Hilbert Spaces Contained in Quotients of Kreĭn Spaces, with Applications to Passive State/Signal Realization Theory.

Damir Z. Arov Division of Mathematical Analysis Institute of Physics and Mathematics South-Ukrainian Pedagogical University 65020 Odessa, Ukraine Olof J. Staffans Åbo Akademi University Department of Mathematics FIN-20500 Åbo, Finland http://www.abo.fi/~staffans/

Abstract

Let \mathcal{Z} be a maximal nonnegative subspace of a Krein space \mathfrak{K} with (indefinite) inner product $[\cdot, \cdot]_{\mathfrak{K}}$, let $\mathcal{Z}^{[\perp]}$ be the orthogonal companion to \mathcal{Z} in \mathfrak{K} , and let $\mathcal{Z}_0 = \mathcal{Z} \cap \mathcal{Z}^{[\perp]}$ be the maximal neutral subspace of \mathcal{Z} . Then $[\cdot, \cdot]_{\mathfrak{K}}$ induces a positive inner product in the quotient space $\mathcal{Z}/\mathcal{Z}_0$, and $-[\cdot, \cdot]_{\mathfrak{K}}$ induces a positive inner product in the quotient space $\mathcal{Z}^{[\perp]}/\mathcal{Z}_0$. These two inner product spaces way are not, in general, complete. We show that the completions of $\mathcal{Z}/\mathcal{Z}_0$ and $\mathcal{Z}^{[\perp]}/\mathcal{Z}_0$ can be identified in a natural way with certain subspaces of the quotient spaces $\mathfrak{K}/\mathcal{Z}^{[\perp]}$ and \mathfrak{K}/\mathcal{Z} , respectively. The construction of these subspaces is similar to the deBrange–Rovnyak construction used to realize an operatorvalued Schur function in the unit disk \mathbb{D} as the characteristic function of a discrete time input/state/output system. More precisely, the completion of $\mathcal{Z}^{[\perp]}/\mathcal{Z}_0$ can be identified with the following subspace $\mathcal{X}[\mathcal{Z}]$ of \mathfrak{K}/\mathcal{Z} . For each $k \in \mathfrak{K}$ we denote the equivalence class in \mathfrak{K}/\mathcal{Z} to which k belongs by $[k] = k + \mathcal{Z}$. Then

$$\mathcal{X}[\mathcal{Z}] = \left\{ [k] \in \mathfrak{K}/\mathcal{Z} \mid \|[k]\|_{\mathcal{X}[\mathcal{Z}]} < \infty \right\},\tag{1}$$

where the norm $\|\cdot\|_{\mathcal{X}[\mathcal{Z}]}$ in $\mathcal{X}[\mathcal{Z}]$ is given by

$$\left\| [k] \right\|_{\mathcal{X}[\mathcal{Z}]} = \sqrt{\sup_{z \in \mathcal{Z}} (-[k-z,k-z]_{\mathfrak{K}})}.$$
(2)

The subspace $\mathcal{X}[\mathcal{Z}^{[\perp]}]$ of $\mathfrak{K}/\mathcal{Z}^{[\perp]}$ is defined in an analogous fashion.

We apply the technique described above to construct three canonical passive state/signal realizations of a given passive behavior \mathfrak{W} , namely a) a controllable forward conservative, b) an observable backward conservative, and c) a simple conservative state/signal realization. All of these are determined unique by \mathfrak{W} up to unitary similarity. The passive behavior \mathfrak{W} is roughly the time-domain counterpart of a shift-invariant maximal nonnegative subspace \mathcal{Z} of the Kreĭn space $\mathfrak{K} := H^2(\mathbb{D}; \mathcal{W})$, where \mathcal{W} is a Kreĭn space. By decomposing \mathcal{W} in different ways into the direct sum of an input space and an output space and interpreting \mathcal{Z} as the graph of a shift-invariant operator we get the standard input/state/output realizations of Schur functions, Charathéodory functions, and Potapov functions in the unit disk.

References

- Daniel Alpay, Aad Dijksma, James Rovnyak, and Henrik de Snoo. Schur Functions, Operator Colligations, and Reproducing Kernel Hilbert Spaces, volume 96 of Operator Theory: Advances and Applications. Birkhäuser-Verlag, Basel Boston Berlin, 1997.
- [2] Damir Z. Arov and Olof J. Staffans. State/signal linear time-invariant systems theory. Passive discrete time systems. Internat. J. Robust Nonlinear Control, 17:497–548, 2007.
- [3] Louis de Branges and James Rovnyak. Square summable power series. Holt, Rinehart and Winston, New York, 1966.