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State/Signal System

A state/signal system Σ = (V ;X ,W) in the forward time direction
has a
state space X (a Hilbert space),
signal space W (a Krein space),
and the dynamics of the system is described by the equation

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, (1)

where the generating subspace V is a closed subspace of the

node space K :=
[ X
X
W

]
.

x(t) ∈ X is the state at time t ∈ R+,
x0 ∈ X is the initial state at time zero,
w(t) ∈ W is the signal at time t ∈ R+.
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Example: Boundary Control S/S System

On Monday we discussed the boundary control system

Σ :

{
ẋ(t) = Lx(t),

w(t) = Γx(t),
t ≥ 0; x(0) = x0. (2)

L is the main operator (always unbounded),
Γ is the boundary operator (also unbounded),
L and Γ have the same domain
Dom (L) = Dom (Γ) = Dom

([
L
Γ

])
⊂ X .

We can rewrite this as a state/signal system by defining

V :=
{[

Lx
x

Γx

]
∈ K

∣∣∣ x ∈ Dom
([

L
Γ

])}
. (3)
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Example: Classical I/S/O System

Consider the classical input/state/output system

Σ :

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
t ∈ R+, x(0) = x0. (4)

Here A, B, C , and D are bounded linear operators.
We can rewrite this as a state/signal system by taking
W =

[ Y
U
]

(= Y × U) and defining

V :=

{[
z
x

[ yu ]

]
⊂
[ X
X
W

] ∣∣∣∣∣ z = Ax + Bu

y = Cx + Du

}
. (5)
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Example: A System Node

A system node is a construction used in the theory of well-posed
(and non-wellposed) linear systems. It has a
state space X (a Hilbert space),
input space U (a Hilbert space),
ouput space Y (a Hilbert space).
It is a closed operator S :

[ X
U
]
→
[ X
Y
]
. The dynamics of a system

node is described by

Σ :

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0. (6)

We can rewrite this as a state/signal system by taking W =
[ Y
U
]

and defining

V :=

{[
z
x

[ yu ]

]
⊂
[ X
X
W

] ∣∣∣∣∣ [ zy ] = S [ xu ]

}
. (7)
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Classical and Generalized Trajectories

Back to the general case:

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0. (1)

[ x
w ] is a classical trajectory of Σ if [ x

w ] ∈
[
C1(R+;X )
C(R+;X )

]
and (2)

holds for all t ∈ R+.

[ x
w ] is a generalized trajectory of Σ if [ x

w ] ∈
[

C(R+;X )

L2
loc(R+;W)

]
and

there exists a sequence of classical trajectories [ xn
wn ] such that

xn → x uniformly on bounded intervals and wn → w in
L2
loc(R+;W).

(For the moment L1
loc would also be OK, but later we need L2

loc in
the integrated power inequality.)
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General Assumptions on the Generating Subspace V

In this talk I focus on state/signal systems which are passive or
conservative, as studied in Kurula (2009).
They are well-posed in the sense of Kurula and Staffans (2009).
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Graph Representation of V over State and Signal

In the equation describing the dynamics

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0. (1)

I througout require that the present state x(t) and the present
signal w(t) determine the value of ẋ(t) uniquely. This leads to the
condition [

z
0
0

]
∈ V ⇒ z = 0. (8)

This condition says that V always must have a graph
representation over its last two components:

V =

{[
G[ xw ]

x
w

]
∈ K

∣∣∣∣ [ x
w ] ∈ Dom (G )

}
(9)

for some closed operator G . In general G is not densely defined.
(G is closed since we assume that V is closed.)
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Graph Representation of V over State

If we replace the condition[
z
0
0

]
∈ V ⇒ z = 0. (8)

by the stronger condition that V has a graph representation over
its middle component, then it becomes a boundary control s/s
node:

V :=
{[

Lx
x

Γx

]
∈ K

∣∣∣ x ∈ Dom
([

L
Γ

])}
. (3)
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Graph Representation of V over State and Input

In the general passive case there will always exist a direct sum
decomposition W = Y u U such that V has a graph representation
over

[ X
U
]
:

V :=

{[ z
x

y+u

]
⊂ K

∣∣∣∣∣ u ∈ U , y ∈ Y,
[ zu ] ∈ Dom (S) ,

[ zy ] = S [ xu ] ,

}
(10)

where S is closed and densely defined. This is a system node
representation.
However, it will not have a system node representation with
respect to every decomposition W = Y u U , only with respect to
some decompositions (such as scattering decompositions).
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The Krĕın Signal Space W

Recall: I take the state space X to be a Hilbert space with
inner product (·, ·)X and norm ‖·‖X =

√
(·, ·)X .

However, I take the signal space W to be a Krĕın space, and
not a Hilbert space.

Roughly speaking, a Krĕın space W is a topological vector space
which a (unique) indefinite inner product [·, ·]W . It also has a
Hilbert space inner product (·, ·)W such that

[w1,w2]W = (w1, JWw2)W , w1, w2 ∈ W. (11)

where JW is a boundedly invertible self-adjoint operator in W
(often taken to be a signature operator, i.e., JW = J∗W = J−1

W ).
However, the Hilbert space inner product (·, ·)W and the signature
operator JW are not unique! (One can always replace the given
inner product (·, ·)W by another equivalent inner product, if one at
the same time changes the operator JW accordingly.)
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The Power Inequality

We shall throughout suppose the the s/s system

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, (1)

has no internal energy sources, or more precisely, it satisfies the
power inequality

d

dt
‖x(t)‖2

X ≤ [w(t),w(t)]W . (12)

Here ‖x(t)‖2
X is the internal energy stored state at time t (= the

Hamiltonian), and [w(t),w(t)]W represents the energy flowing
into the system from the outside world. Thus, if we want to allow
the energy to flow in both directions, then we must allow the
right-hand side to take both postive and negative values, and we
cannot replace the indefinite inner product [·, ·]W in W by a
positive definite Hilbert space inner product (·, ·)W in W.
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The Node Space K

By carrying out the differentiation in

d

dt
‖x(t)‖2

X ≤ [w(t),w(t)]W (12)

we get the inequality

− (ẋ(t), x(t))X − (x(t), ẋ(t))X + [w(t),w(t)]W ≥ 0. (13)

At t = 0 the vector

[
ẋ(0)
x(0)
w(0)

]
can be an arbitrary vector in V , and

hence (13) with t = 0 implies

− (z , x)X − (x , z)X + [w ,w ]W ≥ 0,
[

z
x
w

]
∈ V . (14)

This inequality says that V is a nonnegative subspace of the node
space K with respect to a suitable indefinite inner product!
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The Node Space K

Define[[
z1
x1
w1

]
,
[

z2
x2
w2

]]
K

=
([

z1
x1
w1

]
, JK

[
z2
x2
w2

])
K
, JK :=

[
0 −1X 0
−1X 0 0

0 0 JW

]
.

(15)
Then

−(z , x)X − (x , z)X + [w ,w ]W ≥ 0,
[

z
x
w

]
∈ V (14)

says that [[
z
x
w

]
,
[

z
x
w

]]
K
≥ 0,

[
z
x
w

]
∈ V . (16)

In other words, V is a nonnegative subspace of the node space K
with respect to the inner product (15).
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Weak Forward Well-Posedness

By integrating the power inequality

d

dt
‖x(t)‖2

X ≤ [w(t),w(t)]W (12)

we get a weak forward well-posedness condition

‖x(t)‖2
X ≤ ‖x(0)‖2

X +

∫ t

0
[w(s),w(s)]W ds

≤ ‖x(0)‖2
X + ‖JW‖

∫ t

0
‖w(s)‖2

W ds, t ∈ R+.

(17)

Thus, if w ∈ L2
loc(R+;W), then x is bounded on each finite

interval.
Recall that (12) is equivalent to the nonnegativity of V . Thus,
nonnegativity of V implies (17).
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Existence of Nontrivial Trajectories

However, the inequality

‖x(t)‖2
X ≤ ‖x(0)‖2

X + ‖JW‖
∫ t

0
‖w(s)‖2

W ds, t ∈ R+.

(17)
does not yet imply that the system

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, (1)

has any nontrival solution.
Counter example: V = {0} is nonnegative, but with this V the
only solution is [ x

w ] ≡ 0.
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Dimension of the Generating Subspace V

We need another condition, besides the nonnegativity of V , which
says that “V is large enough to generate interesting trajectories”.
For example, in the case of the finite-dimensional i/s/o system

Σ :

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
t ∈ R+, x(0) = x0. (4)

the generating subspace V given by

V :=

{[
z
x

[ yu ]

]
⊂
[ X
X
W

] ∣∣∣∣∣ z = Ax + Bu

y = Cx + Du

}
. (5)

has dimension dimX + dimU and co-dimension dimX + dimY.

(Note that the dimension of the node space K =
[ X
X
W

]
is

dimK = 2× (dimX ) + dimW.)

Olof Staffans, Åbo Akademi University, Finland Passive and Conservative State/Signal Systems



Frame 19 of 1

Passive State/Signal Systems

To also cover the general (possibly infinite-dimensional) passive
case we reformulate this as follows:

Definition

The state/signal system

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, (1)

is passive (in the forward time direction) if its generating subspace
V satisfies the following two conditions:[

z
0
0

]
∈ V ⇒ z = 0.

V is a maximal nonnegative subspace of the node space K.

As we shall see in a moment, passive systems are well-posed.
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Well-Posed Input/State/Output Decompositions

Definition

The direct sum decomposition W = Y u U is input/state/output
well-posed (in the forward time direction) for the state/signal
system Σ = (V ;X ,W) if the following two conditions hold:

For every x0 ∈ X and u ∈ L2
loc(R+;U) there exists a

generalized trajectory [ x
w ] ∈

[
C(R+;X )

L2
loc(R+;W)

]
of Σ on R+ with

x(0) = x0 and PYU w = u;

There exists a positive function K such that every generalized

trajectory [ x
w ] ∈

[
C(R+;X )

L2
loc(R+;W)

]
of Σ on R+ satisfies

‖x(t)‖2
X +

∫ t

0
‖PUYw(s)‖2

W ds

≤ ‖x(0)‖2
X + K (t)

∫ t

0
‖PYU w(s)‖2

W ds, t ∈ R+.

(18)
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Passive Systems are Well-Posed

Definition

The state/signal system Σ = (V ;X ,W) is well-posed (in the
forward time direction) if there exists at least one
input/state/output well-posed decomposition W = Y u U of the
signal space W.

The following result is proved in Kurula (2009):

Theorem

Every passive s/s system is well-posed.
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The Backward Time Direction

Instead of working in the forward time direction we may equally
well be working in the backward time direction. In order to get
backward well-posedness it is natural to assume that Σ has no
internal energy sinks, or more precisely, that the direction of the
power inequality is reversed:

d

dt
‖x(t)‖2

X ≥ [w(t),w(t)]W . (19)

This condition combined with the appropriate maximality condition
will imply well-posedness in the backward time direction.
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Backward Passive State/Signal Systems

Definition

The state/signal system

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R−, x(0) = x0, (20)

is passive in the backward time direction if its generating subspace
V satisfies the following two conditions:[

z
0
0

]
∈ V ⇒ z = 0.

V is a maximal nonpositive subspace of the node space K.
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Backward Well-Posed Input/State/Output Decompositions

Definition

The direct sum decomposition W = Y u U is input/state/output
well-posed in the backward time direction for the state/signal
system Σ = (V ;X ,W) if the following two conditions hold:

For every x0 ∈ X and u ∈ L2
loc(R−;U) there exists a

generalized trajectory [ x
w ] ∈

[
C(R+;X )

L2
loc(R−;W)

]
of Σ on R− with

x(0) = x0 and PYU w = u;

There exists a positive nonincreasing function K such that

every generalized trajectory [ x
w ] ∈

[
C(R−;X )

L2
loc(R−;W)

]
of Σ on R−

satisfies

‖x(t)‖2
X +

∫ 0

t
‖PUYw(s)‖2

W ds

≤ ‖x(0)‖2
X + K (t)

∫ 0

t
‖PYU w(s)‖2

W ds, t ∈ R−.
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Backward Passive Systems are Backward Well-Posed

Definition

The state/signal system Σ = (V ;X ,W) is well-posed in the
backward time direction if there exists at least one backward
input/state/output well-posed decomposition W = Y u U of the
signal space W.

Theorem

Every backward passive s/s system is backward well-posed.
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Finite Dimension: Forward ⇔ Backward Well-Posed

If the system Σ = (V ;X ;W) is finite-dimensional, i.e., if both X
and W are finite-dimensional, then
forward well-posed ⇔ backward well-posed.
However, forward passive 6⇔ backward passive.
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Infinite Dimension: Forward 6⇔ Backward Well-Posed

Warning: A decomposition W = Y u U may very well be forward
i/s/o-well-posed but not backward i/s/o-well-posed, and
conversely.
Fact 1: If W = Y1 u U1 and W = Y2 u U2 are two forward
i/s/o-well-posed decompositions, then dimU1 = dimU2 and
dimY1 = dimY2. Thus, every passive s/s system has a
well-defined input dimension diminW and a well-defined output
dimension dimoutW in the forward time direction, with
diminW + dimoutW = dimW.
Fact 2: If Σ is both forward and backward passive, then the
forward input dimension = backward output dimension
and the other way around.
Conclusion: A necessary (but not sufficient) condition for the
existence of a decomposition W = Y u U which is both forward
and backward i/s/o-well-posed is that the input and output
dimensions of Σ are the same (finite or infinite).
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Systems that are Both Forward and Backward Passive

Above we already mentioned the possibility that Σ is both forward
passive and backward passive. This means that V is both maximal
nonnegative and maximal nonpositive.

Lemma

A subspace V of a Krĕın space K is both maximal nonnegative and
maximal nonpositive if and only if V = V [⊥], where

V [⊥] =
{
κ† ∈ K

∣∣ [κ, κ†]K = 0 for all κ ∈ V
}
. (22)

We call V [⊥] the orthogonal companion to V .
A subspace V which satisfies V = V [⊥] is called Lagrangian (or
hypermaximal neutral) (or hypermaximal W -symmetric) (or
self-adjoint relation) (or unitary relation) (or Dirac structure).
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Conservative State/Signal System

Definition

The state/signal system

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, (1)

is conservative (both in the forward and the backward time
directions) if its generating subspace V satisfies the following two
conditions:[

z
0
0

]
∈ V ⇒ z = 0.

V is a Lagrangian subspace of the node space K, i.e.,
V = V [⊥].

Thus, conservative s/s systems are well-posed both in the forward
and in the backward time directions.
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Different Types of Decompositions of the Signal Space W
The proof of forward well-posedness is based on the use of a
scattering representation of Σ. This is an input/state/output
representation corresponding to a fundamental decomposition of
W.

A fundamental decomposition of W is of the type
W =W− [u]W+, where W− is an anti-Hilbert space and
W+ is a Hilbert space with respect to the inner products
inherited from W. (Anti-Hilbert means that it becomes a
Hilbert space after we change the sign of the inner product,
and “[u]” means that W− and W+ are orthogonal.)

A Lagrangian decomposition of W is of the type W = Y u U ,
where both Y and U are Lagrangian subspaces of W (but
they are not orthogonal to each other).

A general orthogonal decomposition of W is of the type
W = Y [u] U , where both Y and U are Krĕın spaces with
respect to the the inner products inherited from W.

Olof Staffans, Åbo Akademi University, Finland Passive and Conservative State/Signal Systems



Frame 31 of 1

Well-Posedness of Fundamental Decompositions

Let W =W− [u]W+ be a fundamental decomposition of W. Let
Y := |W−| be the Hilbert space that we get by changing the sign
of the inner product in W−, and let U :=W+. Then each w ∈ W
has a unique decomposition w = y + u with y ∈ Y and u ∈ U , and

[w ,w ]W = [y + u, y + u]W = [y , y ]W + [u, u]W

= −(y , y)Y + (u, u)U = −‖y‖2
Y + ‖u‖2

U .

Thus, with respect to this decomposition of W the integrated
forward power inequality

‖x(t)‖2
X ≤ ‖x(0)‖2

X +

∫ t

0
[w(s),w(s)]W ds, t ∈ R+, (17)

becomes

‖x(t)‖2
X+

∫ t

0
‖y(s)‖2

W ds ≤ ‖x(0)‖2
X+

∫ t

0
‖u(s)‖2

W ds, t ∈ R+,

(23)
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Well-Posedness of Fundamental Decompositions

The inequality

‖x(t)‖2
X+

∫ t

0
‖y(s)‖2

W ds ≤ ‖x(0)‖2
X+

∫ t

0
‖u(s)‖2

W ds, t ∈ R+,

(23)
immediately implies the inequality used in the definition of
i/s/o-well-posedness in forward time

‖x(t)‖2
X +

∫ t

0
‖PUYw(s)‖2

W ds

≤ ‖x(0)‖2
X + K (t)

∫ t

0
‖PYU w(s)‖2

W ds, t ∈ R+

(18)

with K (t) ≡ 1.
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Well-Posedness of Fundamental Decompositions

This leads to the following result.

Lemma

Let Σ be a (forward) passive s/s system. Then every fundamental
decomposition W =W− [u]W+ is i/s/o-well-posed for Σ with
input space W+ and output space W−.

An analogous argument shows that

Lemma

Let Σ be a backward passive s/s system. Then every fundamental
decomposition W =W− [u]W+ is i/s/o-well-posed for Σ with
input space W− and output space W+.

In the conservative case both of these lemmas apply. Note that the
roles of W− and W+ change when we reverse the direction of time!
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Scattering Representations

The i/s/o-well-posedness of the fundamental decomposition
W =W− [u]W+ implies that the inclusion

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, (1)

can be rewritten in the following i/s/o form, with input space
U =W+ and output space Y = −W−:

Σi/s/o :

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0, (24)

where the (forward) system node S is closed and densely defined.
This operator has a number of additional properties. See Staffans
(2005) or Kurula (2009) for details.
We call Σi/s/o a (forward) scattering representation of Σ.
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Impedance Representations

In general a Lagrangian decomposition need not be (forward or
backward) i/s/o-well-posed. If it is (forward or backward)
i/s/o-well-posed, then Σ again has a (forward or backward) system
node representation

Σi/s/o :

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0, (24)

where the (forward or backward) system node S is closed and
densely defined.
In this case we call Σi/s/o a (forward or backward) impedance
representation of Σ.
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Boundary Triplet is an Impedance Representation

Note that the equations arising from a boundary controlled
Schrödinger equation (or boundary triplet)

Σi/s/o :


ẋ(t) = iA∗x(t),

u(t) = Γ1x(t),

y(t) = Γ2x(t),

t ≥ 0

x(0) = x0.

(25)

can be interpreted as an impedance representation of the
corresponding s/s boundary control system

Σ :

{
ẋ(t) = iA∗x(t),

w(t) = Γx(t),
t ≥ 0; x(0) = x0. (2)

with respect to the Lagrangian decomposition W =
[ U

0

]
u
[

0
U
]

of
W (if this decomposition is i/s/o-well-posed).
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Transmission Representations

In general an arbitrary orthogonal decomposition need not be
(forward or backward) i/s/o-well-posed. If it is (forward or
backward) i/s/o-well-posed, then Σ again has a (forward or
backward) system node representation

Σi/s/o :

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0, (24)

where the (forward or backward) system node S is closed and
densely defined.
In this case we call Σi/s/o a (forward or backward) transmission
(chain scattering) representation of Σ.
A special case of this is the inverse scattering setting, where one
uses a fundamental decomposition, but interchange the input and
output spaces.
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A Transmission Line

ξ0 `

i(0, t)

v(0, t) v(ξ, t)

i(ξ, t) L(ξ)

C (ξ)

−i(`, t)

v(`, t)

∂

∂t

[
v(ξ, t)
i(ξ, t)

]
=

[
0 − 1

C(ξ)
∂
∂ξ

− 1
L(ξ)

∂
∂ξ 0

] [
v(ξ, t)
i(ξ, t)

]
, (ξ, t) ∈ [0, `]× R+,

w(t) =

 v(0,t)
i(0,t)
v(`,t)
−i(`,t)

 , t ∈ R+,

v(ξ, 0) = v0(ξ), i(ξ, 0) = i0(ξ), ξ ∈ [0, `].

We take x(t) =
[
v(·,t)
i(·,t)

]
, t ∈ R+, and x0 =

[
v0(·)
i0(·)

]
.

Olof Staffans, Åbo Akademi University, Finland Passive and Conservative State/Signal Systems



Frame 39 of 1

Non-Well-Posed Input/Output Decompositions

In the impedance and transmission cases it is convenient to
introduce another notion of input/state/output admissible
decompositions W = Y u U of the signal space W which are not
i/s/o-well-posed.
Idea: The decomposition W = Y u U is i/s/o-admissible with
input space U and output space Y if Σ has a generalized i/s/o
transfer function with respect to this decomposition.
How do we define the generalized i/s/o transfer function?
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Ordinary I/S/O Transfer function

Suppose that x , ẋ , y , and u are all Laplace transformable, with the
Laplace transforms converging in the full right half-plane
C+ = {λ ∈ C | <λ > 0}, and take Laplace transforms in the i/s/o
equation

Σi/s/o :

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0, (24)

to get [
λx̂(λ)− x0

ŷ(λ)

]
= S

[
x̂(λ)
û(λ)

]
, λ ∈ C+. (26)
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Ordinary I/S/O Transfer function

At least in the case of a scattering representation of a passive

system it is possible to solve
[
x̂(λ)
ŷ(λ)

]
in terms of

[ x0

û(λ)

]
from the

identity [
λx̂(λ)− x0

ŷ(λ)

]
= S

[
x̂(λ)
û(λ)

]
, λ ∈ C+. (26)

The map
[ x0

û(λ)

]
→
[
x̂(λ)
ŷ(λ)

]
turns out to be a bounded linear

operator, that we denote by
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
. Thus,

[
x̂(λ)
ŷ(λ)

]
=

[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

] [
x0

û(λ)

]
, λ ∈ C+. (27)

The operator
[
Â B̂
Ĉ D̂

]
is called the input/state/output transfer

function of Σi/s/o .
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Ordinary I/S/O Transfer function

In particular, if S is a bounded operator with Dom (S) =
[ X
U
]
,

then S can be written in the block matrix form S =
[
A B
C D

]
, and we

can compute the i/s/o transfer function explicitly in terms of A, B,
C , and D:[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
=

[
(λ− A)−1 (λ− A)−1B

C (λ− A)−1 C (λ− A)−1B + D

]
, λ ∈ C+.

(28)
Afternoon competition #1: Who can make the longest list of the
different names that different people (such as Derkach, Malamud,
Grubb, Behndt, Arlinskii, Langer, Zwart, Ran, de Snoo, Krĕın,
Weyl, Lax, Phillips, Calkin, Nevanlinna, van der Schaft, etc.) use
for the four different components of the i/s/o transfer function[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
!
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Generalized I/S/O Transfer function

To get the generalized i/s/o transfer function we rewrite the
identity [

λx̂(λ)− x0

ŷ(λ)

]
= S

[
x̂(λ)
û(λ)

]
, λ ∈ C+. (26)

so that it uses the generating subspace V instead of the system
node S .
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Generalized I/S/O Transfer function

Suppose that x , ẋ , and w are all Laplace transformable, with the
Laplace transforms converging in the full right half-plane
C+ = {λ ∈ C | <λ > 0}, and take Laplace transforms in the s/s
equation

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, (1)

to get λx̂(λ)− x0

x̂(λ)
ŵ(λ)

 ∈ V , λ ∈ C+. (29)
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Generalized I/S/O Transfer function

Let W = Y u U be a direct sum decomposition of W. The domain
of the generalized i/s/o transfer function with respect to this
decomposition and the function itself are defined by

Dom
([

Â B̂
Ĉ D̂

])
=

λ ∈ C

∣∣∣∣∣∣∣∣
for all [ x0

u ] ∈
[ X
U
]

there exists

a unique pair [ xy ] ∈
[ X
Y
]

such that
[
λx−x0

x
u+y

]
∈ V

 ,

(30) For λ ∈ Dom
([

Â B̂
Ĉ D̂

])
,
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
[ x0
u ] = [ xy ],

where [ xy ] is given by (30).
(31)
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Admissible I/S/O Decomposition

Definition

The direct sum decomposition W = Y u U is (weakly) forward
i/s/o-admissible with input space U and output space Y if

Dom
([

Â B̂
Ĉ D̂

])
∩ C+ 6= ∅.

Definition

The direct sum decomposition W = Y u U is (weakly) backward
i/s/o-admissible with input space U and output space Y if

Dom
([

Â B̂
Ĉ D̂

])
∩ C− 6= ∅.
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Boundary Triplet = Impedance Representation

Theorem

The Lagrangian decomposition W =
[ U

0

]
u
[

0
U
]

is both forward
and backward i/s/o-admissible for the s/s boundary control system

Σ :

{
ẋ(t) = iA∗x(t),

w(t) = Γx(t),
t ≥ 0; x(0) = x0. (2)

constructed from the boundary controlled Schrödinger equation

Σi/s/o :


ẋ(t) = iA∗x(t),

u(t) = Γ1x(t),

y(t) = Γ2x(t),

t ≥ 0

x(0) = x0.

(25)

with respect to the Lagrangian decomposition W =
[ U

0

]
u
[

0
U
]
.
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Boundary Relations = Non-Admissible Impedance
Representations?

Up to now I have used the definition of a boundary triplet from
Gorbachuk and Gorbachuk (1991). The title of this workshop is
boundary relations, not boundary spaces.
Open Question: To what extent is it true that a boundary relation
can be identified with a possibly non-admissible i/o decomposition
of the signal space of a conservative boundary control s/s system?
Conjecture: To a very large extent!?
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Transfer Relations

It is easy to extend the notion of a generalized i/s/o transfer
function so that it becomes an i/s/o transfer relation instead.
Recall: Let W = Y u U be a direct sum decomposition of W. The
domain of the generalized i/s/o transfer function with respect to
this decomposition and the function itself are defined by

Dom
([

Â B̂
Ĉ D̂

])
=

λ ∈ C

∣∣∣∣∣∣∣∣
for all [ x0

u ] ∈
[ X
U
]

there exists

a unique pair [ xy ] ∈
[ X
Y
]

such that
[
λx−x0

x
u+y

]
∈ V

 ,

(30) For λ ∈ Dom
([

Â B̂
Ĉ D̂

])
,
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
[ x0
u ] = [ xy ],

where [ xy ] is given by (30).
(31)
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Frequency Domain State/Signal Behavior

Definition

The (full) state/signal frequency domain behavior is the family of
subspaces {F̂(λ)}λ∈C of the node space K, where each F(λ) is
given by

F̂(λ) =
{[

x
x0
w

] ∣∣∣ [ λx−x0
x
w

]
∈ V

}
. (32)

The definition of the generalized i/s/o transfer function
[
Â B̂
Ĉ D̂

]
can

be reformulated as follows:

Definition

Let W = Y u U be a direct sum decomposition of W. The domain

of the generalized i/s/o transfer function
[
Â B̂
Ĉ D̂

]
with respect to

this decomposition consists of those points λ ∈ C for which the
state/signal frequency domain behavior F̂(λ) is the graph of a

bounded linear operator
[

0
X
U

]
→
[ X

0
Y

]
, and

[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
is defined

to be this operator.
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Input/State/Output Transfer Relations

By definition, the decomposition W = Y u U is
non-i/s/o-admissible both in the forward and backward time
directions if and only if there does not exist a single point
λ ∈ C \ iR such that F̂(λ) is the graph of a bounded linear
operator

[ X
U
]
→
[ X
Y
]
.

However, we can always interpret F̂(λ) as the graph of a closed
relation

[ X
U
]
→
[ X
Y
]
. With this interpretation it makes sense to

call this relation the i/s/o transfer relation at the point λ ∈ C. It is
defined for all λ ∈ C.
Observe that the subspace F̂(λ) is a state/signal invariant, i.e., it
is independent of the decomposition W = Y u U .
Thus, although the s/s system Σ has many different transfer
relations (corresponding to different decompositions W = Y u U),
the graphs of all possible transfer relations are the same! They are
simply different representations of the i/s/o frequency domain
behavior with respect to different decompositions of the signal
space W = Y u U .
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External Cayley Transform and Chain Scattering Transform

Many of the standard transformations that are used in i/s/o theory
can be interpreted as simple changes of i/o deocompositions
W = Y u U in the corresponding state/signal system Σ.

The external Cayley transform (or main transformation by
Derkach et al. (2006)) describes what happens when you
replace an impedance representation by a scattering
representation (or the other way around) of the s/s system Σ
The chain scattering (or Potapov–Gintzburg) transform
describes what happens when you replace a transmission
representation by a scattering representation (or the other way
around) of the s/s system Σ.

Livšic (1973) uses the name diagonal transformation for the
transformation from a direct sum decomposition of W to a
fundamental decomposition (and thus from the original i/s/o
representation to a scattering representation of Σ).
Afternoon competition #2: Who can make the longest list of
different names for these coordinate changes?
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Discrete Time State/Signal Systems

There is also an internal Cayley Transform that can be used to
map a continuous time s/s system into a discrete time s/s system
and back. By using this transfrorm it is possible to convert the
discrete time s/s results in Arov and Staffans (2007, 2009a,b,a)
into corresponding continuous time results.
Afternoon Competition #3: How many names ....
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Olof Staffans, Åbo Akademi University, Finland Passive and Conservative State/Signal Systems



Frame 55 of 1

References

D. Z. Arov and O. J. Staffans. State/signal linear time-invariant
systems theory. Part II: Passive discrete time systems. Internat. J.
Robust Nonlinear Control, 17:497–548, 2007.

D. Z. Arov and O. J. Staffans. A Krĕın space coordinate free
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Generalized Input/Output Transfer Functions

Above I have looked at generalized input/state/output transfer
functions, which have four components:
Â(λ) : x0 → x̂(λ),
B̂(λ) : û(λ)→ x̂(λ),
Ĉ(λ) : x0 → ŷ(λ),
D̂(λ) : û(λ)→ ŷ(λ).

Often one ignores those part of this transfer function which involve
the state, and only studies the input/output transfer function
D̂(λ) : û(λ)→ ŷ(λ).

The generalized i/o transfer function D̂ can be studied directly by
proceeding in the same way as before, but simply taking x0 = 0
and “eliminating” the state x̂(λ).
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Generalized Input/Output Transfer Functions

Let W = Y u U be a direct sum decomposition of W. The domain
of the generalized i/o transfer function with respect to this
decomposition and the function itself are defined by

Dom
(
D̂
)

=

λ ∈ C

∣∣∣∣∣∣∣∣
for each u ∈ U there exist

some x ∈ X and a unique

y ∈ Y such that
[
λx
x

u+y

]
∈ V

 , (33)

 For λ ∈ Dom
(
D̂
)

, D̂(λ)u = y ,

where y is the unique vector in (33).
(34)
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Frequency Domain Signal Behavior

Definition

The signal (or manifest) frequency domain behavior is the family

of subspaces {Ŵ(λ)}λ∈C of the signal space W, where each W(λ)
is given by

Ŵ(λ) =
{

w ∈ W
∣∣∣ [ λxx

w

]
∈ V for some x ∈ X

}
. (35)

The definition of the generalized i/o transfer function D̂ can be
reformulated as follows:

Definition

Let W = Y u U be a direct sum decomposition of W. The domain
of the generalized i/o transfer function D̂ with respect to this
decomposition consists of those point λ ∈ C for which the signal
frequency domain behavior Ŵ(λ) is the graph of a bounded linear
operator U → Y, and D̂(λ) is defined to be this operator.
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Input/Output Admissibility

The notion of input/output admissibility (forward or backward) is
defined in the same way as the notion of input/state/output
admissibility, replacing the generalized i/s/o transfer function by
the i/o transfer function.

The notion of an input/output transfer relation is defined in the
same way as the notion of an input/state/output transfer relation
by replacing the (full) state/signal frequency domain behavior by
the (manifest) signal frequency domain behavior.

Clearly i/s/o-admissibility impliers i/o-admissibility.

Conjecture: For a passive s/s system these two admissibility
notions are actually the same.
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