zA)−1 z(1X − zA)−1B
C(1X − zA)−1 zC(1X − zA)−1B + D

] (3)

defined on the set ΛA consisting of those z ∈ C for which
1X−zA has a bounded inverse (including z = ∞ if A has a
bounded inverse), is called the four block transfer function
of Σ corresponding to the i/o decomposition W = Y uU .
The bottom right block D(z) = zC(1X − zA)−1B + D
is the i/o transfer function of Σ corresponding to this i/o
decomposition.

Not every i/o decomposition of W is admissible. To
be able to treat also the nonadmissible case we introduce
right and left affine generalizations of the notions of
i/s/o representations and their transfer functions. These are
defined for arbitrary i/o decompositions W = Y u U . By
a right affine i/s/o representation of Σ we mean an i/s/o
system

Σr
i/s/o =

([
A′ B′

C′Y D′Y
C′U D′

U

]
;X ,L,

[ Y
U

])

(where the new input space L is an auxiliary Hilbert space)
with the following two properties: 1) D′ =

[
D′
Y

D′U

]
has a

bounded left-inverse, and 2)
(
x(·),

[
y(·)
u(·)

])
is a trajectory

of Σ if and only if
(
x(·), `(·),

[
y(·)
u(·)

])
is a trajectory of

Σr
i/s/o for some sequence `(·) with values in L. By a left

affine i/s/o representation of Σ we mean an i/s/o system

Σl
i/s/o =

([
A′′ B′′Y B′′U
C′′ D′′Y D′′

U

]
;X ,

[ Y
U

]
.K

)

(where the new output space K is another auxiliary
Hilbert space) with the following two properties: 1)
D′′ =

[
D′′
Y D′′

U
]

has a bounded right-inverse, and
2)

(
x(·),

[
y(·)
u(·)

])
is a trajectory of Σ if and only if(

x(·),
[

y(·)
u(·)

]
, 0

)
is a trajectory of Σl

i/s/o (i.e., the output
is identically zero in K). The (four block or i/o) transfer
functions of Σr

i/s/o and Σl
i/s/o are called the right, re-

spectively left, (four block or i/o) affine transfer functions



of Σ corresponding to the (possibly non-admissible) i/o
decomposition W = Y u U . Note, in particular, that
the right and left affine i/o transfer functions are now
decomposed into D′ =

[
D′Y
D′U

]
and D′′ =

[
D′′
Y D′′

U
]
,

respectively.
Let

Ω(Σr
i/s/o) = {z ∈ ΛA′ | D′

U (z) has a bounded inverse},
Ω(Σl

i/s/o) = {z ∈ ΛA′′ | D′′
Y(z) has a bounded inverse},

and let
Ωr(Σ;U ,Y) be the union of the above sets Ω(Σr

i/s/o),

Ωl(Σ;U ,Y) be the union of the above sets Ω(Σl
i/s/o).

Our main results are related to the notions of right and
left generalized four block transfer functions of Σ with
input space U and output space Y , defined on the sets
Ωr(Σ;U ,Y) and Ωl(Σ;U ,Y), respectively, by the formu-
las [

Ar(z) Br(z)
Cr(z) Dr(z)

]

=
[
A′(z) B′(z)
C′Y(z) D′

Y(z)

] [
1X 0

C′U (z) D′
U (z)

]−1

,

(4)

[
Al(z) Bl(z)
Cl(z) Dl(z)

]

=
[
1X −B′′

Y(z)
0 −D′′

Y(z)

]−1 [
A′′(z) B′′

U (z)
C′′(z) D′′

U (z)

]
.

(5)

Here the entries on the right-hand sides of (4) and (5)
are obtained from the four block transfer functions of
some right and left affine i/s/o representations Σr

i/s/o and
Σl

i/s/o of Σ with the property that z ∈ Ω(Σr
i/s/o) or

z ∈ Ω(Σl
i/s/o), respectively. In particular, the generalized

right and left i/o transfer functions are given by

Dr(z) = D′
Y(z)D′

U (z)−1,

Dl(z) = −D′′
Y(z)−1D′′

U (z),
(6)

respectively.

Theorem 1. The right-hand side of (4) does not depend
on the choice of Σr

i/s/o as long as Ω(Σr
i/s/o) 3 z, and the

right-hand side of (5) does not depend on the choice of
Σl

i/s/o as long as Ω(Σl
i/s/o) 3 z.

Theorem 2. The right and left generalized four block
transfer functions defined by (4) and (5), respectively,
coincide on

Ω(Σ;U ,Y) = Ωr(Σ;U ,Y) ∩ Ωl(Σ;U ,Y)

(whenever this set is nonempty). If the decomposition W =
Y u U is admissible, and if A is the main operator of the
corresponding i/s/o representation of Σ, then

Ωr(Σ;U ,Y) = Ωl(Σ;U ,Y) = ΛA,

and the right and left generalized four block transfer
functions coincide with the ordinary four block transfer
function corresponding to the decomposition W = Y uU .

The case where the s/s system Σ is stabilizable, or
detectable, or LFT-stabilizable in the sense of [AS05] is
of special interest (LFT stands for Linear Fractional Trans-
formation). An i/s/o system Σi/s/o = ([ A B

C D ] ;X ,U ,Y) is
stable if the trajectories (x(·), u(·), y(·)) of this system has
the property that x(·) ∈ `∞(X ) and y(·) ∈ `2(Y) whenever
u(·) ∈ `2(U). A right or left affine i/s/o representation is
stable if it is stable when regarded as an i/s/o system. It is
easy to see that the main operator A of a stable system has
the property that D ⊂ ΛA and that its i/o transfer function
belongs to H∞ over the unit disk D. This also applies to
right and left affine i/s/o representations.

A s/s system Σ is stabilizable if it has a stable right
affine i/s/o representation, it is detectable if it has a stable
left affine i/s/o representation, and it is LFT-stabilizable if
it has a stable i/s/o representation. Every LFT-stabilizable
system is both stabilizable and detectable, since an i/s/o
representation of a s/s system can be interpreted both as a
left affine and as a right affine i/s/o representation of this
system. In particular, every s/s system which is passive in
the sense of [AS06a] is LFT-stabilizable. The four block
(right or left or standard) transfer functions of these stable
representations are defined in the full unit disk D, and the
corresponding right and left i/o transfer functions belong
to H∞ over D. In the LFT-stabilizable case these right
and left affine i/o transfer functions are even right or left
coprime in H∞, respectively.

By applying our theory to passive s/s systems we obtain
right and left coprime transmission representations of these
systems, and in the case where the positive and negative
dimensions of the signal space W are the same we also
obtain right and left coprime impedance representations.
The corresponding right and left coprime affine i/o transfer
functions will be generalized Potapov and Nevanlinna class
functions, respectively.

It is also possible to give an unbounded i/s/o impedance
representation of a passive s/s system in the case where
the impedance function is single-valued, but the values
are unbounded maximal accretive operators. In this rep-
resentation the bounded block operator [ A B

C D ] is replaced
by an unbounded operator, and the theory resembles the
continuous-time system node theory presented in [Sta05].

Further details will be given in [AS06b], [AS06c], and
[Sta06].
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