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e Discrete time-invariant i/s/o systems



Discrete Time-Invariant |/S/0O System

Linear discrete-time-invariant i/s/o (input/state/output) system
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. { r(n+1) = Ax(n) + Bu(n), n ez, z(0) = xo,
i/s/o

A, B, C, D, are bounded linear operators and Z* = {0,1,2,...}.

the input u(n) € U = the input space,
the state x(n) € X = the state space,
the output y(n) € ) = the output space (all Hilbert spaces).

A trajectory = a triple of sequences (u, z,y) satisfying (1).

(1)



Forward Passive and Conservative 1/S/0O System

ii/s/0 i1s forward passive if all trajectories satisfy

z(n+ D% < llz(n 2—|—<[y(n)}w][y(n)}> , nELT.
2 ( Nz < llz(n)||% w(n) u(n) |/ yay

Here
J(u,y) = (8] T 0D yau -

is a supply rate induced by the signature operator J = J* = J 1.

Yii/s/o 1s forward conservative if we have equality

= e (2] 7 1] 2
|z (n Nz = llz(n)|l% u(n) w(n) |/ yau



(i)

(i)

(iii)

The Three Most Common Supply Rates

The scattering supply rate jsca(u,y) = —[|y|3 + |lull7, with signature operator
- [—13, 0 }
sca — 0 1y |

The impedance supply rate jimp(u,y) = 25(y, Yu)y, with signature operator
Jimp = [\19* ‘é’] where W is a unitary operator U — ).

The transmission supply rate ji,o(u, y) = —(y, Jyy)y + (u, Jyyu)y with signature

operator Ji., = {_6737 JOU}, where .Jy, and J;; are signature operators in ) and U,

respectively.

It is possible to combine all these cases into one single setting, called the s/s
(state/signal) setting. The idea is to introduce a class of systems which does
not distinguish between inputs and outputs.



State/signal systems
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The Signal Space

We start by combining the input space I/ and the output space ) into one signal
space W = [}/ |. This signal space has a natural Krein space inner product
obtained from the signature operator .J in the supply rate 7, namely

LBl =B ),

The forward passivity inequality now becomes (with w(n) = {y(”) })

u(n)

lz(n+ DlI% < 2% + [w(n), wn)w,  neZT.

The forward conservativity equality becomes

lz(n + Dl = lz(m)|% + [w(n), w(n)w,  neZT.



The Node Space and the Generating Subspace

After combining the input and output sequences u© and ¥y into one signal sequence
w = | ¥ ] we can rewrite the basic i/s/o relation

r(n+1) = Ax(n) + Bu(n), n €7z, z(0) = xo,
Zi s/o 1
o { y(n) = Cz(n) + Du(n), neZ*. L)
in graph form
(z(n+1)]
)y r(n) | €V, n €7z, 2(0) = o, (2)
| win) |

where




The Node Space and the Generating Subspace (continues)

Repetition:

:| x(n) | €V, n € Zv, z(0) = xo. (2)

where V' is a certain subspace of R := {%}

We call V' the generating subspace and £ the node space of the state/system
.

By a trajectory of > we mean a pair of sequences (z,w) satisfying (2).

We call x the state component and w the signal component of the trajectory.



Properties of the Generating Subspace

Easy: The generating subspace V' has the following properties:
(i) V is closed in &;

(ii) For every x € X there is some [ ] € [5X,] such that |z | € V;

(iii) If [

oow

}EV,thenz:O;

(iv) The set {[ﬁi] e [sh]| [&] € V for some z € X} is closed in [;Y)].



Interpretation of (i)—(iv)

For every z € X there is some [§] € [{X,] such that [z | € V <

For every initial state o € X there is some trajectory (z,w) satisfying
z(0) = xo.
f 5] €V, thenz=0«

A trajectory (x,w) is uniquely determined by the initial state x( and the signal
part w.

V is closed and {[{ﬁ] e [%]| [£] € V for some z € X} is closed in [} ] <

The trajectory (z,w) depends continuously on the intial state z( and the signal
part w.



State/Signal System: Definition

Definition 1. A triple ¥ = (V; X, )V), where the (internal) state space X and

the (external) signal space }V are Krein (or Hilbert) spaces and V' is a subspace of

the node space R := [égv} is called a s/s (state/signal) node if V' has properties

(i)—(iv) listed above.

Note: Different type of state and signal spaces in different applications:

e Passive and conservative systems: X is a Hilbert space and )V is a Krein space.

e Suboptimal Nehari (Nehari—-Takagari) problem: X is a Pontryagin space (Krein
space with finite negative dimension) and }V is a Krein space.

e LQ optimal control problem: both X and WV are Hilbert spaces.



The Node Space K is Always a Krein Space

X7 . : : :
The node space £ := Lﬁd inherits a natural inner product from its components:

Thus & = X [+] W, where X := | ;F|. Note that the ‘future time’ component
— |21, 22] - and the ‘present time' component [z}, x2]  have opposite signs in X.

In particular, since X has the same positive and negative dimensions, K is always a
Krein space if X is infinite-dimensional (not a Pontryagin space).



Passive state/signal systems
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Forward Passive S/S Systems

Recall the forward passivity inequality and conservativity equality

[x(n+1),2(n+ 1)]% < [z(n),z(n)]% + [wn), wn)]w, neZb, or
[z(n+1),z(n+ 1)]% = [z(n), z(n)]% + [w(n), w(n)y,  neZt

Rewrite this in the form

w(n) w(n)
_ _ - x(n+1)
True for all trajectories < true for all | & | = [ a:((n)) ] c V. Thus,

e X is forward passive < V' is a nonnegative subspace of the node space R,

e > is forward conservative < V' is a neutral subspace of the node space R.



Passive S/S Systems

Definition 2. A state/signal system ¥ = (V; X, W) is

(i) forward passive if V' is a nonnegative subspace of R,
(ii) backward passive if V' is a nonpositive subspace of &,
(iii) passive if V' is a maximal nonnegative subspace of R,
(iv) forward conservative if V is a neutral subspace of & (V C VI4),
(v) backward conservative if V! is a neutral subspace of & (VI c V),

(vi) conservative if V is a Lagrangian subspace of £ (V = V).



The Adjoint System >,

If V' is the generating subspace of a s/s system ¥ = (V; X, W) with Krein state
and signal spaces, then VIl is the generating subspace of another (anti-causal) s/s
system that evolves backwards in time.

From this system we get the adjoint s/s system 3, by reflecting the time direction
(to make the system causal) and replacing the signal space ¥V by —)V (to compensate
for the change of sign in the balance equation caused by the change of time direction).

e > is backward passive or conservative < ., is forward passive or conservative.
e > is passive < X is both forward and backward passive.

e Y. is conservative < Y is both forward and backward conservative.
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Representations of state/signal systems



1/S/0 Repesentations of S/S Systems

Recall: Trajectories (x(),u(-),y(-)) of the i/s/o system %,/5/,, = ([& B]; X, U, V)

satisfy
. r(n+1) = Az(n) + Bu(n), ne€Zr, 1)
/ele y(n) = Cz(n) + Du(n), neZ"
and trajectories (x(-), w(-)) of the s/s system ¥ = (V; X, W) satisfy
(x(n+1)]
Y| z(n) | €V, neZ’. (2)
| win) |

A direct sum decomposition YW = ) +U is called an admissible i/o decomposition
of VW for ¥ with the corresponding i/s/o representation' Yi/s/o if there is
an one-to-one correspondence between the trajectories (z(-),u(-),y(-)) of X;/s/0
and the trajectories (z(-),w(-)) of ¥ (with w(-) = y(-) + u(-), y(n) = Pw(n),
u(n) = PYw(n)).

121-/5/0 is unique as soon as U/ and Y have been fixed.




By splitting VV in different ways we recover ‘standard’ passivity and conservativity
results for different supply rates:

e A fundamental decomposition W = —) [+] U (where —) is negative and U is
positive) gives a scattering representation,

e A Lagrangean decomposition W = F + & (where F = Fl1tl and € = £I1]) gives
an impedance representation,

e A regular (orthogonal) decomposition W = —) [+| U (where )Y and U have the
same negative dimension) gives a transmission representation.

Thus, all the above i/s/o systems can be seen as ‘i/s/o projections’ of s/s systems.
From a state/signal point of view, they all represent the same s/s system.
For example, the Potapov—Ginzburg transform can be interpreted as a formula
which simply describes the connection between a scattering and a transmission
representation of one and the same s/s system, and the external Cayley transform
describes the connection between a scattering and an impedance representation



Driving Variable Repesentations of S/S Systems

A driving variable representation of the s/s system ¥ = (V; X, W) is an i/s/o
system? ¥, = ({éﬁ g;} ; X, L, W) with the property that (z(-),w(-)) is a trajectory
of

)IF z(n) | €V, n €z, (2)

if and only if there exists some /(-) such that (x(+),2(:),w(-)) is a trajectory of

S { x(n+1) = A'z(n) + B'4(n), n €z, 3)

w(n) = C'xz(n) + D'4(n), n ezt

In addition we require D’ to have a left-inverse (so that /() is uniquely determined
by and depends continuously on z(-) and w(-)).

Note that 34w has the same state space as 2J, and that the output space of X, is the signal space of 3.



Output Nulling Repesentations of S/S Systems

An output nulling representation of the s/s system ¥ = (V: X, W) is an i/s/o
system® 2, = ({A” B”} ; X, W, K) with the property that (z(-), w(-)) is a trajectory

C// D//
of _ _
x(n+1)
)IF z(n) | €V, n €z, (2)
| win) |
if and only if

z(n = A"z(n "w(n n .
Edv:{ (n+1) =A"z(n) + B w(n), €L, ()

0=C"2z(n)+D"w(n), neZr

In addition we require D" to be surjective (so that the error space K (= the output
space of >,,,) is as small as possible).

3Note that >lon has the same state space as 32, and that the input space of >, is the signal space of X..



Every 1/S/O Repesentation is a Driving Variable Representation

We can rewrite the standard i/s/o system %,,/, = ([4 B]; X,U,Y) of ¥ in the
form

(n + 1) = Az(n) + Bu(n), ——
w(n) = [zEZ)] - [(5] z(n) + [112{] u(n), neZz'. (1)

This has the form of a driving variable representation of >, with driving variable
(= the input variable of 3, /,/,), and



Every 1/S/0O Repesentation is an Output Nulling Representation

We can rewrite the standard i/s/o system %,,/, = ([4 B]; X,U,Y) of ¥ in the
form

z(n+1)=Az(n)+ |0 B] [zEZ;] : n ez,

(1)
0=Cz(n)+ |-1y D] [y(n)] ., neEZT.

This has the form of an output nulling representation of 3, with error variable y (=
the output variable of >;/;/,), and

A = A, B"=[0 B,
C" =0C, D" =|-1y D|.
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Transfer Functions and Behaviors

A transfer function describes the relation between the input and the output.

In a state/signal system we do not specify which part of the signal space is the input,
and which part is the output. What is the transfer function of a s/s system?

The i/o transfer function of an i/s/o representation of 3 depends on how we choose
the i/o decomposition W = ) + U, but the graph of the transfer function is a
s/s invariant (it does not depend on the i/o decomposition).

Thus, we must replace the notion of “transfer function” by the notion of the graph
of the transfer function.

By mapping this graph back into the time-domain then we get the notion of a signal
behavior (= the inverse Laplace transform of the graph of the transfer function).

Below | restrict myself to the passive case (so that the behavior C /*(Z™)).



The Behavior of a S/S System

Let 1V be a Krein space.

An /? signal behavior on W = a closed right-shift invariant subspace of
(2(Z; W).

Recall: If (x(-),w(:)) is a trajectory of a s/s system ¥, then w is called the signal

component of (x(-),w(+)).

A trajectory is externally generated if z(0) = 0. Such a trajectory is determined
uniquely by its signal component w.

The /*-behavior 20U induced by a s/s system Y = the set of all signal components
in /2(Z7; V) of all externally generated trajectories. (Easy to see that this is a
closed right-shift invariant subspace of /2(Z*; W).)

The s/s system X is a realization of the ¢ signal behavior 20 < 27 is the
¢*-behavior induced by 3.



The Behavior of a Passive S/S System

Supppose that ¥ = (V; X, V) is forward passive. Then
[k +1),2(k + D% < [2(k), 2(k)]5 + [w(k), w(k)w,  keZ .

Take x(0) = 0 and sum over k£ = 0,1,...n to get

> lwk),wk)w > [z(n+ 1), 2(n + D)

k=0
In particular, if w(-) € £*(ZT; W) (i.e., w(-) belongs to the /*-behavior 2 indcued
by X2), then
k=0

Thus, > forward passive = the behavior 2 is a nonnegative subspace of
(2(ZT5W).



Passive Behaviors

An (*-behavior 20 on a Krein space )V is passive if

(i) 20U is a nonnegative subspace of /%(Z1; W).

(ii) The zero section 20(0) = {w(0) | w € 20} is a maximal nonnegative subspace
of W.

This implies, in particular, that 27 is a maximal nonnegative subspace of /2(Z™; W).



Realizations of Passive Behaviors

It is easy to see:

The behavior indcued by a passive s/s system is passive! (Use a scattering
representation to show that also condition (ii) above holds.)

The converse is more interesting:
Does every passive behavior have a passive s/s realization?

YES! There is a complete passive s/s realization theory that contains (as
projections) the corresponding i/s/o realization theories for

e Schur functions
e Nevanlinna functions

e Potapov functions
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1/S/0 Invariant Properties of S/S Systems

There are may properties of s/s system which are i/s/o invariant in the sense that if
one i/s/o representation of a s/s system X has this property, then every other
i/s/o representation of > has the same property. This includes

Controllability, observability, simplicity ([AS05]).

Similarity and pseudo-similarity ([AS05]).

Dilations of s/s systems correspond to dilations of i/s/o representations ([AS05]).
Duality of s/s systems correspond to duality of i/s/o representations ([AS06]).

Passivity (with respect to the supply rate induced by X), forward passivity,
backward passivity ([AS06]).

Conservativity, forward conservativity, backward conservativity ([AS06]).
Optimality, x-optimality ([AS07c]).

Losslessness (transfer function is J-inner) ([ASO7c]);



1/S/0 Invariant Properties of S/S Systems (continues)

Some other properties are common for all scattering representations of passive s/s
system (those that correspond to a fundamental decomposition W = —) [+| U of
the signal space), such as

e Stability ([AS06]);
e Strong (forward or backward or both) stability ([ASO7c]|).

These stability properties can also be characterized directly in terms of the
underlying s/s system or its behavior (without any explicit reference to any
i/s/o representation) and they are also reflected in the behavior of non-scattering
representations of the system.



Losslessness

A passive behavior 21J on the signal space WV is

o forward lossless if 20 is a neutral subspace of /2(ZT; W) (20 c 25,
e backward lossless if 201+ is a neutral subspace of /2(Z*; W) (20 ¢ 20),

e lossless if 2U is a Lagrangean subspace of /2(ZT; V) (20 = 25l1).

A state/signal system > is forward lossless, or backward lossless, or lossless it the
behavior 20 induced by X2 has this property.

Note: The transfer function of a scattering representation of X is inner if X is
forward lossless, co-inner if X is backward lossless, and bi-inner if Y is lossless.
The converse is also true.



Stable 1/S/0 Systems

We call the i/s/o system

z(n+1) = Az(n) + Bu(n), nezZ",
y(n) = Cx(n) + Du(n), neZt.

stable if the trajectories of X;/,/, have the following property:

If u(:) € (2(Z";U), then z(-) € (*°(Z";X) and y(-) € (*(Z";)) (for all possible
initial states zg € X).

Y. is forward strongly stable, if, in addition x(n) — 0 in X as n — oo.
>. is backward strongly stable if >, is forward strongly stable.

A driving variable representation >;, and an output nulling representation >.,,, of
a s/s system X is (strongly) stable if it is (strongly) stable when interpreted as an
i/s/o system.



Strong Stabilizability < Losslessness

A minimal passive s/s system ¥ = (V; X, W) is

e forward lossless if and only if > is forward conservative and has a forward
strongly stable driving variable representation (i.e., > is forward strongly
stabilizable),

e backward lossless if and only if > is backward conservative and has a
backward strongly stable output nulling representation (i.e., > is backward
strongly detectable),

e lossless if and only if X is conservative and has an i/s/o representation which
is both forward and backward strongly stable (i.e., > is both forward and
backward strongly LFT-stabilizable).

In each of the cases described above 3. is determined uniquely by its behavior 20
(up to a unitary similarity transformation in the state space).
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Advantages of State/Signal Systems

e When one uses the s/s system formulation it is enough to prove a result for
one supply rate (scattering, impedance, or transmission), and the corresponding
results for the other supply rates come almost for free (maybe 90% of the proofs
are common for all cases and can be carried out in a s/s setting).

e State/signal systems have many different representations (i/s/o representations,
driving variable representations, output nulling representations). The appro-
priate choice of representation simplifies the argument significantly. (Use stable
driving variable representations to get right factorizations of the transfer func-
tion, stable output nulling representations to get left factorizations, and stable
i/s/o representations to get coprime factorizations.)

e Many problem, although typically stated in i/s/o form, are inherently of
state/signal nature. In this case the s/s signal setting is even more natural
than the i/s/o setting. This leads to a better (intiutive) understanding of
the problem, and simplifies the formulation of the essential results.



State/Signal Systems Have Been Used

to study (among others)

realizations of (passive) behaviors ([AS06]),

connections between scattering, impedance, and transmission systems ([ASO7a]),
i/s/o invariant tests for controllability and observability ([ASO7b]),

right and left affine representations of transfer functions ([AS07b]),

right and left coprime representations of transfer functions ([ASQ07b]),

realizations of generalized transfer functions (for example of Potapov type) which
may have a singularity at the origin ([AS07b]),

the maximal domain of a Potapov function ([ASO7b]).

See [AS05, AS06, ASO7a, AS07b, AS07c, Sta06] for details.
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Example: LQ Optimal Control

LQ Optimal 1/S/O Control Problem: For each given initial state g, find the
input sequence u(-) which minimizes the cost function

o

T(wo,u) = ) (ly(®)I3 + l[u(k)l|Z).

k=0
where y(-) is the output of the i/s/o system

. | r(n+1) = Ax(n) + Bu(n), n €7z, z(0) = xo,
/olo y(n) = Cz(n) + Du(n), neZ*.

This is a state/signal problem: It does not matter which part of the signal
w(-) = {ZE” we regard to be the input!

If, for example, D is invertible, then we can rewrite the equation so that 3(-) becomes
the input and u(-) the output, but J(xg,w(:)) stays the same!



State/Signal LQ Control
Let X = (V; X, WV) be a state/signal system where X and )V are Hilbert spaces.

LQ Optimal S/S Control Problem: For each given initial state x(, find the
trajectory (z(-),w(-)) of the s/s system

PO z(n) | €V, neZ", z(0)=ux.

for which [[w(-)|[s2z+.)y) is minimal.
As in the LQ optimal i/s/o control problem it turns out that the optimal signal w(-)
is of state feedback type.

The solution of this problem leads to a strongly stable forward conservative
driving variable representation of the behavior induced by >, and it can be used
to construct right normalized weakly coprime factorizations of all the transfer
functions of all the different i/s/o representations of > (work in progress with Mark
Opmeer).



Example: Deterministic Kalman Filter

Deterministic 1/S/0O Kalman Filter: For each given final state xy which can be
reached in a finite number of steps, find the input sequence u(-) which minimizes

the cost function
—1

J(wo,u) = ) (ly(®)I3 + [[ulk)[IZ),

k=—o00

under the condition z(0) = xg, where (x(-),u(-),y(-)) is a trajectory of the i/s/o
system

/N

. { r(n+1) = Ax(n) + Bu(n), nez, x(—o0) = 0,
i/s/o

y(n) = Cx(n) + Du(n), nez.

This is a state/signal problem: It does not matter which part of the signal
w(-) = {ZE” we regard to be the input!



State/Signal Deterministic Kalman Filter

Let > = (V; X, WV) be a state/signal system where X and )V are Hilbert spaces.

S/S Deterministic Kalman Filter: For each given final state xy which can be
reached in a finite number of steps, find the trajectory (z(:),w(-)) of the s/s
system

I x(n) | €V, neZ ={-1,-2,...}, z(—0)=0.

satisfying x(0) = o for which [[w(-)|/s2(z-.y) is minimal.
As in the deterministic i/s/o Kalman filter it turns out that the optimal signal w(-)
is of signal injection type.

The solution of this problem leads to a strongly x-stable backward conservative
output nulling representation of the behavior induced by >, and it can be used
to construct left normalized weakly coprime factorizations of all the transfer



functions of all the different i/s/o representations of 3 (work in progress with Mark
Opmeer).



Example: Available Storage (Optimal Passive Realization)

1/S/0 Available Storage: For each given initial state x(, find the input sequence
u(-) which maximizes the cost function

J(xo,u) = _i<{zgzﬂ o {ZEZ”%;@U’

where y(-) is the output of the i/s/o system

. | r(n+1) = Az(n) + Bu(n), n ez, z(0) = xo,
/olo y(n) = Cz(n) + Du(n), neZ*.

This is a state/signal problem: It does not matter which part of the signal

w(+) = [gg” we regard to be the input! (Use the Krein space inner product in the

signal space W = || induced by the signature operator .J.) (See [AS07c].)



Example: Required Supply (*-Optimal Passive Realization)

1/S/0O Required Supply: For each given final state xy which can be reached in a
finite number of steps, find the input sequence u(-) which minimizes the cost
function

Seow = 35 (3] (U] 0

under the condition z(0) = zg, where (x(-),u(-),y(:)) is a trajectory of the i/s/o
system

3. . 37<77/—|—1) :Aiﬁ(n)—FB’UJ(n), ne€z -, CU(-OO) — 0,
i/s/o y(n) — C’gj(n) i Du(n), ne 77—

This is a state/signal problem: It does not matter which part of the signal

u(-)
signal space W = || induced by the signature operator .J.) (See [AS07c].)

w(-) = [y(')} we regard to be the input! (Use the Krein space inner product in the
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Continuous Time?

Recall that the node space & := X [+] W, where X := | 3V |.

In discrete time we throughout interpret the negative copy of X in X as the future
state x(n + 1) (= output), and the positive copy of X in X as the present state

z(n) (= input).

Thus, the discrete time theory is based on a fundamental decomposition of X
(“internal scattering representation™).

To derive the corresponding continuous time results one simply replaces the
fundamental decomposition of X by a Lagrangean decomposition: X = F + &,
where £ = R(H;D represents the present state x(t) and F := 72([_11;(})
represents the present velocity @(¢) (“internal impedance representation”).

Thus, we pass from discrete to continuous time simply by making a 45°
rotation in X (= the state part of K) (work in progress with Mikael Kurula).
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