Conservative Boundary Control Systems

Olof Staffans, Åbo Akademi University, Finland

Leiden, Dec 14, 2009

Based on joint work with Damir Z. Arov and also on work by Mikael Kurula

olof.staffans@abo.fi

http://web.abo.fi/~staffans

< A > 9 Q C+

The Dynamics induced by a Boundary Triplet

Olof Staffans, Åbo Akademi University, Finland

Leiden, Dec 14, 2009

Based on joint work with Damir Z. Arov and also on work by Mikael Kurula

olof.staffans@abo.fi

http://web.abo.fi/~staffans

A boundary control input/state/output system can be written in the form

$$\Sigma_{i/s/o}: \begin{cases} \dot{x}(t) = Lx(t), \\ u(t) = \Gamma_0 x(t), & t \ge 0 \\ y(t) = \Gamma_1 x(t), \\ x(0) = x_0. \end{cases}$$
(1)

・ 🗇 ト つ ۹ 📀 Frame 3 of 1

 \mathcal{X} is the state space, $x(t) \in \mathcal{X}$, $x_0 \in \mathcal{X}$, \mathcal{U} is the input space, $u(t) \in \mathcal{U}$, \mathcal{Y} is the output space, $y(t) \in \mathcal{Y}$ (these are Hilbert spaces), L is the main operator (always unbounded), Γ_0 is the boundary control operator (surjective and unbounded), Γ_1 is the observation operator (can be bounded or unbounded). In order for these equations to generate a dynamical system we need at least the following assumptions:

- Γ_0 is surjective and strictly unbounded in the sense that $\operatorname{Ker}(\Gamma_0)$ is dense in \mathcal{X} ,
- $A := L|_{\operatorname{Ker}(\Gamma_0)}$ generates a C_0 semigroup e^{At} , $t \ge 0$.

The first equation in (1) can be rewritten in the form

$$\dot{x}(t)=A_{-1}x(t)+Bu(t),\quad t\geq 0,$$

where $A_{-1}: \mathcal{X} \to \mathcal{X}_{-1}$ is a certain extension of A with values in an *extrapolation space* \mathcal{X}_{-1} , and B maps into \mathcal{X}_{-1} . See, e.g., Staffans (2005) for details.

<一 ・ の へ ペ Frame 4 of 1 A boundary control state/signal system is similar to a boundary control i/s/o system, but we no longer specify which part of the "boundary signal" $w(t) := \begin{bmatrix} u(t) \\ y(t) \end{bmatrix}$ is the input, and which part is the output. After replacing $\begin{bmatrix} \Gamma_0 \\ \Gamma_1 \end{bmatrix}$ by Γ we get an equation of the type

$$\Sigma: \begin{cases} \dot{x}(t) = Lx(t), \\ w(t) = \Gamma x(t), \end{cases} \quad t \ge 0; \quad x(0) = x_0. \tag{2}$$

< □ > つく C* Frame 5 of 1

 \mathcal{X} is the state space, $x(t) \in \mathcal{X}$, $x_0 \in \mathcal{X}$, \mathcal{X} is a Hilbert space, \mathcal{W} is the signal space, $w(t) \in \mathcal{W}$, \mathcal{W} is a Kreĭn space, L is the main operator (always unbounded), Γ is the boundary operator (also unbounded), L and Γ have the same domain $\operatorname{Dom}(L) = \operatorname{Dom}(\Gamma) = \operatorname{Dom}(\lfloor \frac{L}{\Gamma} \rfloor) \subset \mathcal{X}.$ We assume throughout that $\begin{bmatrix} L \\ \Gamma \end{bmatrix}$ is closed and densely defined.

- [[×]_w] is a classical trajectory of Σ if x ∈ C¹(ℝ⁺; X), x(t) ∈ Dom ([^L_Γ]) for all t ∈ ℝ⁺, w ∈ C(ℝ⁺; W), and (2) holds.
- $\begin{bmatrix} x \\ w \end{bmatrix}$ is a generalized trajectory of Σ if $x \in C(\mathbb{R}^+; \mathcal{X})$, $w \in L^2_{loc}(\mathbb{R}^+; \mathcal{W})$, and there exists a sequence of classical trajectories $\begin{bmatrix} x_n \\ w_n \end{bmatrix}$ such that $x_n \to x$ uniformly on bounded intervals and $w_n \to w$ in $L^2_{loc}(\mathbb{R}^+; \mathcal{W})$.

(For the moment L^1_{loc} would also be OK, but later we need L^2_{loc} in the power balance equation.)

< 一 つ り の へ で ト の へ で

The Kreĭn Signal Space ${\mathcal W}$

- Recall: The state space \mathcal{X} is a Hilbert space with inner product $(\cdot, \cdot)_{\mathcal{X}}$ and norm $\|\cdot\|_{\mathcal{X}} = \sqrt{(\cdot, \cdot)_{\mathcal{X}}}$.
- However, the signal space \mathcal{W} is a Kreĭn space, and not a Hilbert space.

Roughly speaking, a Kreĭn space \mathcal{W} is a topological vector space which a (unique) indefinite inner product $[\cdot, \cdot]_{\mathcal{W}}$. It also has a Hilbert space inner product $(\cdot, \cdot)_{\mathcal{W}}$ such that

$$[w_1, w_2]_{\mathcal{W}} = (w_1, \mathcal{J}_{\mathcal{W}} w_2)_{\mathcal{W}}, \qquad w_1, \ w_2 \in \mathcal{W}.$$
(3)

where $J_{\mathcal{W}}$ is a boundedly invertible self-adjoint operator in \mathcal{W} (often taken to be a signature operator, i.e., $J_{\mathcal{W}} = J_{\mathcal{W}}^* = J_{\mathcal{W}}^{-1}$). However, the Hilbert space inner product $(\cdot, \cdot)_{\mathcal{W}}$ and the signature operator $J_{\mathcal{W}}$ are not unique! (One can always replace the given inner product $(\cdot, \cdot)_{\mathcal{W}}$ by another equivalent inner product, if one at the same time changes the operator $J_{\mathcal{W}}$ accordingly.)

Why Use a Kreĭn Signal Space W?

In the sequel I shall discuss conservative boundary control state/signal systems. They satisfy the power balance equation

$$\frac{\mathrm{d}}{\mathrm{d}t} \| \mathbf{x}(t) \|_{\mathcal{X}}^2 = [\mathbf{w}(t), \mathbf{w}(t)]_{\mathcal{W}}, \qquad t \in \mathbb{R}^+.$$
(4)

- Here ||x(t)||²_X represents internal energy, (= the Hamiltonian), and [w(t), w(t)]_W describes the energy flow from the surroundings into the system.
- The left-hand side is positive if the internal energy is increasing, and negative if the internal energy is decreasing.
- Thus, if we want to allow the energy to flow in both direction, then we must allow the right-hand side to take both positive and negative values, and we cannot replace the indefinite inner product [·, ·]_W in W by a positive definite Hilbert space inner product (·, ·)_W in W.

< □ > つへ C* Frame 8 of 1

Recall the state equation

$$\Sigma: \begin{cases} \dot{x}(t) = Lx(t), \\ w(t) = \Gamma x(t), \end{cases} \quad t \ge 0; \quad x(0) = x_0, \quad (2)$$

and the power balance equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\|x(t)\|_{\mathcal{X}}^2 = [w(t), w(t)]_{\mathcal{W}}, \qquad t \in \mathbb{R}^+.$$
(4)

< □ > つく C* Frame 9 of 1

By combining these two equations we get the Lagrangian identity (or Green's formula)

$$-(Lx,x)_{\mathcal{X}}-(x,Lx)_{\mathcal{X}}+[\Gamma x,\Gamma x]_{\mathcal{W}}=0, \qquad x\in \mathrm{Dom}\left(\left[\begin{smallmatrix} L\\ \Gamma \end{smallmatrix}\right]\right).$$
 (5)

The Node Space \Re

The left-hand side of the Lagrangian identity

$$-(Lx,x)_{\mathcal{X}} - (x,Lx)_{\mathcal{X}} + [\Gamma x,\Gamma x]_{\mathcal{W}} = 0, \qquad x \in \mathrm{Dom}\left(\begin{bmatrix} L\\ \Gamma \end{bmatrix}\right) \ ((5))$$

can be interpreted as an indefinite (Kreĭn space) inner product in the node space $\mathfrak{K} := \begin{bmatrix} \chi \\ \chi \\ W \end{bmatrix}$: Define

$$\begin{bmatrix} \begin{bmatrix} z_1\\ x_1\\ w_1 \end{bmatrix}, \begin{bmatrix} z_2\\ x_2\\ w_2 \end{bmatrix} \end{bmatrix}_{\mathfrak{K}} = \left(\begin{bmatrix} z_1\\ x_1\\ w_1 \end{bmatrix}, J_{\mathfrak{K}} \begin{bmatrix} z_2\\ x_2\\ w_2 \end{bmatrix} \right)_{\mathfrak{K}}, \quad J_{\mathfrak{K}} := \begin{bmatrix} 0 & -1_{\mathcal{X}} & 0\\ -1_{\mathcal{X}} & 0 & 0\\ 0 & 0 & J_{\mathcal{W}} \end{bmatrix}.$$
(6)

Then (5) says that

$$\begin{bmatrix} \begin{bmatrix} L_{X} \\ X \\ \Gamma_{X} \end{bmatrix}, \begin{bmatrix} L_{X} \\ X \\ \Gamma_{X} \end{bmatrix} \end{bmatrix}_{\mathfrak{K}} = \mathbf{0}, \qquad x \in \mathrm{Dom}\left(\begin{bmatrix} L \\ \Gamma \end{bmatrix}\right)$$
(7)

< □ > つへ C* Frame 10 of 1

The Generating Subspace

Define

$$V := \left\{ \begin{bmatrix} L_X \\ x \\ \Gamma_X \end{bmatrix} \in \mathfrak{K} \ \middle| \ x \in \operatorname{Dom}\left(\begin{bmatrix} L \\ \Gamma \end{bmatrix} \right) \right\}.$$
(8)

Then the condition

$$\begin{bmatrix} \begin{bmatrix} L_{X} \\ X \\ \Gamma_{X} \end{bmatrix}, \begin{bmatrix} L_{X} \\ X \\ \Gamma_{X} \end{bmatrix} \end{bmatrix}_{\mathfrak{K}} = 0, \qquad x \in \operatorname{Dom}\left(\begin{bmatrix} L \\ \Gamma \end{bmatrix}\right)$$
(7)

says that

V is a neutral subspace of \Re with respect to the inner product $[\cdot, \cdot]_{\Re}$, i.e., all the vectors in *V* are orthogonal to all other vectors (including themselves) in *V*. Here orthogonality means that

$$w_1 \perp w_2 \Leftrightarrow [w_1, w_2]_{\mathfrak{K}} = 0.$$

Define

$$V^{[\perp]} = \left\{ \kappa^{\dagger} \in \mathfrak{K} \mid [\kappa, \kappa^{\dagger}]_{\mathfrak{K}} = 0 \text{ for all } \kappa \in V \right\}.$$
(9)

< □ > つ < ○ Frame 12 of 1

We call $V^{[\perp]}$ the orthogonal companion to V. The Lagrangian identity (5) is equivalent to the condition

 $V \subset V^{[\perp]}.$

Conservative Boundary Control S/S System

$$\Sigma : \begin{cases} \dot{x}(t) = Lx(t), \\ w(t) = \Gamma x(t), \end{cases} \quad t \ge 0; \quad x(0) = x_0, \qquad (2) \\ \begin{bmatrix} z_1 \\ x_1 \\ w_1 \end{bmatrix}, \begin{bmatrix} z_2 \\ x_2 \\ w_2 \end{bmatrix} \end{bmatrix}_{\mathfrak{K}} = \left(\begin{bmatrix} z_1 \\ x_1 \\ w_1 \end{bmatrix}, J_{\mathfrak{K}} \begin{bmatrix} z_2 \\ x_2 \\ w_2 \end{bmatrix} \right)_{\mathfrak{K}}, \quad J_{\mathfrak{K}} := \begin{bmatrix} 0 & -1x & 0 \\ -1x & 0 & 0 \\ 0 & 0 & J_{W} \end{bmatrix}.$$

$$V := \left\{ \begin{bmatrix} Lx \\ \Gamma_X \end{bmatrix} \in \mathfrak{K} \mid x \in \text{Dom}\left(\begin{bmatrix} L \\ \Gamma \end{bmatrix} \right) \right\}. \qquad (8)$$

Definition

The boundary control state/signal system Σ is conservative if the generating subspace V defined in (8) is Lagrangian, i.e., $V = V^{[\perp]}$.

< □ > つく C Frame 13 of 1

A Transmission Line

$$i(0, t) \xrightarrow{i(\xi, t)} \underbrace{L(\xi)}_{0000} \xrightarrow{-i(\ell, t)} v(\ell, t)$$

$$v(0, t) \xrightarrow{v(\xi, t)} \underbrace{-i(\xi, t)}_{0} \xrightarrow{\xi} U(\ell, t)$$

$$\frac{\partial}{\partial t} \begin{bmatrix} v(\xi, t) \\ i(\xi, t) \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{C(\xi)} \frac{\partial}{\partial \xi} \\ -\frac{1}{L(\xi)} \frac{\partial}{\partial \xi} & 0 \end{bmatrix} \begin{bmatrix} v(\xi, t) \\ i(\xi, t) \end{bmatrix}, \quad (\xi, t) \in [0, \ell] \times \mathbb{R}^+,$$

$$w(t) = \begin{bmatrix} v(0, t) \\ i(0, t) \\ v(\ell, t) \\ -i(\ell, t) \end{bmatrix}, \quad t \in \mathbb{R}^+,$$

$$v(\xi, 0) = v_0(\xi), \quad i(\xi, 0) = i_0(\xi), \quad \xi \in [0, \ell].$$

The functions $L(\cdot) > 0$ and $C(\cdot) > 0$ represent the *distributed inductance and capacitance*, respectively, of the line. For simplicity I assume that $C(\cdot)$ and $L(\cdot)$ are continuous on $[0, \ell]$. We take $x(t) = \begin{bmatrix} v(\cdot,t) \\ i(\cdot,t) \end{bmatrix}$, $t \in \mathbb{R}^+$, and $x_0 = \begin{bmatrix} v_0(\cdot) \\ i_0(\cdot) \end{bmatrix}$.

The State Space

We take the state space \mathcal{X} to be $L^2([0, \ell]; \mathbb{C}^2)$ with

$$\left\| \begin{bmatrix} v(\cdot)\\i(\cdot) \end{bmatrix} \right\|_{\mathcal{X}}^{2} = \frac{1}{2} \int_{0}^{\ell} \left[C(\xi) |v(\xi)|^{2} + L(\xi) |i(\xi)|^{2} \right] d\xi, \quad (10)$$

$$\left(\begin{bmatrix} v_{1}(\cdot)\\i_{1}(\cdot) \end{bmatrix}, \begin{bmatrix} v_{2}(\cdot)\\i_{2}(\cdot) \end{bmatrix} \right)_{\mathcal{X}} = \frac{1}{2} \int_{0}^{\ell} \left[C(\xi) v_{1}(\xi) \overline{v_{2}(\xi)} + L(\xi) i_{1}(\xi) \overline{i_{2}(\xi)} \right] d\xi. \quad (11)$$

The operator L is given by

$$L := \begin{bmatrix} 0 & -\frac{1}{C(\xi)} \frac{\partial}{\partial \xi} \\ -\frac{1}{L(\xi)} \frac{\partial}{\partial \xi} \end{bmatrix},$$
(12)
$$Dom(L) := W^{1,2}([0,\ell]; \mathbb{C}^2),$$
(13)

where W_2^1 is the Sobolev space of functions in $L^2([0, \ell]; \mathbb{C}^2)$ which have a distribution derivative in $L^2([0, \ell]; \mathbb{C}^2)$. The boundary operator Γ has the same domain as L, and it is given by

$$\begin{bmatrix} i(\cdot) \\ v(\cdot) \end{bmatrix} = \begin{bmatrix} v(0) \\ i(0) \\ v(\ell) \\ -i(\ell) \end{bmatrix}.$$
 (14)

< 同 > りく(~

It is not difficult to show that the operator $\begin{bmatrix} L \\ \Gamma \end{bmatrix}$ is closed as an operator from \mathcal{X} to $\begin{bmatrix} \mathcal{X} \\ \mathbb{C}^4 \end{bmatrix}$ with domain $\operatorname{Dom}\left(\begin{bmatrix} L \\ \Gamma \end{bmatrix}\right) = \operatorname{Dom}(L) = W^{1,2}([0,1];\mathbb{C}^2).$ With these definitions, the transmission line becomes a special case of

$$\Sigma: \begin{cases} \dot{x}(t) = Lx(t), \\ w(t) = \Gamma x(t), \end{cases} \quad t \ge 0; \quad x(0) = x_0, \qquad (2)$$

Olof Staffans, Åbo Akademi University, Finland Conservative Boundary Control Systems

The Lagrangian Identity

To derive the appropriate Lagrangian identity we compute

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \|x(t)\|_{\mathcal{X}}^2 &= 2\Re(x(t),\dot{x}(t))_{\mathcal{X}} \\ &= -\int_0^\ell \Re \big[v(\xi,t) \overline{\frac{\partial}{\partial \xi}} i(\xi,t) + i(\xi,t) \overline{\frac{\partial}{\partial \xi}} v(\xi,t) \big] \, d\xi \\ &= -\int_0^\ell \frac{\partial}{\partial \xi} \Re \big[v(\xi,t) \overline{i(\xi,t)} \big] \, d\xi \\ &= -\Re \big[v(\xi,t) \overline{i(\xi,t)} \big]_{\xi=0}^\ell \\ &= \Re \big[v(0,t) \overline{i(0,t)} \big] - \Re \big[v(\ell,t) \overline{i(\ell,t)} \big] \\ &= \frac{1}{2} \left(\begin{bmatrix} v(0,t) \\ i(0,t) \\ v(\ell,t) \\ -i(\ell,t) \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right] \begin{bmatrix} v(0,t) \\ i(0,t) \\ v(\ell,t) \\ -i(\ell,t) \end{bmatrix} \right)_{\mathbb{C}^4} \\ &= (\Gamma x, \mathcal{J}_{\mathcal{W}} \Gamma x)_{\mathbb{C}^4}, \quad \mathcal{J}_{\mathcal{W}} = \frac{1}{2} \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right]. \end{split}$$

The preceding identity tells us that the if we use the inner product

$$[w_1, w_2]_{\mathcal{W}} = \left(\begin{bmatrix} v_{01} \\ i_{01} \\ v_{\ell 1} \\ i_{\ell 1} \end{bmatrix}, \mathcal{J}_{\mathcal{W}} \begin{bmatrix} v_{02} \\ i_{02} \\ v_{\ell 2} \\ i_{\ell 2} \end{bmatrix} \right), \ \mathcal{J}_{\mathcal{W}} = \frac{1}{2} \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{bmatrix}.$$
(15)

in the signal space $W = C^4$, then the generating subspace V is a neutral sbuspace of the node space \Re .

Afternoon assignment: Show that V is actually Lagrangian, and not just neutral!

Thus, the transmission line is a special case of a conservative boundary control state/signal system.

However, it can also be interpreted in terms of a boundary triplet for the operator L^* , as we shall see next.

< 回 ト つ へ 〇 Frame 18 of 1

According to (Gorbachuk and Gorbachuk, 1991, pp. 154–155), the triple ($\Gamma_1, \Gamma_2; \mathcal{U}$) is called a boundary triplet for the closed densely defined symmetric operator A in the Hilbert space \mathcal{X} with equal deficiency numbers if Γ_i , i = 1, 2, are linear opeartors $\text{Dom}(A^*) \rightarrow \mathcal{U}$ and the following two conditions hold:

$$(A^* x_1, x_2)_{\mathcal{X}} - (x_1, A^* x_2)_{\mathcal{X}} = (\Gamma_1 x_1, \Gamma_2 x_2)_{\mathcal{U}} - (\Gamma_2 x_1, \Gamma_1 x_2)_{\mathcal{U}},$$
 (16)
$$\begin{bmatrix} \Gamma_1 \\ \Gamma_2 \end{bmatrix}$$
 is surjective. (17)

Here (16) is the Lagrangian identity and (17) can be interpreted as a regularity condition (or maximality condition).

< □ > つへ C* Frame 19 of 1

Boundary Triplet \Rightarrow Boundary Control S/S System

Let $(\Gamma_1, \Gamma_2; \mathcal{U})$ be a boundary triplet for the symmetric operator A. Take $\mathcal{W} = \begin{bmatrix} \mathcal{U} \\ \mathcal{U} \end{bmatrix} := \mathcal{U} \times \mathcal{U}$ with the inner product

$$\begin{bmatrix} \begin{bmatrix} y_1 \\ u_1 \end{bmatrix}, \begin{bmatrix} y_2 \\ u_2 \end{bmatrix} \end{bmatrix}_{\mathcal{W}} = \begin{pmatrix} \begin{bmatrix} y_1 \\ u_1 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} y_2 \\ u_2 \end{bmatrix} \end{pmatrix}_{\begin{bmatrix} \mathcal{U} \\ 0 \end{bmatrix} \oplus \begin{bmatrix} 0 \\ \mathcal{U} \end{bmatrix}}.$$
 (18)

Define
$$\Gamma = \begin{bmatrix} \Gamma_1 \\ \Gamma_2 \end{bmatrix}$$
 with $\operatorname{Dom}(\Gamma) = \operatorname{Dom}(A^*)$. Then

$$\Sigma : \begin{cases} \dot{x}(t) = iA^*x(t), \\ w(t) = \Gamma x(t), \end{cases} \quad t \ge 0; \quad x(0) = x_0, \quad (2)$$

is a conservative boundary control s/s system. See Malinen and Staffans (2006, 2007).

Olof Staffans, Åbo Akademi University, Finland Conservative Boundary Control Systems

< □ > つへ C* Frame 20 of 1

The notion of a *conservative boundary control s/s system is more general than the notion of a boundary triplet* in the sense of Gorbachuk and Gorbachuk (1991): There do exist conservative s/s systems which do not correspond to any boundary triplet. The counter examples are of two types:

• The signal space \mathcal{W} need not have a Lagrangian decomposition, i.e., a direct sum decomposition $\mathcal{W} = \mathcal{Y} \dotplus \mathcal{U}$ where both \mathcal{Y} and \mathcal{U} are Lagrangian. A necessary and sufficient condition for the existence of a Lagrangian decomposition is that $\operatorname{ind}_+\mathcal{W} = \operatorname{ind}_-\mathcal{W} (\leq \infty)$. Recall that we in the case of a boundary triplet always have at least one Lagrangian decomposition, namely $\mathcal{W} = \begin{bmatrix} \mathcal{U} \\ 0 \end{bmatrix} \dotplus \begin{bmatrix} 0 \\ \mathcal{U} \end{bmatrix}$.

< ● ▶ < < <>> < <>> < <>> < </>

 Frame 21 of 1

The notion of a *conservative boundary control s/s system is more general than the notion of a boundary triplet* in the sense of Gorbachuk and Gorbachuk (1991): There do exist conservative s/s systems which do not correspond to any boundary triplet. The counter examples are of two types:

 Even if the signal space W has a Lagrangian decomposition the main operator L need not be closed, and the operator Γ := [Γ₁] need not be surjective. See See Malinen and Staffans (2007) for a counter example.

According to Kurula, van der Schaft, Zwart, and Behrndt (2009), *L* is closed if and only if the range of Γ is closed. We may always, without loss of generality, suppose that $\operatorname{Ran}(\Gamma)$ is dense in \mathcal{W} .

< □ > つく? Frame 22 of 1

Extensions

• Above we always assumed that the boundary control system Σ is conservative, i.e., that the generating subspace

$$V := \left\{ \begin{bmatrix} L_X \\ x \\ \Gamma_X \end{bmatrix} \in \mathfrak{K} \ \middle| \ x \in \operatorname{Dom}\left(\begin{bmatrix} L \\ \Gamma \end{bmatrix} \right) \right\}.$$
(8)

is a Lagrangian subspace of the node space \mathfrak{K} . There is alsa a recent theory for the case where Σ is passive instead of conservative, i.e., V is maximal nonnegative.

• There also exists a very recent theory for the case where the state/signal system is not of boundary control type, but instead of the more general type

$$\boldsymbol{\Sigma}: \left\{ \begin{bmatrix} \dot{x}(t) \\ x(t) \\ w(t) \end{bmatrix} \in V, \quad t \in \mathbb{R}^+; \quad x(0) = x_0. \quad (19) \right.$$

where V is either Lagrangian (= conservative) or maximal nonnegative (= passive). See Kurula (2009); Kurula and Staffans (2009). More about this on Wednesday.

V. I. Gorbachuk and M. L. Gorbachuk. *Boundary value problems* for operator differential equations, volume 48 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. ISBN 0-7923-0381-4. translation and revised from the 1984 Russian original.

M. Kurula. Passive continuous time state/signal systems. Submitted, 2009. Available from http://web.abo.fi/~kurula

M. Kurula and O. J. Staffans. Well-posed state/signal systems in continuous time. *Complex Anal. Oper. Theory*, 2009. To appear.

M. Kurula, A. van der Schaft, H. Zwart, and J. Behrndt. Dirac structures and their composition on Hilbert spaces. Submitted for publication, 2009. Available from http://web.abo.fi/~kurula

< つ り の へ 一 ト の へ へ ・

Frame 24 of 1

J. Malinen and O. J. Staffans. Conservative boundary control systems. *J. Differential Equations*, 231:290–312, 2006.

J. Malinen and O. J. Staffans. Impedance passive and conservative boundary control systems. *Complex Anal. Oper. Theory*, 1: 279–30, 2007.

O. J. Staffans. *Well-Posed Linear Systems*. Cambridge University Press, Cambridge and New York, 2005.