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Krĕın Spaces

A Krĕın space K is a vector space with a complete indefinite inner product [·, ·]K.
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A Krĕın space K is a vector space with a complete indefinite inner product [·, ·]K.

More precisely, there exist a Hilbert space inner product (·, ·)K in K and an
operator J ∈ B(K), J = J∗ = J−1 (i.e., J is both self-adjoint and unitary), such
that

[k1, k2]K = (k1, Jk2)K, k1, k2 ∈ K.

(The inner product (·, ·)K and the operator J are not unique.)
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Krĕın Spaces

A Krĕın space K is a vector space with a complete indefinite inner product [·, ·]K.

More precisely, there exist a Hilbert space inner product (·, ·)K in K and an
operator J ∈ B(K), J = J∗ = J−1 (i.e., J is both self-adjoint and unitary), such
that

[k1, k2]K = (k1, Jk2)K, k1, k2 ∈ K.

(The inner product (·, ·)K and the operator J are not unique.)

The orthogonal companion Z [⊥] to a subspace Z ⊂ K is given by

Z [⊥] = {k ∈ K | [k, z]K = 0 ∀z ∈ Z}.
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Nonnegative, Nonpositive, Neutral Subspaces
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Nonnegative, Nonpositive, Neutral Subspaces

A subspace Z of K is nonnegative [or nonpositive] if

[z, z]K ≥ 0 [or ≤ 0] for all z ∈ Z.
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Nonnegative, Nonpositive, Neutral Subspaces

A subspace Z of K is nonnegative [or nonpositive] if

[z, z]K ≥ 0 [or ≤ 0] for all z ∈ Z.

Z is maximal nonnegative [or maximal nonpositive] if it is not a proper subspace
of any other nonnegative [or nonpositive] subspace of K.

Fact: Z is maximal nonnegative ⇔ Z [⊥] is maximal nonpositive.

A subspace Z of K is neutral if [z, z]K = 0 for all z ∈ Z (i.e., both nonnegative
and nonpositive).

Let Z be maximal nonnegative. The maximal neutral subspace Z0 of Z is given
by Z0 = Z ∩Z [⊥]. This is the largest neutral subspace in Z, and also the largest
neutral subspace in Z [⊥].
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Quotient Spaces

Let Z be a closed subspace of K. By the quotient K/Z we mean the vector
space consisting of all equivalence classes

[k] := k + Z := {k + z | z ∈ Z}.
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Let Z be a closed subspace of K. By the quotient K/Z we mean the vector
space consisting of all equivalence classes

[k] := k + Z := {k + z | z ∈ Z}.

If K is a Hilbert space (i.e., if J = 1K), then the quotient K/Z can be identified
in a natural way with the Hilbert space Z [⊥](= Z⊥). In particular, there is a
canonical inner product in K/Z. This is not true for a general Krĕın space K.
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Quotient Spaces

Let Z be a closed subspace of K. By the quotient K/Z we mean the vector
space consisting of all equivalence classes

[k] := k + Z := {k + z | z ∈ Z}.

If K is a Hilbert space (i.e., if J = 1K), then the quotient K/Z can be identified
in a natural way with the Hilbert space Z [⊥](= Z⊥). In particular, there is a
canonical inner product in K/Z. This is not true for a general Krĕın space K.

Special case: we take Z to be either maximal nonnegative or maximal nonpositive.
Such a subspace is automatically closed (with respect to the standard quotient
topology).
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Inherited Nonnegative Inner Products

Let Z be a maximal nonnegative subspace of K. Then

〈z1, z2〉Z := [z1, z2]K, z1, z2 ∈ Z,

is a semi-inner product on Z (nonnegative, possibly degenerate inner product).

We observe that
〈z, z〉Z = 0 ⇔ z ∈ Z0 := Z ∩ Z [⊥].

This implies that 〈·, ·〉Z induces a positive (nondegenerate) inner product on the
quotient space Z/Z0. We denote this inner product by (·, ·)Z/Z0

. Thus,

([z1], [z2])Z/Z0
:= 〈z1, z2〉Z = [z1, z2]K,

where [z1] and [z2] stand for the equivalence classes [zi] := zi+Z0, i = 1, 2. With
this inner product Z/Z0 becomes a pre-Hilbert space (not necessary complete).

What does the completion of Z/Z0 look like?
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The Completion of Z/Z0

Theorem 1. Let Z be a maximal nonnegative subspace of a Krĕın space K, and
let Z0 = Z ∩ Z [⊥] be the maximal neutral subspace of Z. Then

(i) the completion of the pre-Hilbert space Z/Z0 can be identified in a natural
way with a certain subspace X [Z [⊥]] of K/Z [⊥], and

(ii) the completion of the pre-Hilbert space −Z [⊥]/Z0 can be identified in a
natural way with a certain subspace X [Z] of K/Z.

Here part (ii) follows from part (i) by simply interchanging Z and −Z [⊥] with
each other.

The construction of the Hilbert spaces X [Z] and X [Z [⊥]] is an abstract version of
the functional construction by Louis de Branges and James Rovnyak in [dBR66].
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Definition of X [Z]

X [Z] =
{

x ∈ K/Z
∣

∣ ‖x‖X [Z] < ∞
}

, (1)

where the (Hilbert space) norm ‖x‖X [Z] of the equivalence class x ∈ K/Z is
given by

∥

∥x
∥

∥

X [Z]
=

√

− inf
k∈x

[k, k]K. (2)
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Definition of X [Z]

X [Z] =
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x ∈ K/Z
∣

∣ ‖x‖X [Z] < ∞
}

, (1)

where the (Hilbert space) norm ‖x‖X [Z] of the equivalence class x ∈ K/Z is
given by

∥

∥x
∥

∥

X [Z]
=

√

− inf
k∈x

[k, k]K. (2)

Compare this to the Hilbert space case: If instead Z is a closed subspace of a
Hilbert space K, then the quotient norm of x in K/Z is given by

∥

∥x
∥

∥

K/Z
= inf

k∈x
‖k‖K =

√

inf
k∈x

[k, k]K. (3)

Thus, the norm in X [Z] is simply the ‘Krĕın space version’ of the quotient norm
in K/Z when Z maximal nonnegative!
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Definition of X [Z [⊥]] (interchange Z and −Z [⊥])

X [Z [⊥]] =
{

x† ∈ K/Z [⊥]
∣

∣ ‖x†‖X [Z [⊥]] < ∞
}

, (4)

where the (Hilbert space) norm ‖x†‖X [Z [⊥]] of the equivalence class x† ∈ K/Z [⊥]

is given by

∥

∥x†
∥

∥

X [Z [⊥]]
=

√

sup
k∈x†

([k, k]K). (5)

Compare this to the Hilbert space case: If instead Z is a closed subspace of a
Hilbert space K, then the quotient norm of x† in K/Z⊥ is given by

∥

∥x†
∥

∥

K/Z⊥ = inf
k∈x†

‖k‖K =
√

inf
k∈x†

[k, k]K. (6)

Thus, the norm in X [Z [⊥]] is simply the ‘Krĕın space version’ of the quotient
norm in K/Z [⊥] when Z [⊥] maximal nonpositive!
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• X [Z] consists of those vectors x ∈ K/Z whose norm is finite. The norm in
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Summary

When Z is a maximal nonnegative subspace of the Krĕın space K, then

• X [Z] consists of those vectors x ∈ K/Z whose norm is finite. The norm in
X [Z] is the Krĕın space analogue of the quotient norm in K/Z.

• The pre-Hilbert space −Z [⊥]/Z0 is a dense subspace of X [Z] with the same
norm.

• Answer to the original question: The completion of −Z [⊥]/Z0 is the space
X [Z], where

• X [Z] is a subspace of K/Z of ‘de Branges–Rovnyak’ type.
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State/Signal Systems

A linear discrete time s/s (state/signal) system Σs/s = (V ;X ,W) is a dynamical
system. It consists of

a state space X (today a Hilbert space) representing an internal memory,
a signal space W (today a Krĕın space) for connections to the outside world, and

a generating subspace V of
[

X
X
W

]

which defines the dynamics.
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A linear discrete time s/s (state/signal) system Σs/s = (V ;X ,W) is a dynamical
system. It consists of

a state space X (today a Hilbert space) representing an internal memory,
a signal space W (today a Krĕın space) for connections to the outside world, and

a generating subspace V of
[

X
X
W

]

which defines the dynamics.

A trajectory
[

x(n)
w(n)

]

, n ∈ I, on a discrete time interval I satisfies





x(n + 1)
x(n)
w(n)



 ∈ V, n ∈ I. (7)

In order for this be be a reasonable dynamical system the generating subspace V
must satisfy certain conditions. See [AS05]–[AS07c] for details.
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Today we only talk about passive s/s systems.

13



Passive State/Signal Systems

Today we only talk about passive s/s systems.

The node space K of the s/s system Σs/s = (V ;X ,W) is the product space

K =
[

X
X
W

]

with the (indefinite) Krĕın space inner product
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Today we only talk about passive s/s systems.

The node space K of the s/s system Σs/s = (V ;X ,W) is the product space

K =
[

X
X
W

]

with the (indefinite) Krĕın space inner product

[[

z1
x1
w1

]

,
[

z2
x2
w2

]]

K

= −(z1, z2)X + (x1, x2)X + [w1, w2]W.

It is not a Pontryagin space (unless the state space X is finite-dimensional and
W is a Pontryagin space).

The s/s system Σs/s = (V ;X ,W) is passive if V is a maximal nonnegative
subspace of K. (Maximal nonnegativity of V implies that Σs/s is a ‘reasonable
dynamical system’.)
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Input/State/Output Representations

If Σs/s = (V ;X ,W) is a passive s/s system, then by decomposing the signal
space into W = Y ∔ U in different ways and interpreting U as an input space
and Y as an output space we get standard passive i/s/o (input/state/output)
systems:
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Input/State/Output Representations

If Σs/s = (V ;X ,W) is a passive s/s system, then by decomposing the signal
space into W = Y ∔ U in different ways and interpreting U as an input space
and Y as an output space we get standard passive i/s/o (input/state/output)
systems:

- If the decomposition W = Y ∔ U is fudamental (i.e., U is uniformly positive
and Y = U [⊥]), then we get a scattering passive i/s/o system.

- By taking both U and Y to be neutral we get an impedance passive i/s/o
system.

- By taking U to be a Krĕın subspace of W and Y = U [⊥] we get a transmission
passive i/s/o system.

Again see [AS07a]–[AS07c] for details.
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• Maximal Nonnegative subspaces of Krĕın spaces
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Stable Externally Generated Trajectories

In the sequel we only consider trajectories
[

x(·)
w(·)

]

on one of the

infinite discrete time intervals
I = Z

+ = {0, 1, 2, . . .}, I = Z = {0,±1,±2, . . .}, or I = Z
− = {−1,−2,− . . .}.
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Stable Externally Generated Trajectories

In the sequel we only consider trajectories
[

x(·)
w(·)

]

on one of the

infinite discrete time intervals
I = Z

+ = {0, 1, 2, . . .}, I = Z = {0,±1,±2, . . .}, or I = Z
− = {−1,−2,− . . .}.

Such a trajectory is stable if x ∈ ℓ∞(I;X ) and w ∈ ℓ2(I;W).

It is externally generated if the state vanishes at the left end-point:
x(0) = 0 in case I = Z

+, and
limn→−∞ x(n) = 0 in case I = Z

− or I = Z.
Thus, the internal memory is empty when the process starts, and the dynamics
is driven purely by the signal.
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Behaviors Induced by Passive S/S Systems

Every passive s/s system Σs/s induces three types of stable behaviors, one on
each of the three time intervals I = Z

+, I = Z, and I = Z
−:
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Behaviors Induced by Passive S/S Systems

Every passive s/s system Σs/s induces three types of stable behaviors, one on
each of the three time intervals I = Z

+, I = Z, and I = Z
−:

The future behavior Wfut ⊂ ℓ2(Z+;W) consists of all the signal parts of all
externally generated stable trajectories of Σs/s on Z

+.

The full behavior Wfull ⊂ ℓ2(Z;W) consists of all the signal parts of all externally
generated stable trajectories of Σs/s on Z.

The past behavior Wpast ⊂ ℓ2(Z−;W) consists of all the signal parts of all
externally generated stable trajectories of Σs/s on Z

−.

If Σs/s is passive (in the s/s sense), then all of these stable behaviors are ‘passive’
in a certain ‘behavioral’ sense (as will be explained below).
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Definitions of k2(I;W), S+, S, S−

For each of the three time intervals I = Z
+, I = Z, and I = Z

− we turn ℓ2(I;W)
into a Krĕın space, which we denote by k2(I;W), by using the indefinite inner
product

[k1(·), k2(·)]k2(I;W) :=
∑

n∈I

[k1(n), k2(n)]W .
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into a Krĕın space, which we denote by k2(I;W), by using the indefinite inner
product
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∑

n∈I
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We denote the right-shift operators on k2(Z+;W), k2(Z;W), and k2(Z−;W) by
S+, S, and S−, respectively.
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into a Krĕın space, which we denote by k2(I;W), by using the indefinite inner
product

[k1(·), k2(·)]k2(I;W) :=
∑

n∈I

[k1(n), k2(n)]W .

We denote the right-shift operators on k2(Z+;W), k2(Z;W), and k2(Z−;W) by
S+, S, and S−, respectively.

Thus,

S+ is an outgoing shift (isometry),

S is a bilateral shift (unitary), and

S− is an incoming shift (co-isometry).

Their adjoints are left-shifts: S∗
+ (incoming), S∗ (bilateral), and S∗

− (outgoing).
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Properties of the Induced Behaviors

Theorem 2. Let Σs/s = (V ;X ,W) be a passive s/s system. Then the stable
future, full, and past behaviors Wfut, Wfull, and Wpast induced by Σs/s have the
following properties:
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Properties of the Induced Behaviors

Theorem 2. Let Σs/s = (V ;X ,W) be a passive s/s system. Then the stable
future, full, and past behaviors Wfut, Wfull, and Wpast induced by Σs/s have the
following properties:

(i) Wfut is a maximal nonnegative S+-invariant subspace of k2(Z+;W);

(ii) Wpast is a maximal nonnegative S−-invariant subspace of k2(Z−;W).

(iii) Wfull is a maximal nonnegative S-reducing subspace of k2(Z;W), and, in ad-
dition, Wfull is the graph of a causal contraction D : ℓ2(Z;U) → ℓ2(Z;−U [⊥])
for some fundamental decomposition W = U [⊥] ∔ U of the signal space.

In the sequel we shall use properites (i)–(iii) above as definitions of passive future,
full, and past behaviors.
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Outline

PART I: Hilbert Spaces in Quotients of Krĕın Spaces

• Maximal Nonnegative subspaces of Krĕın spaces

• The Hilbert spaces X [Z] and X [Z [⊥]]

PART II: Passive S/S Systems

• Passive state/signal systems

• Behaviors induced by passive state/signal systems

• Passive behaviors and their realizations
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Passive Behaviors

(i) By a passive future behavior we mean a maximal nonnegative S+-invariant
subspace Wfut of k2(Z+;W).

(ii) By a passive past behavior we mean a maximal nonnegative S−-invariant
subspace Wpast of k2(Z−;W).

(iii) By a passive full behavior we mean a maximal nonnegative S-reducing subspace
Wfull of k2(Z;W) which is the graph of a causal contraction D : ℓ2(Z;U) →
ℓ2(Z;−U [⊥]) for some fundamental decomposition W = U [⊥]∔U of the signal
space.
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Passive Behaviors

(i) By a passive future behavior we mean a maximal nonnegative S+-invariant
subspace Wfut of k2(Z+;W).

(ii) By a passive past behavior we mean a maximal nonnegative S−-invariant
subspace Wpast of k2(Z−;W).

(iii) By a passive full behavior we mean a maximal nonnegative S-reducing subspace
Wfull of k2(Z;W) which is the graph of a causal contraction D : ℓ2(Z;U) →
ℓ2(Z;−U [⊥]) for some fundamental decomposition W = U [⊥]∔U of the signal
space.

Fact 1: There is a one-to-one correspondence Wfut ↔ Wfull ↔ Wpast.

Fact 2: Also passive future and past behavior have graph representations of the
type described in (iii). (The existence of such a causal graph representations is
redundant in cases (i) and (ii), but not in case (iii).)
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Realizations of Passive Behaviors

Question: Given a passive future behavior Wfut, or a passive full behavior Wfull,
or a passive past behavior Wpast, then can we always find a passive s/s system
Σs/s which induces these three behaviors (= a realization)?
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Realizations of Passive Behaviors

Question: Given a passive future behavior Wfut, or a passive full behavior Wfull,
or a passive past behavior Wpast, then can we always find a passive s/s system
Σs/s which induces these three behaviors (= a realization)?

Answer: Yes!

We get one ‘canonical’ class of realizations by letting the dynamics be induced
by some type of left-shift, and by letting the state space be one of the de
Branges–Rovnyak type spaces presented at the beginning of this talk.
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The Controllable Forward Conservative Realization

The controllable forward conservative realization Σpast = (Vpast;Xpast,W) uses
the fact that Wpast is a maximal nonnegative subspace of k2(Z−;W). Let L0

be the maximal neutral subspace of Wpast.
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[⊥]
past.
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The Controllable Forward Conservative Realization

The controllable forward conservative realization Σpast = (Vpast;Xpast,W) uses
the fact that Wpast is a maximal nonnegative subspace of k2(Z−;W). Let L0

be the maximal neutral subspace of Wpast.

The state space Xpast of this realization is the completion of the pre-Hilbert space

Wpast/L0, which by Theorem 1 can be identified with the subspace X [W
[⊥]
past] of

k2(Z−;W)/W
[⊥]
past.

The dynamics of this realization is a type of (outgoing) left-shift:

- We are given an intial state x(0), equal to a sequence w(·) ∈ Wpast, and also
a signal value w0 ∈ W at time n = 0.

- The new state x(1) is the left-shifted x(0) filled in with w0: x(1) :=
{. . . , w(−2), w(−1), w0}. Note that x(1) may or may not belong to Wpast.

- The set of those (x(1), x(0), w0) for which x(1) ∈ Wpast is dense in Vpast.
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The Observable Backward Conservative Realization

The observable backward conservative realization Σfut = (Vfut;Xfut,W) uses the

fact that Wfut is a maximal nonnegative subspace of k2(Z+;W). Let L†
0 be the

maximal neutral subspace of Wfut.
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The Observable Backward Conservative Realization

The observable backward conservative realization Σfut = (Vfut;Xfut,W) uses the

fact that Wfut is a maximal nonnegative subspace of k2(Z+;W). Let L†
0 be the

maximal neutral subspace of Wfut.

The state space Xfut of this realization is the subspace X [Wfut] of
k2(Z+;W)/Wfut, which by Theorem 1 can be identified with the completion of

the pre-Hilbert space −W
[⊥]
fut/L

†
0.

The dynamics of this realization is a type of (incoming) left-shift:

- We are given an intial state x(0), equal to an equivalence class [w(·)] :=
w(·) + Wfut ∈ X [Wfut], where w(·) ∈ k2(Z+;W).

- The new state is x(1) := [S∗
+w] := S∗

+w(·) + Wfut ∈ X [Wfut]. It turns out
that x(1) depends not only on x(0) = [w(·)] but also on the value w(0).

- Vfut consists of all (x(1), x(0), w(0)) of the type described above.
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The Simple Conservative Realization
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The Simple Conservative Realization

The simple conservative realization is a certain combination of the two realizations
above. It is too complicated to be described here.
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Passive Input/State/Output Realization

By splitting the signal space W into Y = Y ∔ U in different ways (as described
earlier) and mapping the time domain into the frequency domain with the
Z-transform we get the standard de Branges–Rovnyak spaces. This gives us
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Passive Input/State/Output Realization

By splitting the signal space W into Y = Y ∔ U in different ways (as described
earlier) and mapping the time domain into the frequency domain with the
Z-transform we get the standard de Branges–Rovnyak spaces. This gives us

- scattering passive i/s/o realizations of given Schur function,

- impedance passive i/s/o realizations of a given Nevanlinna function,

- transmission passive i/s/o realizations of a given Potapov function.
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