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Boundary Control I/S/O System

A boundary control input/state/output system can be written in
the form

Σi/s/o :


ẋ(t) = Lx(t),

u(t) = Γ0x(t),

y(t) = Γ1x(t),

t ≥ 0

x(0) = x0.

(1)

X is the state space, x(t) ∈ X , x0 ∈ X ,
U is the input space, u(t) ∈ U ,
Y is the output space, y(t) ∈ Y (these are Hilbert spaces),
L is the main operator (always unbounded),
Γ0 is the boundary control operator (surjective and unbounded),
Γ1 is the observation operator (can be bounded or unbounded).
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Assumptions on L and Γ0

In order for these equations to generate a dynamical system we
need at least the following assumptions:

Γ0 is surjective and strictly unbounded in the sense that
Ker (Γ0) is dense in X ,

A := L|Ker(Γ0) generates a C0 semigroup eAt , t ≥ 0.

The first equation in (1) can be rewritten in the form

ẋ(t) = A−1x(t) + Bu(t), t ≥ 0,

where A−1 : X → X−1 is a certain extension of A with values in an
extrapolation space X−1, and B maps into X−1. See, e.g., Staffans
(2005) for details.
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Boundary Control State/Signal System

A boundary control state/signal system is similar to a boundary
control i/s/o system, but we no longer specify which part of the

“boundary signal” w(t) :=
[
u(t)
y(t)

]
is the input, and which part is

the output. After replacing
[

Γ0
Γ1

]
by Γ we get an equation of the

type

Σ :

{
ẋ(t) = Lx(t),

w(t) = Γx(t),
t ≥ 0; x(0) = x0. (2)

X is the state space, x(t) ∈ X , x0 ∈ X , X is a Hilbert space,
W is the signal space, w(t) ∈ W, W is a Krĕın space,
L is the main operator (always unbounded),
Γ is the boundary operator (also unbounded),
L and Γ have the same domain
Dom (L) = Dom (Γ) = Dom

([
L
Γ

])
⊂ X .
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Classical and Generalized Trajectories

We assume throughout that
[
L
Γ

]
is closed and densely defined.

[ x
w ] is a classical trajectory of Σ if x ∈ C 1(R+;X ),

x(t) ∈ Dom
([

L
Γ

])
for all t ∈ R+, w ∈ C (R+;W), and (2)

holds.

[ x
w ] is a generalized trajectory of Σ if x ∈ C (R+;X ),

w ∈ L2
loc(R+;W), and there exists a sequence of classical

trajectories [ xn
wn ] such that xn → x uniformly on bounded

intervals and wn → w in L2
loc(R+;W).

(For the moment L1
loc would also be OK, but later we need L2

loc in
the power balance equation.)

Olof Staffans, Åbo Akademi University, Finland Conservative Boundary Control Systems



Frame 7 of 1

The Krĕın Signal Space W

Recall: The state space X is a Hilbert space with inner
product (·, ·)X and norm ‖·‖X =

√
(·, ·)X .

However, the signal space W is a Krĕın space, and not a
Hilbert space.

Roughly speaking, a Krĕın space W is a topological vector space
which a (unique) indefinite inner product [·, ·]W . It also has a
Hilbert space inner product (·, ·)W such that

[w1,w2]W = (w1, JWw2)W , w1, w2 ∈ W. (3)

where JW is a boundedly invertible self-adjoint operator in W
(often taken to be a signature operator, i.e., JW = J∗W = J−1

W ).
However, the Hilbert space inner product (·, ·)W and the signature
operator JW are not unique! (One can always replace the given
inner product (·, ·)W by another equivalent inner product, if one at
the same time changes the operator JW accordingly.)
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Why Use a Krĕın Signal Space W?

In the sequel I shall discuss conservative boundary control
state/signal systems. They satisfy the power balance equation

d

dt
‖x(t)‖2

X = [w(t),w(t)]W , t ∈ R+. (4)

Here ‖x(t)‖2
X represents internal energy, (= the

Hamiltonian), and [w(t),w(t)]W describes the energy flow
from the surroundings into the system.

The left-hand side is positive if the internal energy is
increasing, and negative if the internal energy is decreasing.

Thus, if we want to allow the energy to flow in both direction,
then we must allow the right-hand side to take both positive
and negative values, and we cannot replace the indefinite
inner product [·, ·]W in W by a positive definite Hilbert space
inner product (·, ·)W in W.
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The Lagrangian Identity

Recall the state equation

Σ :

{
ẋ(t) = Lx(t),

w(t) = Γx(t),
t ≥ 0; x(0) = x0, (2)

and the power balance equation:

d

dt
‖x(t)‖2

X = [w(t),w(t)]W , t ∈ R+. (4)

By combining these two equations we get the Lagrangian identity
(or Green’s formula)

− (Lx , x)X − (x , Lx)X + [Γx , Γx ]W = 0, x ∈ Dom
([

L
Γ

])
. (5)

Olof Staffans, Åbo Akademi University, Finland Conservative Boundary Control Systems



Frame 10 of 1

The Node Space K

The left-hand side of the Lagrangian identity

−(Lx , x)X − (x , Lx)X + [Γx , Γx ]W = 0, x ∈ Dom
([

L
Γ

])
((5))

can be interpreted as an indefinite (Krĕın space) inner product in

the node space K :=
[ X
X
W

]
: Define

[[
z1
x1
w1

]
,
[

z2
x2
w2

]]
K

=
([

z1
x1
w1

]
, JK

[
z2
x2
w2

])
K
, JK :=

[
0 −1X 0
−1X 0 0

0 0 JW

]
.

(6)
Then (5) says that[[

Lx
x

Γx

]
,
[
Lx
x

Γx

]]
K

= 0, x ∈ Dom
([

L
Γ

])
(7)
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The Generating Subspace

Define
V :=

{[
Lx
x

Γx

]
∈ K

∣∣∣ x ∈ Dom
([

L
Γ

])}
. (8)

Then the condition[[
Lx
x

Γx

]
,
[
Lx
x

Γx

]]
K

= 0, x ∈ Dom
([

L
Γ

])
(7)

says that
V is a neutral subspace of K with respect to the inner product
[·, ·]K, i.e., all the vectors in V are orthogonal to all other vectors
(including themselves) in V . Here orthogonality means that

w1 ⊥ w2 ⇔ [w1,w2]K = 0.
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The Orthogonal Companion of V

Define

V [⊥] =
{
κ† ∈ K

∣∣ [κ, κ†]K = 0 for all κ ∈ V
}
. (9)

We call V [⊥] the orthogonal companion to V .
The Lagrangian identity (5) is equivalent to the condition

V ⊂ V [⊥].
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Conservative Boundary Control S/S System

Σ :

{
ẋ(t) = Lx(t),

w(t) = Γx(t),
t ≥ 0; x(0) = x0, (2)

[[
z1
x1
w1

]
,
[

z2
x2
w2

]]
K

=
([

z1
x1
w1

]
, JK

[
z2
x2
w2

])
K
, JK :=

[
0 −1X 0
−1X 0 0

0 0 JW

]
.

(6)

V :=
{[

Lx
x

Γx

]
∈ K

∣∣∣ x ∈ Dom
([

L
Γ

])}
. (8)

Definition

The boundary control state/signal system Σ is conservative if the
generating subspace V defined in (8) is Lagrangian, i.e., V = V [⊥].
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A Transmission Line

ξ0 `

i(0, t)

v(0, t) v(ξ, t)

i(ξ, t) L(ξ)

C (ξ)

−i(`, t)

v(`, t)

∂

∂t

[
v(ξ, t)
i(ξ, t)

]
=

[
0 − 1

C(ξ)
∂
∂ξ

− 1
L(ξ)

∂
∂ξ 0

] [
v(ξ, t)
i(ξ, t)

]
, (ξ, t) ∈ [0, `]× R+,

w(t) =

 v(0,t)
i(0,t)
v(`,t)
−i(`,t)

 , t ∈ R+,

v(ξ, 0) = v0(ξ), i(ξ, 0) = i0(ξ), ξ ∈ [0, `].

The functions L(·) > 0 and C (·) > 0 represent the distributed
inductance and capacitance, respectively, of the line. For simplicity
I assume that C (·) and L(·) are continuous on [0, `].

We take x(t) =
[
v(·,t)
i(·,t)

]
, t ∈ R+, and x0 =

[
v0(·)
i0(·)

]
.
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The State Space

We take the state space X to be L2([0, `];C2) with∥∥∥[ v(·)
i(·)

]∥∥∥2

X
= 1

2

∫ `

0

[
C (ξ)|v(ξ)|2 + L(ξ)|i(ξ)|2

]
dξ, (10)([

v1(·)
i1(·)

]
,
[
v2(·)
i2(·)

])
X

= 1
2

∫ `

0

[
C (ξ)v1(ξ)v2(ξ) + L(ξ)i1(ξ)i2(ξ)

]
dξ.

(11)

The operator L is given by

L :=

[
0 − 1

C(ξ)
∂
∂ξ

− 1
L(ξ)

∂
∂ξ

]
, (12)

Dom (L) := W 1,2([0, `];C2), (13)

where W 1
2 is the Sobolev space of functions in L2([0, `];C2) which

have a distribution derivative in L2([0, `];C2).
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The Boundary Operator

The boundary operator Γ has the same domain as L, and it is given
by

Γ
[
i(·)
v(·)

]
=

 v(0)
i(0)
v(`)
−i(`)

 . (14)

It is not difficult to show that the operator
[
L
Γ

]
is closed as an

operator from X to
[ X
C4

]
with domain

Dom
([

L
Γ

])
= Dom (L) = W 1,2([0, 1];C2).

With these definitions, the transmission line becomes a special case
of

Σ :

{
ẋ(t) = Lx(t),

w(t) = Γx(t),
t ≥ 0; x(0) = x0, (2)
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The Lagrangian Identity

To derive the appropriate Lagrangian identity we compute

d

dt
‖x(t)‖2

X = 2<(x(t), ẋ(t))X

= −
∫ `

0
<
[
v(ξ, t)

∂

∂ξ
i(ξ, t) + i(ξ, t)

∂

∂ξ
v(ξ, t)

]
dξ

= −
∫ `

0

∂

∂ξ
<
[
v(ξ, t)i(ξ, t)

]
dξ

= −<
[
v(ξ, t)i(ξ, t)

]`
ξ=0

= <
[
v(0, t)i(0, t)

]
−<

[
v(`, t)i(`, t)

]
= 1

2

 v(0,t)
i(0,t)
v(`,t)
−i(`,t)

 , [[ 0 1
1 0 ] 0
0 [ 0 1

1 0 ]

] v(0,t)
i(0,t)
v(`,t)
−i(`,t)


C4

= (Γx , JWΓx)C4 , JW = 1
2

[
[ 0 1

1 0 ] 0
0 [ 0 1

1 0 ]

]
.
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The Signal Space

The preceding identity tells us that the if we use the inner product

[w1,w2]W =

([ v01
i01
v`1
i`1

]
, JW

[ v02
i02
v`2
i`2

])
, JW = 1

2

[
[ 0 1

1 0 ] 0
0 [ 0 1

1 0 ]

]
. (15)

in the signal space W = C 4, then the generating subspace V is a
neutral sbuspace of the node space K.
Afternoon assignment: Show that V is actually Lagrangian, and
not just neutral!
Thus, the transmission line is a special case of a conservative
boundary control state/signal system.
However, it can also be interpreted in terms of a boundary triplet
for the operator L∗, as we shall see next.
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Boundary Triplets

According to (Gorbachuk and Gorbachuk, 1991, pp. 154–155), the
triple (Γ1, Γ2;U) is called a boundary triplet for the closed densely
defined symmetric operator A in the Hilbert space X with equal
deficiency numbers if Γi , i = 1, 2, are linear opeartors
Dom (A∗)→ U and the following two conditions hold:

(A∗x1, x2)X − (x1,A
∗x2)X = (Γ1x1, Γ2x2)U − (Γ2x1, Γ1x2)U , (16)[

Γ1
Γ2

]
is surjective. (17)

Here (16) is the Lagrangian identity and (17) can be interpreted as
a regularity condition (or maximality condition).
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Boundary Triplet ⇒ Boundary Control S/S System

Let (Γ1, Γ2;U) be a boundary triplet for the symmetric operator A.
Take W =

[ U
U
]

:= U × U with the inner product[[
y1

u1

]
,

[
y2

u2

]]
W

=

([
y1

u1

]
,

[
0 −i
i 0

] [
y2

u2

])
[
U
0

]
⊕
[

0
U
] . (18)

Define Γ =
[

Γ1
Γ2

]
with Dom (Γ) = Dom (A∗). Then

Σ :

{
ẋ(t) = iA∗x(t),

w(t) = Γx(t),
t ≥ 0; x(0) = x0, (2)

is a conservative boundary control s/s system. See Malinen and
Staffans (2006, 2007).
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Boundary Control S/S System 6⇒ Boundary Triplet

The notion of a conservative boundary control s/s system is more
general than the notion of a boundary triplet in the sense of
Gorbachuk and Gorbachuk (1991): There do exist conservative s/s
systems which do not correspond to any boundary triplet.
The counter examples are of two types:

The signal space W need not have a Lagrangian
decomposition, i.e., a direct sum decomposition W = Y u U
where both Y and U are Lagrangian. A necessary and
sufficient condition for the existence of a Lagrangian
decomposition is that ind+W = ind−W (≤ ∞). Recall that
we in the case of a boundary triplet always have at least one
Lagrangian decomposition, namely W =

[ U
0

]
u
[

0
U
]
.
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Boundary Control S/S System 6⇒ Boundary Triplet

The notion of a conservative boundary control s/s system is more
general than the notion of a boundary triplet in the sense of
Gorbachuk and Gorbachuk (1991): There do exist conservative s/s
systems which do not correspond to any boundary triplet.
The counter examples are of two types:

Even if the signal space W has a Lagrangian decomposition
the main operator L need not be closed, and the operator

Γ :=
[

Γ1
Γ2

]
need not be surjective. See See Malinen and

Staffans (2007) for a counter example.

According to Kurula, van der Schaft, Zwart, and Behrndt (2009),
L is closed if and only if the range of Γ is closed. We may always,
without loss of generality, suppose that Ran (Γ) is dense in W.
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Extensions

Above we always assumed that the boundary control system
Σ is conservative, i.e., that the generating subspace

V :=
{[

Lx
x

Γx

]
∈ K

∣∣∣ x ∈ Dom
([

L
Γ

])}
. (8)

is a Lagrangian subspace of the node space K. There is alsa a
recent theory for the case where Σ is passive instead of
conservative, i.e., V is maximal nonnegative.
There also exists a very recent theory for the case where the
state/signal system is not of boundary control type, but
instead of the more general type

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+; x(0) = x0. (19)

where V is either Lagrangian (= conservative) or maximal
nonnegative (= passive). See Kurula (2009); Kurula and
Staffans (2009). More about this on Wednesday.
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