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Discrete time-invariant i/s/o
systems
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Discrete Time-Invariant I/S/O System

Linear discrete-time-invariant systems are typically modeled as i/s/o (in-
put/state/output) systems of the type

x(n + 1) = Ax(n) + Bu(n), n ∈ Z+, x(0) = x0,

y(n) = Cx(n) + Du(n), n ∈ Z+.
(1)

Here Z+ = {0, 1, 2, . . .} and
A, B, C, D, are bounded operators.
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Discrete Time-Invariant I/S/O System

Linear discrete-time-invariant systems are typically modeled as i/s/o (in-
put/state/output) systems of the type

x(n + 1) = Ax(n) + Bu(n), n ∈ Z+, x(0) = x0,

y(n) = Cx(n) + Du(n), n ∈ Z+.
(1)

Here Z+ = {0, 1, 2, . . .} and
A, B, C, D, are bounded operators.

u(n) ∈ U = the input space,
x(n) ∈ X = the state space,
y(n) ∈ Y = the output space (all Hilbert spaces).

By a trajectory of this system we mean a triple of sequences (u, x, y) satisfying (1).

We denote this system by Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y)

.
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Forward H-Passive I/S/O System
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Forward H-Passive I/S/O System

The system (1) is forward H-passive if all trajectories satisfy the condition

‖
√

Hx(n + 1)‖2X − ‖
√

Hx(n)‖2X ≤
〈[

y(n)
u(n)

]
, J

[
y(n)
u(n)

]〉
Y⊕U

, n ∈ Z+, (2)

where H > 0 and J is a given signature operator (J = J∗ = J−1).
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Forward H-Passive I/S/O System

The system (1) is forward H-passive if all trajectories satisfy the condition

‖
√

Hx(n + 1)‖2X − ‖
√

Hx(n)‖2X ≤
〈[

y(n)
u(n)

]
, J

[
y(n)
u(n)

]〉
Y⊕U

, n ∈ Z+, (2)

where H > 0 and J is a given signature operator (J = J∗ = J−1).

The positive quadratic form

EH(x) = ‖
√

Hx‖2X = 〈x,Hx〉X

is called the storage function (Lyapunov function), and the indefinite bilinear form

j(u, y) = 〈[ y
u ] , J [ y

u ]〉Y⊕U .

is called the supply rate.
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The Three Most Common Supply Rates
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The Three Most Common Supply Rates

(i) The scattering supply rate jsca(u, y) = ‖u‖2U − ‖y‖2Y with signature operator

Jsca =
[
−1Y 0

0 1U

]
.
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(i) The scattering supply rate jsca(u, y) = ‖u‖2U − ‖y‖2Y with signature operator

Jsca =
[
−1Y 0

0 1U

]
.

(ii) The impedance supply rate jimp(u, y) = 2<〈Ψu, y〉U with signature operator
Jimp =

[
0 Ψ

Ψ∗ 0

]
, where Ψ is a unitary operator U → Y.

(iii) The transmission supply rate jtra(u, y) = 〈u, JUu〉U − 〈y, JYy〉Y with signature

operator Jtra =
[
−JY 0

0 JU

]
, where JY and JU are signature operators in Y and U ,

respectively.

It is possible to combine all these cases into one single setting, called the s/s
(state/signal) setting. The idea is to introduce a class of systems which does not
distinguish between inputs and outputs.
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State/Signal Systems
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The Signal Space
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The Signal Space

We start by combining the input space U and the output space Y into one signal
space W =

[ Y
U

]
. This signal space has a natural Krĕın space inner product obtained

from the signature operator J in the supply rate j, namely

[[
y
u

]
,

[
y′

u′

]]

W
=

〈[
y
u

]
, J

[
y′

u′

]〉

Y⊕U
.
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The Signal Space

We start by combining the input space U and the output space Y into one signal
space W =

[ Y
U

]
. This signal space has a natural Krĕın space inner product obtained

from the signature operator J in the supply rate j, namely

[[
y
u

]
,

[
y′

u′

]]

W
=

〈[
y
u

]
, J

[
y′

u′

]〉

Y⊕U
.

The (forward) H-passivity-inequality (2) now becomes (with w(k) =
[

y(k)
u(k)

]
)

‖
√

Hx(k + 1)‖2X − ‖
√

Hx(k)‖2X ≤ [w(k), w(k)]W, k ∈ Z+.
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State/Signal System: Definition

A linear discrete time-invariant s/s system Σ is modelled by a system of equations

x(n + 1) = F
[

x(n)
w(n)

]
, n ∈ Z+, x(0) = x0, (3)

Here F is a bounded linear operator with a closed domain D(F ) ⊂ [ XW ] (Z+ =
0, 1, 2, . . .) and a certain additional property.
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State/Signal System: Definition

A linear discrete time-invariant s/s system Σ is modelled by a system of equations

x(n + 1) = F
[

x(n)
w(n)

]
, n ∈ Z+, x(0) = x0, (3)

Here F is a bounded linear operator with a closed domain D(F ) ⊂ [ XW ] (Z+ =
0, 1, 2, . . .) and a certain additional property.

x(n) ∈ X = the state space (a Hilbert space),
w(n) ∈ W = the signal space (a Krĕın space).

By a trajectory of this system we mean a pair of sequences (x,w) satisfying (3).

In the case of an i/s/o system we take w = [ y
u ], F

[ x
u
y

]
= Ax + Bu, and

D(F ) =
{[ x

u
y

] ∣∣∣ y = Cx + Du
}

.
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Additional Property of F

We require F to have the following property:
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(i) Every x0 ∈ X is the initial state of some trajectory.

It follows from (3) that moreover

(ii) A trajectory (x,w) is uniquely determined by the initial state x0 and the signal
part w.
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Additional Property of F

We require F to have the following property:

(i) Every x0 ∈ X is the initial state of some trajectory.

It follows from (3) that moreover

(ii) A trajectory (x,w) is uniquely determined by the initial state x0 and the signal
part w.

(iii) The trajectory (x,w) depends continuously on the intial state x0 and the signal
part w.
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The Adjoint State/Signal System

Each state/signal system Σ has an adjoint state/signal system Σ∗ with the same
state space X and the Krĕın signal space W∗ = −W.
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The Adjoint State/Signal System

Each state/signal system Σ has an adjoint state/signal system Σ∗ with the same
state space X and the Krĕın signal space W∗ = −W.

This system is determined by the fact that (x∗(·), w∗(·)) is a trajectory of Σ∗ if and
only if

−〈x(n + 1), x∗(0)〉X + 〈x(0), x∗(n + 1)〉X +
n∑

k=0

[w(k), w∗(n− k)]W = 0, n ∈ Z+,

for all trajectories (x(·), w(·)) of Σ.

The adjoint of Σ∗ is the original system Σ.
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Controllability and Observability

A state/signal system Σ is
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A state/signal system Σ is

• controllable if the set of all states x(n), n ≥ 1, which appear in some trajectory
(x(·), w(·)) of Σ with x(0) = 0 (i.e., an externally generated trajectory) is dense
in X .
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Controllability and Observability

A state/signal system Σ is

• controllable if the set of all states x(n), n ≥ 1, which appear in some trajectory
(x(·), w(·)) of Σ with x(0) = 0 (i.e., an externally generated trajectory) is dense
in X .

• observable if there do not exist any nontrivial trajectories (x(·), w(·)) where the
signal component w(·) is identically zero.

• minimal if Σ is both controllable and observable.

Fact: Σ is observable if and only Σ∗ is controllable.
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H-Passive State/Signal Systems
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H-Passive State/Signal Systems

Let H = H∗ > 0.1 Here H and H−1 may be unbounded. A s/s system Σ is

1H > 0 means that 〈x, Hx〉 > 0 for all nonzero x ∈ D(H).
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H-Passive State/Signal Systems

Let H = H∗ > 0.1 Here H and H−1 may be unbounded. A s/s system Σ is

(i) forward H-passive if every trajectory (x,w) of Σ with x(0) ∈ D(
√

H) satisfies
x(n) ∈ D(

√
H) and

‖
√

Hx(n + 1)‖2X − ‖
√

Hx(n)‖2X ≤ [w(n), w(n)]W, n ∈ Z+.

(ii) backward H-passive if Σ∗ is forward H−1-passive,

(iii) H-passive if it is both forward H-passive and backward H-passive.

(iv) passive if it is 1X -passive (1X is the identity operator in X ).

1H > 0 means that 〈x, Hx〉 > 0 for all nonzero x ∈ D(H).
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The S/S KYP Inequality

It is not difficult to see that a s/s system Σ whose trajectories are defined by (3)
is forward H-passive if and only if H > 0 is a solution of the generalized s/s KYP
(Kalman–Yakubovich–Popov) inequality2

‖H1/2F [ x
w ]‖2X − ‖H1/2x‖2X ≤ [w, w]W, [ x

w ] ∈ D(F ), x ∈ D(H1/2). (4)

2In particular, in order for the first term in this inequality to be well-defined we require F to map

{[ x
w ] ∈ D(F ) | x ∈ D(H1/2)} into D(H1/2).

14



The S/S KYP Inequality

It is not difficult to see that a s/s system Σ whose trajectories are defined by (3)
is forward H-passive if and only if H > 0 is a solution of the generalized s/s KYP
(Kalman–Yakubovich–Popov) inequality2

‖H1/2F [ x
w ]‖2X − ‖H1/2x‖2X ≤ [w, w]W, [ x

w ] ∈ D(F ), x ∈ D(H1/2). (4)

This inequality is named after Kalman [Kal63], Yakubovich [Yak62], and Popov
[Pop61] (who at that time restricted themselves to the finite-dimensional in-
put/state/output case).

2In particular, in order for the first term in this inequality to be well-defined we require F to map

{[ x
w ] ∈ D(F ) | x ∈ D(H1/2)} into D(H1/2).

14



The S/S KYP Inequality

It is not difficult to see that a s/s system Σ whose trajectories are defined by (3)
is forward H-passive if and only if H > 0 is a solution of the generalized s/s KYP
(Kalman–Yakubovich–Popov) inequality2

‖H1/2F [ x
w ]‖2X − ‖H1/2x‖2X ≤ [w, w]W, [ x

w ] ∈ D(F ), x ∈ D(H1/2). (4)

This inequality is named after Kalman [Kal63], Yakubovich [Yak62], and Popov
[Pop61] (who at that time restricted themselves to the finite-dimensional in-
put/state/output case).

There is a rich literature on this version of the KYP inequality and the corresponding
equality; see, e.g., [PAJ91], [IW93], and [LR95], and the references mentioned there.

2In particular, in order for the first term in this inequality to be well-defined we require F to map

{[ x
w ] ∈ D(F ) | x ∈ D(H1/2)} into D(H1/2).

MTNS 2006 14



Infinite-Dimensional I/S/O KYP Inequality: History

In the seventies the classical results on the i/s/o KYP inequalities were extended
to systems with dimX = ∞ by Yakubovich and his students and collaborators (see
[Yak74, Yak75, LY76] and the references listed there).
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Infinite-Dimensional I/S/O KYP Inequality: History

In the seventies the classical results on the i/s/o KYP inequalities were extended
to systems with dimX = ∞ by Yakubovich and his students and collaborators (see
[Yak74, Yak75, LY76] and the references listed there).

There is now a rich literature also on this subject; see, e.g., the discussion in [Pan99]
and the references cited there.

However, it is (almost) always assumed that H or H−1 is bounded. The only
exception is the article [AKP06] by Arov, Kaashoek and Pik.

An continuous-time example is given in [AS06c] where both H and H−1 are
unbounded for every generalized solution of the i/s/o KYP inequality. The same
example can be converted to discrete time and to also to a s/s setting.
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Signal Behaviors

(The time domain counterpart of the frequency domain subspace
{[

ŷ(z)
û(z)

] ∣∣∣ ŷ(z) = D(z)û(z)
}

.)
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The Behavior Induced by a State/Signal System

An alternative to working with transfer functions is to to study the relationships
between “input” and “output” signals directly in the time doman instead of going
to the frequency domain.
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The Behavior Induced by a State/Signal System

An alternative to working with transfer functions is to to study the relationships
between “input” and “output” signals directly in the time doman instead of going
to the frequency domain.

This leads to the notion of the behavior W of a s/s system.

The behvior is the set of all possible signal sequences w which are the signal part
of some externally generated trajectory (x,w). (Externally generated means that
x0 = 0, so that x is uniquely determined by w).

Easy: W is a closed and right-shift invariant subspace of the Fréchet space WZ+
.
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Behavior: Definition

By a (general) behavior3 on the signal space W we mean a closed right-shift invariant

subspace of the Fréchet space WZ+
.

3Our behaviors are what Polderman and Willems call linear time-invariant mainfest behaviors in [PW98, Definitions
1.3.4, 1.4.1, and 1.4.2].
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Behavior: Definition

By a (general) behavior3 on the signal space W we mean a closed right-shift invariant

subspace of the Fréchet space WZ+
.

Thus, in particular, the set W of all sequences w that are the signal part of some
externally generated trajectory (x,w) of a given s/s system Σ is a behavior.

We call this the behavior induced by Σ, and refer to Σ as a s/s realization of W, or,
in the case where Σ is minimal, as a minimal s/s realization of W.

A behavior is realizable if it has a s/s realization.

Two s/s systems Σ1 and Σ2 with the same signal space are externally equivalent if
they induce the same behavior.

3Our behaviors are what Polderman and Willems call linear time-invariant mainfest behaviors in [PW98, Definitions
1.3.4, 1.4.1, and 1.4.2].
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Pseudo-Similarity

Two s/s systems Σ and Σ1 with the same signal space W and state spaces X
and X1, respectively, are called pseudo-similar if there exists an injective densely
defined closed linear operator R : X → X1 with dense range such that the following
conditions hold:
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conditions hold:

(i) D(R) is invariant under trajectories of Σ, and R(R) is invariant under trajectories
of Σ1,

(ii) (x(·), w(·)) is a trajectory of Σ ⇔ (Rx(·), w(·)) is a trajectory of Σ1.

In particular, if Σ1 and Σ2 are pseudo-similar, then they are externally equivalent.

Conversely, if Σ1 and Σ2 are minimal and externally equivalent, then they are
necessarily pseudo-similar.

A realizable behavior W on the signal space W has a minimal s/s realization, which
is determined by W up to pseudo-similarity. (See [AS05, Section 7] for details.)
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The Adjoint Behavior

Recall the “orthogonality” between a s/s system Σ and its adjoint Σ∗:

−〈x(n + 1), x∗(0)〉X + 〈x(0), x∗(n + 1)〉X +
n∑

k=0

[w(k), w∗(n− k)]W = 0, n ∈ Z+,
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−〈x(n + 1), x∗(0)〉X + 〈x(0), x∗(n + 1)〉X +
n∑

k=0

[w(k), w∗(n− k)]W = 0, n ∈ Z+,

For external trajectories we have x(0) = 0 and x∗(0) = 0, and hence

n∑

k=0

[w(k), w∗(n− k)]W = 0, n ∈ Z+. (5)

In general we define the adjoint of the behavior W on W to be the behavior W∗ on
W∗ which consists of all the sequences w∗ that satisfy (5) for all w ∈ W.

If W is induced by Σ, then W∗ is (realizable and) induced by Σ∗,
and the adjoint of W∗ is the original behavior W.4

4Is this statement true or false if W is not realizable?
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Passivity Inequality for Behaviors
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The forward H-passivity inequality says

‖
√

Hx(k + 1)‖2X − ‖
√

Hx(k)‖2X ≤ [w(k), w(k)]W, k ∈ Z+.
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The forward H-passivity inequality says

‖
√

Hx(k + 1)‖2X − ‖
√

Hx(k)‖2X ≤ [w(k), w(k)]W, k ∈ Z+.

Sum over k = 0, 1, 2, . . . , n and take x(0) = 0. This gives

n∑

k=0

[w(k), w(k)]W ≥ ‖
√

Hx(n + 1)‖2X .

In particular, every w in the behavior W induced by Σ satisfies

n∑

k=0

[w(k), w(k)]W ≥ 0, w ∈ W, n ∈ Z+.
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Passive Behaviors

A behavior W on W is

(i) forward passive if

n∑

k=0

[w(k), w(k)]W ≥ 0, w ∈ W, n ∈ Z+,

(ii) backward passive if W∗ is forward passive,

(iii) passive if it is realizable5 and both forward and backward passive.

5We do not know if the realizability assumption is redundant or not.
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Passive S/S Systems ↔ Passive Behaviors

Proposition 1. Let W be the behavior induced by the s/s system Σ.
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Passive S/S Systems ↔ Passive Behaviors

Proposition 1. Let W be the behavior induced by the s/s system Σ.

(i) If Σ is forward H-passive for some H > 0, then W is forward passive.

(ii) If Σ is backward H-passive for some H > 0, then W is backward passive.

(iii) If Σ is forward H-passive and W is passive then Σ is H-passive.

(iv) If Σ is forward H1 passive for some H1 > 0 and backward H2 passive for some
H2 > 0, then Σ is both H1-passive and H2-passive, and W is passive.

Thus, if Σ is backward H2-passive for at least one H2, then forward H-passivity
implies backward H-passivity for all H > 0.
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Theorem 2. Let W be a passive behavior on W. Then

24



H-Passive Realizations

Theorem 2. Let W be a passive behavior on W. Then

(i) W has a minimal passive s/s realization.

24



H-Passive Realizations

Theorem 2. Let W be a passive behavior on W. Then

(i) W has a minimal passive s/s realization.

(ii) Every H-passive realization Σ of W is pseudo-similar to a passive realization ΣH

with pseudo-similarity operator
√

H. The system ΣH is determined uniquely by
Σ and H.

24



H-Passive Realizations

Theorem 2. Let W be a passive behavior on W. Then

(i) W has a minimal passive s/s realization.

(ii) Every H-passive realization Σ of W is pseudo-similar to a passive realization ΣH

with pseudo-similarity operator
√

H. The system ΣH is determined uniquely by
Σ and H.

(iii) Every minimal realization of W is H-passive for some H > 0. Moreover, it is
possible to choose H in such a way that the system ΣH in (ii) is minimal.

24



H-Passive Realizations

Theorem 2. Let W be a passive behavior on W. Then

(i) W has a minimal passive s/s realization.

(ii) Every H-passive realization Σ of W is pseudo-similar to a passive realization ΣH

with pseudo-similarity operator
√

H. The system ΣH is determined uniquely by
Σ and H.

(iii) Every minimal realization of W is H-passive for some H > 0. Moreover, it is
possible to choose H in such a way that the system ΣH in (ii) is minimal.

(ii) says: We can make Σ passive by replacing the original norm in X by the new
norm ‖x‖H = ‖√Hx‖X .

24



H-Passive Realizations

Theorem 2. Let W be a passive behavior on W. Then

(i) W has a minimal passive s/s realization.

(ii) Every H-passive realization Σ of W is pseudo-similar to a passive realization ΣH

with pseudo-similarity operator
√

H. The system ΣH is determined uniquely by
Σ and H.

(iii) Every minimal realization of W is H-passive for some H > 0. Moreover, it is
possible to choose H in such a way that the system ΣH in (ii) is minimal.

(ii) says: We can make Σ passive by replacing the original norm in X by the new
norm ‖x‖H = ‖√Hx‖X .

(iii) says: It is possible to make the resulting system both passive and minimal.
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Ordering of Solutions of KYP Inequality

We denote the set of all solutions H = H∗ > 0 of the KYP inequality by MΣ, and
we let Mmin

Σ be the set of H ∈ MΣ for which the system ΣH in assertion (ii) of
Theorem 2 is minimal by Lmin

Σ .
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Mmin
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i.e., H◦ ¹ H ¹ H• for every H ∈ Mmin
Σ .

H1 ¹ H2 ⇔ D(
√

H2) ⊂ D(
√

H1) and ‖√H1x‖ ≤ ‖√H2x‖ ∀x ∈ D(
√

H2).

EH◦(·) is the available storage, and EH•(·) is the required supply (Willems).

H◦ is the optimal and H• is the ∗-optimal solution of the KYP inequality (Arov).
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Further Extensions

Instead of working with energy inequalities we can also work with energy balance
equations. In this case the system will be forward conservative or even conservative.
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Further Extensions

Instead of working with energy inequalities we can also work with energy balance
equations. In this case the system will be forward conservative or even conservative.

Corresponding continuous time results are being developed. The scattering i/s/o
continuous time case is treated in [AS06c]. This will be joint work with Mikael
Kurula.

Analogous results also hold for the quadratic cost minimization problem and its dual.
The advantage with this approach is that we get rid of the finite cost condition. This
is current joint work with Mark Opmeer.
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