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Discrete Time-Invariant I/S/O
Systems
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Discrete Time-Invariant I/S/O System

Linear discrete-time-invariant systems are typically modeled as i/s/o (in-
put/state/output) systems of the type

x(n + 1) = Ax(n) + Bu(n), n ∈ Z+, x(0) = x0,

y(n) = Cx(n) + Du(n), n ∈ Z+.
(1)

Here Z+ = {0, 1, 2, . . .} and
A, B, C, D, are bounded operators.
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Discrete Time-Invariant I/S/O System

Linear discrete-time-invariant systems are typically modeled as i/s/o (in-
put/state/output) systems of the type

x(n + 1) = Ax(n) + Bu(n), n ∈ Z+, x(0) = x0,

y(n) = Cx(n) + Du(n), n ∈ Z+.
(1)

Here Z+ = {0, 1, 2, . . .} and
A, B, C, D, are bounded operators.

u(n) ∈ U = the input space,
x(n) ∈ X = the state space,
y(n) ∈ Y = the output space (all Hilbert spaces).

By a trajectory of this system we mean a triple of sequences (u, x, y) satisfying (1).

We denote this system by Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y)

.
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Frequency Domain Interpretation
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Frequency Domain Interpretation

The Z-transform of a sequence {x(n)}∞n=0 is given by x̂(z) =
∑∞

n=0 x(n)zn. Taking
Z-transforms in (1) and solving for x̂(z) we get the frequency domain i/s/o equtions

x̂(z) = A(z)x0 + B(z)û(z),

ŷ(z) = C(z)x0 + D(z)û(z), for small |z|. (2)

where [
A(z) B(z)
C(z) D(z)

]
=

[
(1X − zA)−1 z(1X − zA)−1B

C(1X − zA)−1 zC(1X − zA)−1B + D

]
(3)

is the four block transfer function of Σ corresponding to the i/o decomposition
W = Y u U . The bottom right block D(z) = zC(1X − zA)−1B + D is the i/o
transfer function of Σ corresponding to this i/o decomposition.
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∑∞

n=0 x(n)zn. Taking
Z-transforms in (1) and solving for x̂(z) we get the frequency domain i/s/o equtions

x̂(z) = A(z)x0 + B(z)û(z),

ŷ(z) = C(z)x0 + D(z)û(z), for small |z|. (2)

where [
A(z) B(z)
C(z) D(z)

]
=

[
(1X − zA)−1 z(1X − zA)−1B

C(1X − zA)−1 zC(1X − zA)−1B + D

]
(3)

is the four block transfer function of Σ corresponding to the i/o decomposition
W = Y u U . The bottom right block D(z) = zC(1X − zA)−1B + D is the i/o
transfer function of Σ corresponding to this i/o decomposition.

The natural domain of definition is the set ΛA consisting of those z ∈ C for which
1X − zA has a bounded inverse (including z = ∞ if A has a bounded inverse).
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The I/S/O Model is an Idealization

The i/s/o model is an idealized model of a true system, with “infinite input impedance
and zero output impedance”:
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The I/S/O Model is an Idealization

The i/s/o model is an idealized model of a true system, with “infinite input impedance
and zero output impedance”:

If we connect two such systems in series, then the second system has no influence
on the first system.

In particular, there is no limit on how many inputs that can be connected to an
output before the performance degrades (as it always does in practice). In real life,

• every input is also an output, since it influences the output to which it is connected,

• every output is also an input, since the true output depends also on the load.

One way to avoid this problem is to ignore the distinction between an input and an
output, and to replace the i/s/o model by a state/signal model.
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State/Signal Systems
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State/Signal System: Definition
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State/Signal System: Definition

We start by combining the input space U and the output space Y into one signal
space W =

[ Y
U

]
.

A linear discrete time-invariant s/s system Σ is modelled by a system of equations

x(n + 1) = F
[

x(n)
w(n)

]
, n ∈ Z+, x(0) = x0, (4)

Here F is a bounded linear operator with a closed domain D(F ) ⊂ [ XW ] (Z+ =
0, 1, 2, . . .) and a certain additional propertiy.

x(n) ∈ X = the state space (typically a Hilbert space),
w(n) ∈ W = the signal space (typically a Krĕın space).

By a trajectory of this system we mean a pair of sequences (x,w) satisfying (4).

In the case of an i/s/o system we take w = [ y
u ], F

[ x
u
y

]
= Ax + Bu, and

D(F ) =
{[ x

u
y

] ∣∣∣ y = Cx + Du
}

.
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Additional Property of F

We require F to have the following property:

8



Additional Property of F

We require F to have the following property:

(i) Every x0 ∈ X is the initial state of some trajectory.

8



Additional Property of F

We require F to have the following property:

(i) Every x0 ∈ X is the initial state of some trajectory.

It follows from (4) that moreover
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part w.
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Additional Property of F

We require F to have the following property:

(i) Every x0 ∈ X is the initial state of some trajectory.

It follows from (4) that moreover

(ii) A trajectory (x,w) is uniquely determined by the initial state x0 and the signal
part w.

(iii) The trajectory (x,w) depends continuously on the intial state x0 and the signal
part w.
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Admissible I/O Decompositions
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Admissible I/O Decompositions

Let W = Y u U be a direct sum decomposition of the signal space W. We call this
decomposition an admissible i/o decomposition of W for the s/s system Σ (with U
as input space and Y as output space) if the s/s equation

x(n + 1) = F
[

x(n)
w(n)

]
, n ∈ Z+, x(0) = x0, (4)

can be written in i/s/o form (for some bounded linear operators A, B, C, D)
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(1)

where u(n) and y(n) are the projections of w(n) onto U and Y, respectively.
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Let W = Y u U be a direct sum decomposition of the signal space W. We call this
decomposition an admissible i/o decomposition of W for the s/s system Σ (with U
as input space and Y as output space) if the s/s equation

x(n + 1) = F
[

x(n)
w(n)

]
, n ∈ Z+, x(0) = x0, (4)

can be written in i/s/o form (for some bounded linear operators A, B, C, D)

x(n + 1) = Ax(n) + Bu(n), n ∈ Z+, x(0) = x0,

y(n) = Cx(n) + Du(n), n ∈ Z+.
(1)

where u(n) and y(n) are the projections of w(n) onto U and Y, respectively.

We then call Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y)

the i/s/o representation of Σ corresponding
to the decomposition W = Y u U .
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Affine Representations of
State/Signal Systems
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Affine Representations of Σ

Not every i/o decomposition of W is admissible.

To be able to treat also the nonadmissible case we introduce right and left affine (=
fractional) generalizations of the notions of i/s/o representations and their transfer
functions.

These are defined for arbitrary i/o decompositions W = Y u U (also nonadmissible
ones).
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Right Affine Representations

By a right affine i/s/o representation of Σ we mean an i/s/o system Σr
i/s/o generated

by the system of equations (a driving variable representation)

x(n + 1) = A′x(n) + B′`(n),

y(n) = C ′Yx(n) + D′
Y`(n),

u(n) = C ′Ux(n) + D′
U`(n), n ∈ Z+, `(n) ∈ L

(where the new input space L is an auxiliary Hilbert space) with the following two
properties:

1) D′ =
[

D′
Y

D′
U

]
has a bounded left-inverse,

2)
(
x(·),

[
y(·)
u(·)

])
is a trajectory of Σ if and only if

(
x(·), `(·),

[
y(·)
u(·)

])
is a trajectory

of Σr
i/s/o for some sequence `(·) with values in L.
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Left Affine Representations

By a left affine i/s/o representation of Σ we mean an i/s/o system Σl
i/s/o generated

by the system of equations (an output nulling representation)

x(n + 1) = A′′x(n) + B′′
Yy(n) + B′′

Uu(n),

e(n) = C ′′x(n) + D′′
Yy(n) + D′′

Uu(n) = 0, n ∈ Z+

(where the new output space K is another auxiliary Hilbert space) with the following
two properties:

1) D′′ =
[
D′′
Y D′′

U
]

has a bounded right-inverse,

2)
(
x(·),

[
y(·)
u(·)

])
is a trajectory of Σ if and only if

(
x(·),

[
y(·)
u(·)

]
, 0

)
is a trajectory

of Σl
i/s/o (i.e., the output is identically zero in K).
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Right and Left Affine Four Block Transfer Functions

The frequency domain versions of these representations are

x̂(z) = A′(z)x0 + B′(z)ˆ̀(z),

ŷ(z) = C′Y(z)x0 + D′
Y(z)ˆ̀(z),

û(z) = C′U(z)x0 + D′
U(z)ˆ̀(z), for small |z|, ˆ̀(z) is free.

(5)
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ŷ(z) = C′Y(z)x0 + D′
Y(z)ˆ̀(z),
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x̂(z) = A′′(z)x0 + B′′
Y(z)ŷ(z) + B′′

U(z)û(z),

ê(z) = C′′(z)x0 + D′′
Y(z)ŷ(z) + D′′

U(z)û(z) = 0 for small |z|. (6)

The corresponding transfer functions are called the right, respectively left affine
transfer functions of Σ corresponding to the (possibly non-admissible) i/o decompo-
sition W = Y u U . Note, in particular, that the right and left affine i/o transfer

functions are now decomposed into D′ =
[

D′Y
D′U

]
and D′′ =

[
D′′
Y D′′

U
]
.
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Generalized Transfer Functions
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Generalized Right Transfer Function

Solving (5) for x̂(z) and ŷ(z) we get the following generalized right four block
transfer function with input space U and output space Y

[
Ar(z) Br(z)
Cr(z) Dr(z)

]
=

[
A′(z) B′(z)
C′Y(z) D′

Y(z)

] [
1X 0

C′U(z) D′
U(z)

]−1

, (7)

defined for all z in the set

Ω(Σr
i/s/o) := {z ∈ ΛA′ | D′

U(z) has a bounded inverse}.
In particular, the generalized right i/o transfer function is given by

Dr(z) = D′
Y(z)D′

U(z)−1.
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[
Ar(z) Br(z)
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]
=

[
A′(z) B′(z)
C′Y(z) D′

Y(z)

] [
1X 0

C′U(z) D′
U(z)

]−1

, (7)

defined for all z in the set

Ω(Σr
i/s/o) := {z ∈ ΛA′ | D′

U(z) has a bounded inverse}.
In particular, the generalized right i/o transfer function is given by

Dr(z) = D′
Y(z)D′

U(z)−1.

By varying the representation we can thus define
[

Ar(z) Br(z)
Cr(z) Dr(z)

]
for all z in the set

Ωr(Σ;U ,Y) := the union of the above sets Ω(Σr
i/s/o).
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Generalized Left Transfer Function

Solving (6) for x̂(z) and ŷ(z) we get the following generalized left four block transfer
function with input space U and output space Y

[
Al(z) Bl(z)
Cl(z) Dl(z)

]
=

[
1X −B′′

Y(z)
0 −D′′

Y(z)

]−1 [
A′′(z) B′′

U(z)
C′′(z) D′′

U(z)

]
. (8)

defined for all z in the set

Ω(Σl
i/s/o) := {z ∈ ΛA′′ | D′′

Y(z) has a bounded inverse}.
In particular, the generalized left i/o transfer function is given by

Dl(z) = −D′′
Y(z)−1D′′

U(z).
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Domains of Right and Left Generalized Transfer Functions

Thus,

• z ∈ Ωr(Σ;U ,Y) if there exists at least one right affine representation Σr
i/s/o for

which formula (7) defining
[

Ar(z) Br(z)
Cr(z) Dr(z)

]
makes sense.

• z ∈ Ωl(Σ;U ,Y) if there exists at least one left affine representation Σl
i/s/o for

which formula (8) defining
[

Al(z) Bl(z)
Cl(z) Dl(z)

]
makes sense.
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Right and Left Generalized Transfer Functions Are Well Defined

Theorem 1. The right and left generalized four block transfer functions defined by
(7) and (8), respectively, do not depend on the choice of Σr

i/s/o and Σl
i/s/o, as long

as z ∈ Ω(Σr
i/s/o) or z ∈ Ω(Σr

i/s/o).
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Right and Left Generalized Transfer Functions Coincide

Theorem 2. The right and left generalized four block transfer functions defined by
(7) and (8), respectively, coincide on

Ω(Σ;U ,Y) = Ωr(Σ;U ,Y) ∩ Ωl(Σ;U ,Y)

(whenever this set is nonempty).

20



Right and Left Generalized Transfer Functions Coincide

Theorem 2. The right and left generalized four block transfer functions defined by
(7) and (8), respectively, coincide on

Ω(Σ;U ,Y) = Ωr(Σ;U ,Y) ∩ Ωl(Σ;U ,Y)

(whenever this set is nonempty).

The decomposition is admissible if and only if 0 ∈ Ω(Σ;U ,Y).

20



Right and Left Generalized Transfer Functions Coincide

Theorem 2. The right and left generalized four block transfer functions defined by
(7) and (8), respectively, coincide on

Ω(Σ;U ,Y) = Ωr(Σ;U ,Y) ∩ Ωl(Σ;U ,Y)

(whenever this set is nonempty).

The decomposition is admissible if and only if 0 ∈ Ω(Σ;U ,Y).

If the decomposition W = Y u U is admissible, and if A is the main operator of the
corresponding i/s/o representation of Σ, then

Ωr(Σ;U ,Y) = Ωl(Σ;U ,Y) = ΛA,

and the right and left generalized four block transfer functions coincide with the
ordinary four block transfer function corresponding to the decompositionW = YuU .
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Coprime Representations
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Stable I/S/O Systems
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Stable I/S/O Systems

• An i/s/o system Σi/s/o = ([ A B
C D ] ;X ,U ,Y) is stable if the trajectories

(x(·), u(·), y(·)) of this system has the property that x(·) ∈ `∞(X ) and
y(·) ∈ `2(Y) whenever u(·) ∈ `2(U).
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Stable I/S/O Systems

• An i/s/o system Σi/s/o = ([ A B
C D ] ;X ,U ,Y) is stable if the trajectories

(x(·), u(·), y(·)) of this system has the property that x(·) ∈ `∞(X ) and
y(·) ∈ `2(Y) whenever u(·) ∈ `2(U).

• A right or left affine i/s/o representation is stable if it is stable when regarded as
an i/s/o system.

• The main operator A of a stable system has the property that D ⊂ ΛA and that
its i/o transfer function belongs to H∞ over the unit disk D. (This applies also
to right and left affine i/s/o representations.)
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Stabilizable and Detectable S/S Systems

A s/s system Σ is
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Stabilizable and Detectable S/S Systems

A s/s system Σ is

• stabilizable if it has a stable right affine i/s/o representation,

• detectable if it has a stable left affine i/s/o representation,

• LFT-stabilizable if it has a stable i/s/o representation. (LFT = Linear Fractional
Transformation.)

Every LFT-stabilizable system is both stabilizable and detectable, since an i/s/o
representation of a s/s system can be interpreted both as a left affine and as a right
affine i/s/o representation of this system.

In particular, every s/s system which is passive in the sense of [AS06a] is LFT-
stabilizable.
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Generalized Transfer Functions In H∞/H∞

Recall: the right or left i/o transfer functions of stable affine representations are
defined in the full unit disk D, and they belong to H∞ over D.
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defined as a (formal) right fraction Dr(z) = D′

Y(z)D′
U(z)−1 ∈ H∞(D)/H∞(D).

If Σ is detectable, then to every direct sum decomposition W = Y u U of W we
obtain a generalized left i/o transfer function defined as a (formal) left fraction
Dr(z) = D′′

Y(z)−1D′′
U(z) ∈ H∞(D) \H∞(D).
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Recall: the right or left i/o transfer functions of stable affine representations are
defined in the full unit disk D, and they belong to H∞ over D.

Thus, if Σ is stabilizable, then to every direct sum decomposition W = Y u U of W
(admissible or not) we obtain a generalized right i/o transfer function (from U to Y)
defined as a (formal) right fraction Dr(z) = D′

Y(z)D′
U(z)−1 ∈ H∞(D)/H∞(D).

If Σ is detectable, then to every direct sum decomposition W = Y u U of W we
obtain a generalized left i/o transfer function defined as a (formal) left fraction
Dr(z) = D′′

Y(z)−1D′′
U(z) ∈ H∞(D) \H∞(D).

If Σ is LFT-stabilizable, then these generalized right and left affine i/o transfer
functions are even right or left coprime in H∞(D), respectively.
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Generalized Nevanlinna and Potapov Class Functions

By applying our theory to passive s/s systems we obtain right and left coprime
transmission representations of these systems.
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By applying our theory to passive s/s systems we obtain right and left coprime
transmission representations of these systems.

In the case where the positive and negative dimensions of the signal space W are
the same we also obtain right and left coprime impedance representations.
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Generalized Nevanlinna and Potapov Class Functions

By applying our theory to passive s/s systems we obtain right and left coprime
transmission representations of these systems.

In the case where the positive and negative dimensions of the signal space W are
the same we also obtain right and left coprime impedance representations.

The corresponding right and left coprime affine i/o transfer functions will be gener-
alized Potapov and Nevanlinna class functions (relations), respectively.
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Unbounded Impedance Representations

It is also possible to give an unbounded i/s/o impedance representation of a passive
s/s system in the case where the impedance function is single-valued, but the values
are unbounded maximal accretive operators.

In this representation the bounded block operator [ A B
C D ] is replaced by an unbounded

operator, and the theory resembles the continuous time system node theory presented
in [Sta05].

The main difference is that the “inside” (the state space X ) and the “outside” (the
common input and output space) have changed places.
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Details

For details, see [AS06b], [AS06c], and [Sta06].
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