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Abstract— A linear state/signal system in discrete time has
a state space X and a signal space W , where the state space
is used to represent internal properties of the system, and
the signal space describes interactions with the surrounding
world. It resembles an input/state/output system apart from
the fact that inputs and outputs are not separated from
each other. By decomposing the signal space W into a
direct sum of an input space U and an output space Y
one gets a standard input/state/output system, provided the
decomposition is admissible. Here we discuss systems which
are passive with respect to a quadratic storage function in the
state space, represented by a positive self-adjoint operator H
which may be unbounded and have an unbounded inverse.
The quadratic supply rate, which describes the energy flow
between the system and the surroundings, imposes a Kreı̆n
space structure on the signal space, but the state space is
a Hilbert space. Our main results relate the existence of an
operator H > 0 such that the system is H-passive to the
existence of a solution of a generalized Kalman–Yakubovich–
Popov inequality, and also to the passivity properties of the
behavior induced by the system.

The evolution of a linear discrete time-invariant s/s (=
state/signal) system Σ with a Hilbert state space X and
a Kreı̆n signal space W is described by the system of
equations

x(n + 1) = F
[

x(n)
w(n)

]
, n ∈ Z+, x(0) = x0, (1)

where the initial state x0 ∈ X may be arbitrary and F is
a bounded linear operator with a closed domain D(F ) ⊂
[ XW ] (Z+ = 0, 1, 2, . . .). By a trajectory (x(·), w(·)) of
this system we mean pairs of sequences x(·) ∈ X and
w(·) ∈ W satisfying (1). Each s/s system Σ has an adjoint
s/s system Σ∗ with the same state space X and the Kreı̆n
signal space W∗ = −W . This system is determined by the
fact that (x∗(·), w∗(·)) is a trajectory of Σ∗ if and only if

− (x(n + 1), x∗(0))X + (x(0), x∗(n + 1))X

+
n∑

k=0

[w(k), w∗(n− k)]W = 0, n ∈ Z+,

for all trajectories (x(·), w(·)) of Σ. The adjoint of Σ∗
is the original system Σ. A s/s system Σ is controllable
if the sets of all states x(n), n ≥ 1, which appear in
some trajectory (x(·), w(·)) of Σ with x(0) = 0 (i.e.,
an externally generated trajectory) is dense in X . The
system Σ is observable if there do not exist any nontrivial
trajectories (x(·), w(·)) where the signal component w(·)

is identically zero. Equivalently, Σ is observable if and
only Σ∗ is controllable. Finally, Σ is minimal if Σ is both
controllable and observable.

Definition 1. Let H be a positive self-adjoint operator in
the Hilbert space X .1 A s/s system Σ is

(i) forward H-passive if x(n) ∈ D(
√

H) and

‖
√

Hx(n + 1)‖2X − ‖
√

Hx(n)‖2X
≤ [w(n), w(n)]W , n ∈ Z+,

for every trajectory (x, w) of Σ with x(0) ∈ D(
√

H),
(ii) backward H-passive if Σ∗ is forward H−1-passive,

(iii) H-passive if it is both forward H-passive and back-
ward H-passive.

(iv) passive if it is 1X -passive (1X is the identity operator
in X ).

It is not difficult to see that a s/s system Σ whose
trajectories are defined by (1) is forward H-passive if and
only if H > 0 is a solution of the generalized s/s KYP
(Kalman–Yakubovich–Popov) inequality2

‖H1/2F [ x
w ]‖2X − ‖H1/2x‖2X ≤ [w,w]W ,

[ x
w ] ∈ D(F ), x ∈ D(H1/2).

(2)

There is a rich literature on the finite-dimensional i/s/o
(= input/state/output) version of this inequality and the
corresponding equality; see, e.g., [PAJ91], [IW93], and
[LR95], and the references mentioned there. This inequal-
ity is named after Kalman [Kal63], Popov [Pop73], and
Yakubovich [Yak62]. In the seventies the classical results
on the KYP inequalities were extended to systems with
dimX = ∞ by V. A. Yakubovich and his students
and collaborators (see [Yak74], [Yak75], [LY76] and the
references listed there). There is now also a rich literature
on this subject; see, e.g., the discussion in [Pan99] and the
references cited there. The i/s/o version of our notion of a
generalized solution of (2) was introduced and studied in
[AKP05].

1Note that neither H itself nor H−1 is required to be bounded.
In [AS06a] an example is given based on the heat equation where
all solutions of the continuous time version of the generalized KYP
inequality are unbounded and have an unbounded inverse.

2In particular, in order for the first term in this inequality to be well-
defined we require F to map {[ x

w ] ∈ D(F ) | x ∈ D(H1/2)} into
D(H1/2).



The notion of H-passivity of a s/s system Σ involves
both the state component and the signal component of
the trajectories of Σ. There is another weaker version of
passivity which involves only the signal components of the
externally generated trajectories of Σ.

By a behavior3 on the signal space W we mean a closed
right-shift invariant subspace of the Fréchet space WZ+

.
Thus, in particular, the set W of all sequences w that are
the signal parts of externally generated trajectories (x,w)
of a s/s system Σ is a behavior. We call this the behavior
induced by Σ, and refer to Σ as a s/s realization of W, or,
in the case where Σ is minimal, as a minimal s/s realization
of W. A behavior is realizable if it has a s/s realization.

Two s/s systems Σ = (V ;X ,W) and Σ1 = (V1;X1,W)
are called pseudo-similar if there exists an injective
densely defined closed linear operator R : X → X1 with
dense range such that the following conditions hold:

If (x(·), w(·)) is a trajectory of Σ on Z+ with
x(0) ∈ D(R), then x(n) ∈ D(R) for all n ∈ Z+

and (Rx(·), w(·)) is a trajectory of Σ1 on Z+, and
conversely, if (x1(·), w(·)) is a trajectory of Σ1 on
Z+ with x1(0) ∈ R(R), then x1(n) ∈ R(R) for all
n ∈ Z+ and (R−1x1(·), w(·)) is a trajectory of Σ
on Z+.

Two s/s systems Σ1 and Σ2 with the same signal space
are externally equivalent if they induce the same behavior.
In particular, if Σ1 and Σ2 are pseudo-similar, then they
are externally equivalent. Conversely, if Σ1 and Σ2 are
minimal and externally equivalent, then they are necessar-
ily pseudo-similar. Moreover, a realizable behavior W on
the signal space W has a minimal s/s realization, which
is determined by W up to pseudo-similarity. (See [AS05,
Section 7] for details.)

The adjoint of the behavior W on W is a behavior W∗
on W∗ defined as the set of sequences w∗ satisfying

n∑

k=0

[w(k), w∗(n− k)]W = 0, n ∈ Z+,

for all w ∈ W. If W is induced by Σ, then W∗ is
(realizable and) induced by Σ∗, and the adjoint of W∗
is the original behavior W.

Definition 2. A behavior W on W is
(i) forward passive if

n∑

k=0

[w(k), w(k)]W ≥ 0, w ∈ W, n ∈ Z+,

(ii) backward passive if W∗ is forward passive,
(iii) passive if it is realizable4 and both forward and

backward passive.

3Our behaviors are what Polderman and Willems call linear time-
invariant mainfest behaviors in [PW98, Definitions 1.3.4, 1.4.1, and
1.4.2]. We refer the reader to this book for further details on behaviors
induced by systems with a finite-dimensional state space and for an
account of the extensive literatur on this subject.

4We do not know if the realizability assumption is redundant or not.

Proposition 3. Let W be the behavior induced by a s/s
system Σ.

(i) If Σ is forward H-passive for some H > 0, then W
is forward passive.

(ii) If Σ is backward H-passive for some H > 0, then
W is backward passive.

(iii) If Σ is forward H1-passive for some H1 > 0 and
backward H2-passive for some H2 > 0, then Σ is
both H1-passive and H2-passive, and W is passive.

Theorem 4. Let W be a passive behavior on W . Then

(i) W has a minimal passive s/s realization.
(ii) Every H-passive realization Σ of W is pseudo-

similar to a passive realization ΣH with pseudo-
similarity operator

√
H . The system ΣH is deter-

mined uniquely by Σ and H .
(iii) Every minimal realization of W is H-passive for

some H > 0, and it is possible to choose H in such
a way that the system ΣH in (ii) is minimal.

Assertion (ii) can be interpreted in the following way:
we can always convert an H-passive s/s system into a
passive one by simply replacing the original norm ‖·‖X
in the state space by the new norm ‖x‖H = ‖√Hx‖X ,
which is finite for all x ∈ D(

√
H), and then completing

D(
√

H) with respect to this new norm.
Our final theorem says that a suitable subclass of all

operators H > 0 for which a s/s system Σ is H-passive
can be partially ordered. Here we use the following partial
ordering of nonnegative self-adjoint operators on X : if
H1 and H2 are two nonnegative self-adjoint operators on
the Hilbert space X , then we write H1 ¹ H2 whenever
D(H1/2

2 ) ⊂ D(H1/2
1 ) and ‖H1/2

1 x‖ ≤ ‖H1/2
2 x‖ for

all x ∈ D(H1/2
2 ). For bounded nonnegative operators

H1 and H2 with D(H2) = D(H1) = X this ordering
coincides with the standard ordering of bounded self-
adjoint operators.

For each s/s system Σ we denote the set of operators
H > 0 for which Σ is H-passive by MΣ, and we let
Mmin

Σ be the set of H ∈ MΣ for which the system ΣH in
assertion (ii) of Theorem 4 is minimal.

Theorem 5. Let Σ be a minimal s/s system with a passive
behavior. Then Mmin

Σ 6= ∅ and Mmin
Σ contains a minimal

element H◦ and a maximal element H•, i.e., H◦ ¹ H ¹
H• for every H ∈ Mmin

Σ .

The two extremal storage functions EH◦ and EH• cor-
respond to Willems’ [Wil72a], [Wil72b] available storage
and required supply, respectively (there presented in an
i/s/o setting). In the terminology of Arov [Aro79], [Aro95],
[Aro99] (likewise in an i/s/o setting), ΣH◦ is the optimal
and ΣH• is the ∗-optimal realization of W.

The results presented above were obtained by reducing
the problem to the corresponding problems concerning
the existence of generalized positive solutions of a KYP
inequality for an i/s/o linear discrete time invariant system
Σi/s/o with scattering supply rate solved in [AKP05].



This reduction is based on the existence of admissible
decompositions W = −Y u U of the Kreı̆n signal space
W of Σ. By this we mean that that there exists a (unique)
i/s/o system Σi/s/o with the same state space X is Σ, with
input space U and output space Y , and with trajectories
(x(·), u(·), y(·)) given by a system of equations

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n) + Dx(n), n ∈ Z+,

x(0) = x0,

(3)

where [ A B
C D ] ∈ B([XU ] ;

[X
Y

]
), with the property that

(x(·), u(·), y(·)) is a trajectory of Σi/s/o if and only if
(x(·), w(·)) with w(·) = u(·) + y(·) is a trajectory of Σ.
We show that

(i) a forward H-passive s/s system Σ is H-passive if
and only if at least one fundamental decomposition
W = −Y [u] U of the Kreı̆n signal space W of Σ
is a admissible,

(ii) if Σ is H-passive, then every fundamental decompo-
sition W = −Y [u] U is admissible,

(iii) if the decomposition W = Y u U is admissible
for Σ, then the set of generalized positive solutions
H of the KYP inequality for Σ coincides with the
set of generalized positive solutions H of the KYP
inequality for Σi/s/o with the supply rate on Y ×U
inherited from the inner product [·, ·]W .

Further details and proofs will be given in [AS06b] and
[Sta06]. Different i/s/o representations and affine represen-
tations of s/s systems will be discussed in [AS06c] and
[AS06d].
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Birkhäuser Verlag, 1999, pp. 27–44.

[Aro02] , Stable dissipative linear stationary dynamical scatter-
ing systems, Interpolation Theory, Systems Theory, and Related
Topics. The Harry Dym Anniversary Volume (Basel Boston
Berlin), Operator Theory: Advances and Applications, vol.
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control. I, Sibirsk. Mat. Ž. 15 (1974), 639–668, 703, translation
in Sib. Math. J. 15 (1974), 457–476 (1975).

[Yak75] , The frequency theorem for the case in which the
state space and the control space are Hilbert spaces, and
its application in certain problems in the synthesis of optimal
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