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Integral Equations
and Operator Theory

Transfer Functions of Regular Linear Systems
Part III: Inversions and Duality

Olof J. Staffans and George Weiss

Abstract. We study four transformations which lead from one well-posed lin-
ear system to another: time-inversion, flow-inversion, time-flow-inversion and
duality. Time-inversion means reversing the direction of time, flow-inversion
means interchanging inputs with outputs, while time-flow-inversion means do-
ing both of the inversions mentioned before. A well-posed linear system Σ is
time-invertible if and only if its operator semigroup extends to a group. The
system Σ is flow-invertible if and only if its input-output map has a bounded
inverse on some (hence, on every) finite time interval [0, τ ] (τ > 0). This is
true if and only if the transfer function of Σ has a uniformly bounded inverse
on some right half-plane. The system Σ is time-flow-invertible if and only if
on some (hence, on every) finite time interval [0, τ ], the combined operator Στ

from the initial state and the input function to the final state and the output
function is invertible. This is the case, for example, if the system is conser-
vative, since then Στ is unitary. Time-flow-inversion can sometimes, but not
always, be reduced to a combination of time- and flow-inversion. We derive a
surprising necessary and sufficient condition for Σ to be time-flow-invertible:
its system operator must have a uniformly bounded inverse on some left half-
plane. Finally, the duality transformation is always possible. We show by some
examples that none of these transformations preserves regularity in general.
However, the duality transformation does preserve weak regularity. For all
the transformed systems mentioned above, we give formulas for their system
operators, transfer functions and, in the regular case and under additional
assumptions, for their generating operators.
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1. Introduction

This is a continuation of the papers Weiss [27] and Staffans and Weiss [24] (Part
I and Part II), which addressed some fundamental questions about the represen-
tation of well-posed linear systems and, in particular, regular linear systems. A
well-posed linear system is a linear system whose input, state and output spaces
are Hilbert spaces, input and output functions are locally L2, and on any finite
time-interval, the final state and the output function depend continuously on the
initial state and the input function. Certain functional equations must be satisfied,
which express time-invariance and causality. If the transfer function of a well-posed
system has a strong (or weak) limit at +∞, then the system is called regular (or
weakly regular). The precise definitions of these and other concepts used in the
Introduction were given in [27] and again in [24], and we will not formulate them
again in this paper. For historical comments we refer to Section 1 of [24].

In this paper we investigate three types of inversions of a well-posed system:
time-inversion, flow-inversion, and time-flow-inversion. (The third inversion can
sometimes, but not always, be reduced to a combination of the first two.) We
also investigate duality of well-posed systems. Each of these transformations, if
applicable, leads to a new well-posed system. We are particularly interested in
characterizing the system operator of the various inverted systems and of the dual
system, with emphasis on the simpler case when the systems are regular. (In the
regular case, the system operator has a natural decomposition into four blocks
which correspond to the generating operators of the system, as explained in Part
II.)

To make our aims more easily understood, we explain what our main results
mean for a finite-dimensional linear system Σ described by

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).
(1.1)

Here u(·) is the input function, x(t) is the state at time t, and y(·) is the output
function. We call the matrices A, B, C, D the generating operators of Σ and

SΣ(s) =
[
A − sI B

C D

]
(where s ∈ C) (1.2)

is called the system operator of Σ. The transfer function of this system is

G(s) = C(sI − A)−1B + D (for s ∈ ρ(A)). (1.3)

Take τ ≥ 0. We are usually interested in the solutions of (1.1) for t ∈ [0, τ ],
but of course, the solutions exist on the whole real line. Given an initial state x(0)
and the restriction of u to [0, τ ], denoted by Pτu, we can solve (1.1) to compute
x(τ ) and the restriction of y to [0, τ ], denoted by Pτy. Formally, we have[

x(τ )
Pτy

]
= Στ

[
x(0)
Pτu

]
=
[
Tτ Φτ

Ψτ Fτ

] [
x(0)
Pτu

]
. (1.4)

The operators appearing in the block 2 × 2 matrix Στ above are given by
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Tτ = eAτ , Φτu =
∫ τ

0

eA(τ−σ)Bu(σ)dσ,

(Ψτx0)(t) = CeAtx0, (Fτu)(t) = C

∫ t

0

eA(t−σ)Bu(σ)dσ + Du(t),
(1.5)

where t ∈ [0, τ ]. These families of operators (parametrized by τ ≥ 0) constitute
an alternative description of the system Σ. This is, of course, a much more cum-
bersome description of Σ than (1.1), but for infinite-dimensional systems these
operator families are the natural starting point, see [27] or [20].

In the finite-dimensional situation which we are now discussing, we can re-
verse the direction of the time by changing t to τ−t in (1.1) to get the time-inverted
system Σ R. This system (with input v(t) = u(τ − t), state z(t) = x(τ − t) and
output w(t) = y(τ − t)) is described by

ż(t) = −Az(t) − Bv(t),

w(t) = Cz(t) + Dv(t).
(1.6)

The generating operators and the transfer function of this system are[
A R B R

C R D R

]
=
[−A −B

C D

]
, G R(s) = G(−s). (1.7)

By flow-inversion we mean an interchange of the roles of u and y in (1.1),
so that y becomes the input and u the output. This is possible if and only if D is
invertible, in particular, the input and output dimensions must be the same. The
resulting system Σ× (the superscript × stands for flow-inversion) is then given by

ẋ(t) = (A − BD−1C)x(t) + BD−1y(t),

u(t) = −D−1Cx(t) + D−1y(t).
(1.8)

The generating operators and the transfer function of Σ× are given by[
A× B×

C× D×

]
=
[
A B
0 I

] [
I 0
C D

]−1

, G×(s) = G−1(s). (1.9)

Time-flow-inversion means that we perform both of the transformations de-
scribed above at the same time, i.e., w from (1.6) becomes the input and v from
(1.6) becomes the output. This is possible if and only if D is invertible. The re-
sulting system Σ← is described by

ż(t) = (−A + BD−1C)z(t) − BD−1w(t),

v(t) = −D−1Cz(t) + D−1w(t),
(1.10)

and its generating operators and transfer function are[
A← B←

C← D←

]
=
[−A −B

0 I

] [
I 0
C D

]−1

, G←(s) = G−1(−s). (1.11)

The dual system of Σ from (1.1), denoted by Σd, is given by

ẋd(t) = A∗xd(t) + C∗yd(t),

ud(t) = B∗xd(t) + D∗yd(t),
(1.12)
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where yd is the input function, xd(t) is the state at time t, and ud is the output
function. Thus, the generating operators and the transfer function of Σd are[

Ad Bd

Cd Dd

]
=
[
A B
C D

]∗
, Gd(s) = G∗(s). (1.13)

We now indicate how the transformations defined above carry over to the
general case of an (infinite-dimensional) well-posed linear system. The generating
operators A, B, C and D are well defined for weakly regular systems (see Section
4 of Part II), but for well-posed linear systems in general there is a problem: A,
B and C are still well defined, but D is not uniquely determined. The operators
A, B and C may be unbounded, while D is always bounded. A local (in time)
representation of a well-posed system Σ (similar to (1.1)) uses SΣ(0), the system
operator evaluated at zero (see Theorem 3.1 in Part II). The system operator is
of the form

SΣ(s) =
[
A B
C&D

]
−
[
sI 0
0 0

]
,

where C&D is the so-called combined observation/feedthrough operator, see Sec-
tion 3 of Part II. In the finite-dimensional case, using the notation from (1.2),
C&D would be the matrix

[
C D
]
, but in the general infinite-dimensional frame-

work C&D is a densely defined unbounded operator. Thus, to get local (in time)
representations of the various inverted systems and of the dual system, we express
their system operators evaluated at zero in terms of the original SΣ(0).

In short, the situation with the various transformations is as follows. It is
always possible to pass from a given system Σ to its dual Σd, and the formulas
given in (1.13) remain valid if we replace

[
C D
]

by C&D and
[
Cd Dd

]
by

[C&D]d. Here [C&D]d is the combined observation/feedthrough operator of Σd.
This and other results about duality are presented in Section 3.

Time-inversion of a well-posed system Σ is possible if and only if the un-
derlying semigroup T is invertible, i.e., Tτ is invertible for some (hence, for all)
τ > 0. According to a recent result of Zwart [32], denoting the generator of T by
A, T is invertible if and only if (sI −A)−1 is uniformly bounded on some left half-
plane. In this case, the formulas in (1.7) remain valid with similar modifications
as for (1.13) if we extend the transfer function G appropriately to ρ(A) (in most
cases this part of the transfer function can be obtained from the original transfer
function by analytic continuation). The details of time-inversion can be found in
Section 4.

Flow-inversion of a well-posed system is possible if and only Fτ is invertible
for some (hence, for all) τ > 0. Recall that Fτ is the input-output map of Σ on the
interval [0, τ ], see (1.4). The flow-invertibility of Σ is equivalent to the condition
that the transfer function G has a uniformly bounded inverse on some right half-
plane. In this case, (1.9) remains valid with similar modifications as for (1.13).
A necessary condition for the flow-invertibility of Σ is that its input and output
spaces have the same dimension (finite or infinite). Flow-inversion has been used in



Vol. 49 (2004) Transfer Functions 521

Rebarber and Townley [16] for the feedback stabilization and robustness analysis
of boundary control systems. We discuss flow-inversion in Section 5.

If the original system Σ is time-invertible, and the time-inverted system is
flow-invertible, then we get the time-flow-inverted system Σ← by performing these
two operations in sequel. Likewise, if the original system is flow-invertible, and the
flow-inverted system is time-invertible, then a combination of these two inversions
will give the time-flow-inverted system Σ←. However, it is possible for a system to
be time-flow-invertible even in the case where it is neither time-invertible nor flow-
invertible. The simplest example of such a system is a delay line, and additional
examples will be provided. Time-flow-invertibility of a system does not even force
the dimensions of the input and output spaces to be the same. The exact necessary
and sufficient condition for the time-flow-invertibility of Σ is that the operator
matrix Στ in (1.4) is invertible for some (hence, for every) τ > 0. In particular,
this condition is true whenever the system is conservative, which means that Στ

is unitary (e.g., a delay line is conservative). The first part of (1.11) remains valid
if we replace

[
C D
]

by C&D and
[
C← D←

]
by [C&D]←. The second part of

(1.11) remains valid for all s ∈ ρ(A←)∩ρ(−A) (this set is usually large enough for
(1.11) to determine G←, but it can even be empty in some pathological cases, as
we show by an example). An important criterion for time-flow-invertibility is the
following:

Theorem 1.1. The well-posed linear system Σ is time-flow-invertible if and only if
SΣ(s) has a uniformly bounded inverse for all s in some left half-plane.

We prove this theorem by applying the semigroup inversion result of Zwart
[32] mentioned earlier to the Lax-Phillips semigroup induced by Σ. For a more
detailed statement of the above theorem and for other facts on time-flow-inversion
we refer to Section 6. Recently, time-flow-inversion for the wave equation has been
used by Bardos and Fink [2] to focalize acoustic waves in a cavity.

We will also discuss the preservation of (weak) regularity under the various
transformations. As shown in Section 3 of Part II, it is always possible to split
C&D in a non-unique manner into an operator matrix

[
C D
]
, where C is an

extension of C. If the system is weakly regular, then it is possible to carry out
this splitting in such a way that D is the weak limit of G at +∞, and this is
the standard splitting of C&D that we adopt for weakly regular systems. In the
duality transform, if the original system is weakly regular, then the dual system
is also weakly regular, and Dd = D∗. In the case of flow-inversion a similar result
is true: if the original system is regular, then the flow-inverted system is regular if
and only if D is invertible, in which case D× = D−1. We do not know if regularity
is preserved under flow inversion in general. Weak regularity need not be preserved
under flow-inversion (as we show with an example). In the cases of time-inversion
and time-flow-inversion the situation is even more complicated, due to the 180◦

rotation of the frequency domain (as manifested in the formulas for the transfer
functions given in (1.7) and (1.11)). We show via examples that the time-inverted
system Σ Ris not necessarily weakly regular (even if Σ is regular). Even in the
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case where Σ Ris (weakly) regular, the backward feedthrough operator D Rmay
be different from the forward feedthrough operator D, as we show by another
example. Similar comments apply to the time-flow-inverted system.

All the transformations treated in this paper have important applications.
The duality transform is, of course, fundamental in the modern literature on opti-
mal control and estimation (LQG and H∞-optimal control, spectral factorization,
the bounded real and positive real lemmas, the Kalman-Yakubovich-Popov in-
equality, Riccati equations). Many of these subjects are discussed in, e.g., [3], [7]
and [8]. It is also important in the theory of conservative systems (see Section 7).
Time-invertibility is maybe the most important property of a system with a hyper-
bolic semigroup, and it is the underlying reason for many of the special properties
that this class of systems exhibit (an extensive treatment of hyperbolic systems
is given in [8]). As we explain in Remark 5.5, flow-inversion is closely related to
feedback. It is also closely related to the standard “scattering transformation”
(see, e.g., [6]), the “Redheffer transformation” (see, e.g., [31, Section 10.4]), and
the “Potapov-Ginzburg transformation” (see, e.g., [22], where it is called the “di-
agonal transform”). Our results about flow-inversion can be used to simplify and
extend earlier known feedback results. In particular, by combining Theorem 5.4
with Remark 5.5, we can determine the growth bound of a feedback system. Time-
flow-invertibility is an important property of conservative systems (see Section 7),
and it also appears to have some applications in nondestructive testing, medical
techniques, and underwater acoustics (see [2] for further references on this).

We will often use the terminology and results from [27] and from [24], which
we refer to as “Part I” and “Part II”. In such cases, we put the prefix I or II in
front of the number of the item quoted. For example, Definition I.2.1 refers to
Definition 2.1 in Part I, and (II.3.2) refers to formula (3.2) in Part II.

2. Some useful facts about well-posed linear systems

In this section we recall the notation from Part II that is needed in this paper. We
also give a reformulation of the concept of a well-posed linear system: we rewrite
the functional equations from Definition I.2.1 in a form that is more suitable for
our computations. For easy reference, we also write down some formulas and one
theorem from Part II which will be needed frequently.

Notation 2.1. We recall the notation from Section II.2 that will be used again here.
Let W be a Hilbert space and J an interval. The spaces L2(J ; W ) and L2

loc(J ; W )
are defined in the usual way, and PJ is the projection from L2

loc((−∞,∞); W )
onto L2

loc(J ; W ) by truncation. We abbreviate Pτ = P[0,τ ] (where τ ≥ 0), P− =
P(−∞,0] and P+ = P[0,∞). The operator Sτ is the (unilateral) right shift by
τ on L2

loc([0,∞); W ), and S∗τ is the left shift by τ on the same space. For any
u, v ∈ L2

loc([0,∞); W ) and any τ ≥ 0, the concatenation u ♦
τ

v is defined by

u ♦
τ

v = Pτu + Sτv.
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For every u ∈ L2
loc([0,∞); W ) and every τ ≥ 0 we have

u = Pτu + P[τ,∞)u = Pτu + SτS∗τu = u ♦
τ

S∗τu.

This implies that
[
Pτ Sτ

]
is a bijection from L2([0, τ ]; W ) × L2([0,∞); W ) to

L2([0,∞); W ), with inverse
[

Pτ

S∗τ

]
, formally expressed as follows:

[
Pτ Sτ

] [Pτ

S∗τ

]
= I ,

[
Pτ

S∗τ

] [
Pτ Sτ

]
=
[
Pτ 0
0 I

]
, (2.1)

where I is the identity on L2([0,∞); W ).
Let U, X and Y be Hilbert spaces and U = L2([0,∞); U), Y = L2([0,∞); Y ).

The concept of a well-posed linear system Σ = (T, Φ, Ψ, F) on U , X and Y has
been defined in Definition II.2.2 (or I.2.1). If Σ is such a system, then we call U
its input space, X its state space and Y its output space. For τ ≥ 0 we denote

Στ =
[
Tτ Φτ

Ψτ Fτ

]
,

as in (1.4). It follows from formula (II.2.1) in the definition of a well-posed system
that Φ is causal: Φτ Pτ = Φτ for all τ ≥ 0 (see (II.2.4)). In particular, we have
Φ0 = 0. This, together with some of the other assumptions in the definition implies
that Στ satisfies the initial conditions

Σ0 =
[
T0 Φ0

Ψ0 F0

]
=
[
I 0
0 0

]
. (2.2)

The following reformulation of the definition will be useful when we prove that
the various inverted systems and the dual system are indeed well-posed systems.

Proposition 2.2. Assume that Σ = (T, Φ, Ψ, F), where the four components are
families of operators indexed by τ ≥ 0 such that Tτ ∈ L(X), Φτ ∈ L(U ; X),
Ψτ ∈ L(X;Y) and Fτ ∈ L(U ;Y). Then Σ is a well-posed linear system on U , X
and Y if and only if

(I) T is strongly continuous at zero, i.e., lim
t↓0

Tt x0 = x0,
(II) the initial conditions (2.2) hold,

(III) the following functional equation holds for all τ, t ≥ 0 :

[
Tτ+t Φτ+t

Ψτ+t Fτ+t

]
=
[
I 0 0
0 Pτ Sτ

]Tt 0 Φt

0 I 0
Ψt 0 Ft




Tτ Φτ 0

Ψτ Fτ 0
0 0 I




I 0

0 Pτ

0 S∗τ


 . (2.3)
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Proof. The equations (II.2.1)–(II.2.3) can be rewritten (using (2.1)) in the form

Φτ+t =
[
TtΦτ Φt

] [Pτ

S∗τ

]
, (2.4)

Ψτ+t =
[
Pτ Sτ

] [ Ψτ

ΨtTτ

]
, (2.5)

Fτ+t =
[
Pτ Sτ

] [ Fτ 0
ΨtΦτ Ft

] [
Pτ

S∗τ

]
. (2.6)

A convenient way of rewriting (2.4)–(2.6) and the semigroup identity Tτ+t =
TtTτ in block matrix form is (2.3). The remaining conditions in the definition
are the strong continuity of T, as in (I), and the initial conditions, which are a
subset of those in (2.2). However, the extra initial condition Φ0 = 0 in (2.2) is a
consequence of (II.2.1), as we have seen earlier, so that the two lists of conditions
are equivalent. �

For any well-posed system Σ = (T, Φ, Ψ, F), the extended output map Ψ∞
and the extended input-output map F∞ are defined as in Section II.2 (or I.2):

Ψ∞x0 = lim
t→∞Ψt x0 , F∞u = lim

t→∞Ftu,

the limits being taken in the Fréchet space L2
loc([0,∞); Y ).

For any x0 ∈ X and any u ∈ L2
loc([0,∞); U), the state trajectory x : [0,∞) →

X and the output function y ∈ L2
loc([0,∞); Y ) of Σ corresponding to the initial

state x0 and the input function u are defined by

x(t) = Tt x0 + Φtu, t ≥ 0,

y = Ψ∞x0 + F∞u.
(2.7)

Remark 2.3. Using the functions from (2.7), the functional equation (2.3) has a
natural intuitive explanation: if we apply the right-hand side of (2.3) to [ x0

u ], then
the successive intermediate results, from right to left, are

x(0)
Pτu
S∗τu


 ,


x(τ )
Pτ y
S∗τu


 ,


x(τ + t)

Pτ y
PtS∗τy


 ,

[
x(τ + t)
Pτ+t y

]
.

Notation 2.4. We need some more notation from Sections II.2 and II.5: for any
Hilbert space W , any interval J and any ω ∈ R we put

L2
ω(J ; W ) = eωL2(J ; W ) ,

where (eωv)(t) = eωtv(t). We denote by H1
loc(J ; W ) the space of all those con-

tinuous functions on J whose derivatives (in the sense of distributions) are in
L2

loc(J ; W ). H1(J ; W ) is the space of those continuous v ∈ L2(J ; W ) for which
v′ ∈ L2(J ; W ) (see Section II.2 for more detail). We denote by ωT the growth
bound of the semigroup T and by Cω the half-plane of those s ∈ C for which
Re s > ω.
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For the remainder of this section, we assume that Σ = (T, Φ, Ψ, F) is a well-
posed linear system with input space U , state space X, output space Y and transfer
function G. Denote the generator of T by A. Recall that the space X1 is defined
as D(A) with the norm ‖z‖1 = ‖(βI − A)z‖, where β ∈ ρ(A), and X−1 is the
completion of X with respect to the norm ‖z‖−1 = ‖(βI −A)−1z‖. There exists a
unique B ∈ L(U ; X−1), called the control operator of Σ, such that for all t ≥ 0,

Φtu =
∫ t

0

Tt−σBu(σ)dσ . (2.8)

For any initial state x0 ∈ X and any input u ∈ L2
loc([0,∞); U), the state trajectory

x defined in (2.7) is the unique strong solution in X−1 of

ẋ(t) = Ax(t) + Bu(t), t ≥ 0,

x(0) = x0 ,
(2.9)

i.e., x is continuous with values in X, x ∈ H1
loc([0,∞); X−1) and its derivative ẋ

satisfies the first equation in (2.9) for almost every t ≥ 0.
There exists a unique C ∈ L(X1; Y ), called the observation operator of Σ,

such that for every x0 ∈ X1 and all t ≥ 0,

(Ψ∞x0)(t) = CTt x0 (2.10)

(this determines Ψ∞). The Λ-extension of C, denoted CΛ, is defined by

CΛx0 = lim
λ→+∞

Cλ(λI − A)−1x0 . (2.11)

Its domain D(CΛ) consists of all x0 ∈ X for which the above limit exists. The weak
Λ-extension of C, denoted CΛw, is defined in the same way, but with the strong
limit replaced by a weak limit (hence, CΛw is an extension of CΛ).

For every x0 ∈ X and u ∈ L2
ω([0,∞); U) with ω > ωT, the corresponding

output function y (see (2.7)) is in L2
ω([0,∞); Y ) and its Laplace transform is

ŷ(s) = C(sI − A)−1x0 + G(s)û(s), Re s > ω .

G satisfies for all s, β ∈ CωT

G(s) − G(β) = C
[
(sI − A)−1 − (βI − A)−1

]
B. (2.12)

We recall some facts from Section II.4. The system Σ is called weakly regular
if the following weak limit exists in Y , for every u0 ∈ U :

weak lim
λ→+∞

G(λ)u0 = Du0 . (2.13)

Σ is called regular if the above limit exists in the norm topology. In either case,
the operator D ∈ L(U ; Y ) defined by (2.13) is called the feedthrough operator of
Σ. If Y is finite-dimensional, then weak regularity equals regularity, of course. In
general, this is not true, as demonstrated by Example 8.1.

If Σ is weakly regular, then its output y (defined in (2.7)) is given by

y(t) = CΛwx(t) + Du(t), (2.14)
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for almost every t ≥ 0 (in particular, x(t) ∈ D(CΛw) for almost every t ≥ 0). If Σ
is weakly regular, then we also have that

G(s) = CΛw(sI − A)−1B + D, Re s > ωT . (2.15)

If Σ is regular, then (2.14) and (2.15) remain true with CΛ in place of CΛw. The
operators A, B, C and D defined as above are called the generating operators of
the (weakly) regular linear system Σ, since they determine Σ via (2.9) and (2.14).

Now we recall some concepts and formulas from Section II.3. We define the
dense subspace V of X × U by

V =
{[

x0

u0

]
∈ X × U

∣∣∣∣ Ax0 + Bu0 ∈ X

}
. (2.16)

We define the operator C&D : V →Y by

C&D

[
x0

u0

]
= C
[
x0 − (βI − A)−1Bu0

]
+ G(β)u0 ,

where β ∈ CωT
is arbitrary (i.e., the result is independent of β as long as Re β >

ωT). We call C&D the combined observation/feedthrough operator of Σ. We also
introduce the system operator of Σ, SΣ(s) : V →X × Y by

SΣ(s) =
[
A B
C&D

]
−
[
sI 0
0 0

]
, for all s ∈ C ,

which can be regarded as a densely defined and closed operator from X × U to
X × Y . If Σ is weakly regular, then C&D = [CΛw D] and hence

SΣ(s) =
[
A − sI B
CΛw D

]
, for all s ∈ C .

If Σ is regular, then in the above formula CΛw may be replaced by CΛ. We recall
Theorem II.3.1 for easy reference, since we need it often:

Theorem 2.5. (i) Assume that u ∈ H1
loc([0,∞); U) and

[ x0
u(0)

] ∈ V . The state
trajectory x and the output function y are defined as in (2.7). Then

x ∈ C1([0,∞); X),
[
x
u

]
∈ C([0,∞); V ), y ∈ H1

loc([0,∞); Y ),

and for every t ≥ 0 we have that[
ẋ(t)
y(t)

]
= SΣ(0)

[
x(t)
u(t)

]
. (2.17)

If u ∈ H1
ω([0,∞); U) with ω > ωT, then y ∈ H1

ω([0,∞); Y ).
(ii) The transfer function G of Σ is given for Re s > ωT by

G(s) = C&D

[
(sI − A)−1B

I

]
. (2.18)
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In the sequel, we shall use (2.18) as the definition of G(s) for all s ∈ ρ(A)
(not just for Re s > ωT). The same extension of the transfer function will be used
for the dual system and for the various inverted systems. If ρ(A) is connected, then
this extension of G coincides with its analytic continuation to ρ(A). If ρ(A) is not
connected, then G may still have an analytic continuation to a part of ρ(A), but
this continuation may be different from G given by (2.18), see Remark I.4.8 and
also Example 8.3. Our extension of G satisfies (2.12) for all s, β ∈ ρ(A).

3. The dual system

The meaning of the dual system for finite-dimensional linear systems was ex-
plained in the introduction, in terms of the matrices A, B, C and D appearing
in (1.1). For infinite-dimensional systems it seems preferable to define the dual
system in terms of the operator families T, Φ, Ψ, and F appearing in the definition
of a well-posed system. To do this we must first introduce the reflection operators

Rand Rτ .

Notation 3.1. Let W be a Hilbert space. For every u ∈ L2
loc((−∞,∞); W ) and all

τ ≥ 0, we define

( Ru)(t) = u(−t) for t ∈ R , ( Rτu)(t) =

{
u(τ − t) for t ∈ [0, τ ],
0 for t /∈ [0, τ ].

Clearly, for every u, v ∈ L2
loc([0,∞); U) and for all τ, t ≥ 0,

Rτ = RτPτ = Pτ Rτ , R2τ = Pτ ,

Rτ+t =
[
St Rt

] [ Rτ
S∗τ

]
=
[

Rτ Sτ

] [S∗t
Rt

]
,

[
StPτ Pt

]
= Rτ+t

[
Pτ Sτ

] [ Rτ 0
0 Rt

]
.

(3.1)

To prove that the dual system, the time-inverted system and the time-flow
inverted system are indeed well-posed linear systems, it will be handy to have the
concept of an anti-causal well-posed system, defined as follows:

Definition 3.2. We use the notation U , X, Y , U , Y from Proposition 2.2. An anti-
causal well-posed linear system on U , X and Y is a quadruple of operator families
Σa = (Ta, Φa, Ψa, Fa) parameterized by τ ≥ 0 such that, if we define[

Tτ Φτ

Ψτ Fτ

]
=
[
I 0
0 Rτ

] [
Ta

τ Φa
τ

Ψa
τ Fa

τ

] [
I 0
0 Rτ

]
,

then Σ = (T, Φ, Ψ, F) is a well-posed linear system on U , X and Y . In this case,
we call Σ the causal version of Σa, and we call Σa the anti-causal version of Σ.

Anti-causal systems have the following simple algebraic characterization:
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Proposition 3.3. The quadruple Σa = (Ta, Φa, Ψa, Fa) of families of operators
Ta

τ ∈ L(X), Φa
τ ∈ L(U ; X), Ψa

τ ∈ L(X;Y), Fa
τ ∈ L(U ;Y), indexed by τ ≥ 0, forms

an anti-causal well-posed linear system on U , X and Y if and only if T
a is strongly

continuous and the following equalities hold: for all τ, t ≥ 0,[
Ta

0 Φa
0

Ψa
0 F

a
0

]
=
[
I 0
0 0

]
, (3.2)

[
Ta

τ+t Φa
τ+t

Ψa
τ+t Fa

τ+t

]
=
[
I 0 0
0 Pτ Sτ

]T
a
τ Φa

τ 0
Ψa

τ F
a
τ 0

0 0 I




T

a
t 0 Φa

t

0 I 0
Ψa

t 0 Fa
t




I 0

0 Pτ

0 S∗τ


 . (3.3)

Proof. This can be checked by direct computation based on (2.3) and (3.1). A key
observation which simplifies this computation is that several of the block matrices
that appear in these equations commute with each other because of their block
structure. For example, if we use a star to represent an irrelevant entry, then[

I 0 0
0 Rτ 0
0 0 I

]
commutes with every operator with the structure

[ ∗ 0 ∗
0 I 0∗ 0 ∗

]
and
[

I 0 0
0 I 0
0 0 Rt

]

commutes with every operator with the structure
[ ∗ ∗ 0∗ ∗ 0

0 0 I

]
. �

Observe that (3.3) is almost identical to (2.3): the only difference is that two
of the factors have changed places in (3.3) compared to (2.3).

Theorem 3.4. Let Σ = (T, Φ, Ψ, F) be a well-posed linear system with input space
U , state space X and output space Y . Define Σd

τ (for all τ ≥ 0) by

Σd
τ =
[
Td

τ Φd
τ

Ψd
τ Fd

τ

]
=
[
I 0
0 Rτ

] [
T∗τ Ψ∗τ
Φ∗τ F

∗
τ

] [
I 0
0 Rτ

]
. (3.4)

Then Σd = (Td, Φd, Ψd, Fd) is a well-posed linear system with input space Y ∗, state
space X∗ and output space U∗. Let x0 ∈ X, xd

0 ∈ X∗, u ∈ L2
loc([0,∞); U) and

yd ∈ L2
loc([0,∞); Y ∗). Let x and y be the state trajectory and the output function

of Σ corresponding to the initial state x0 and the input function u (see (2.7)). Let
xd and ud be the state trajectory and the output function of Σd corresponding to
the initial state xd

0 and the input function yd. Then, for every τ ≥ 0,

〈x0, x
d(τ )〉 +

∫ τ

0

〈u(σ), ud(τ − σ)〉dσ

= 〈x(τ ), xd
0〉 +
∫ τ

0

〈y(σ), yd(τ − σ)〉dσ.

(3.5)

The system Σd introduced above is called the dual system corresponding to
Σ. It is easy to verify (from (3.4)) that applying the duality transformation twice
(and identifying the bidual space of any Hilbert space with the original Hilbert
space), we get back the original system: (Σd)d = Σ. Clearly ωT = ωTd (since
Td

τ = T∗τ ).
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Proof of Theorem 3.4. We denote by Σ∗ = (T∗, Ψ∗, Φ∗, F∗) the families of opera-
tors obtained by taking the adjoints of the corresponding operators of Σ, so that

Σ∗τ =
[
T∗τ Ψ∗τ
Φ∗τ F∗τ

]
.

If we take adjoints in (2.3), then we get (3.3) with Σa replaced by Σ∗. In addition,
Σ∗ satisfies (3.2) and T

∗ is strongly continuous. Thus, by Proposition 3.3, Σ∗ is
an anti-causal well-posed system with input space Y ∗, state space X∗ and output
space U∗. By its definition (3.4), Σd is the causal version of Σ∗, so that Σd is a
(causal) well-posed system on the stated spaces.

To prove (3.5), we rewrite it in the form〈[
x0

Pτu

]
,

[
xd(τ )

Rτud

]〉
=
〈[

x(τ )
Pτy

]
,

[
xd

0

Rτyd

]〉
.

This version of the formula is a consequence of the facts that[
x(τ )
Pτy

]
= Στ

[
x0

Pτu

]
,

[
xd(τ )

Rτud

]
= Σ∗τ

[
xd

0

Rτyd

]
. �

In the above theorem we have not specified if by X∗ (and the other dual
spaces) we mean the linear dual or the antilinear dual (which is usually identified
with X). Accordingly, the adjoint operators have two possible meanings. It seems
that the dual system in the linear sense is more natural to generalize to the Banach
space context, while the dual system in the antilinear sense is more useful when
discussing optimal control. Unless otherwise specified, we will have the antilinear
dual in mind, which is the usual way to proceed in the Hilbert space case, and
accordingly, in the sequel we identify U∗ = U , X∗ = X and Y ∗ = Y .

Formula (3.5) is equivalent to [17, formula (3.4)] and also to [20, Lemma 2.15]
(stated without proof). Our following theorem describes the system operator of
the dual system in terms of the original system operator.

Theorem 3.5. With the assumptions and the notation of Theorem 3.4, denote the
semigroup generator of Σ by A, its control operator by B, its observation opera-
tor by C, its combined observation/feedthrough operator by C&D and its system
operator by SΣ(s). The corresponding operators for Σd are denoted Ad, Bd, Cd,
[C&D]d and Sd

Σ(s). Then we have

Sd
Σ(0) =

[
Ad Bd

[C&D]d

]
=
[
A B
C&D

]∗
= S∗Σ(0) , (3.6)

where the adjoint of SΣ(0) is computed by regarding it as a densely defined and
closed operator from X × U to X × Y . Moreover, Ad = A∗, Bd = C∗, Cd = B∗,
and the transfer functions of Σ and Σd, denoted by G and Gd, are related by

Gd(s) = G∗(s), s ∈ ρ(Ad) (3.7)

(for the linear dual the relationship is Gd(s) = G∗(s)).
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Some clarifications may be needed. The spaces X1 and X−1 are as in Section
2 (before (2.8)). The corresponding spaces that we get by replacing A by Ad = A∗

are denoted Xd
1 and Xd

−1. Thus, we have the continuous and dense embeddings
Xd

1 ⊂ X ⊂ Xd
−1. The scalar product of X has continuous extensions to X1 ×Xd

−1

and to Xd
1 ×X−1, and Xd

−1 (respectively X−1) may be regarded as the dual of X1

(respectively of Xd
1 ) (see [25] for more detail). Then we have B∗ ∈ L(Xd

1 , U) and
C∗ ∈ L(Y, Xd

−1), these operators being computed as the adjoints of the bounded
operators B ∈ L(U ; X−1) and C ∈ L(X1; Y ). By contrast, the adjoint of SΣ(0) is
computed in (3.6) by regarding it as an unbounded operator, as explained in the
theorem. Finally, recall that Gd is defined on ρ(Ad) = ρ(A∗) = ρ(A) according to
our convention at the end of Section 2.

Proof of Theorem 3.5. We introduce the space V d as the analogue of V for the
system Σd:

V d =
{[

x0

y0

]
∈ X × Y

∣∣∣∣ Adx0 + Bdy0 ∈ X

}
.

Let x0, u, x, y, xd
0, yd, xd and ud be as in the last part of Theorem 3.4,

but now we require that u ∈ H1
loc([0,∞); U) and yd ∈ H1

loc([0,∞); Y ). Moreover,

denoting u0 = u(0) and yd
0 = yd(0), we require that [ x0

u0 ] ∈ V and
[

xd
0

yd
0

]
∈ V d. Then

by Theorem 3.4 (after subtracting 〈x0, x
d
0〉 from both sides of (3.5)) we obtain that

〈x0, x
d(τ ) − xd

0〉 +
∫ τ

0

〈
u(σ), ud(τ − σ)

〉
dσ

= 〈x(τ ) − x0, x
d
0〉 +
∫ τ

0

〈
y(σ), yd(τ − σ)

〉
dσ ,

for all τ > 0. Divide by τ and let τ ↓ 0, using that (according to Theorem 2.5)
x, xd ∈ C1([0,∞); X) and all the functions are continuous. Then we obtain

〈x0, ẋ
d(0)〉 + 〈u0, u

d(0)〉 = 〈ẋ(0), xd
0〉 + 〈y(0), yd

0〉 ,
and now using (2.17) and its dual version, both for t = 0, this becomes〈

SΣ(0)
[
x0

u0

]
,

[
xd

0

yd
0

]〉
=
〈[

x0

u0

]
, Sd

Σ(0)
[
xd

0

yd
0

]〉
. (3.8)

This being true for all [ x0
u0 ] ∈ V and

[
xd
0

yd
0

]
∈ V d, we conclude that V d ⊂ D(S∗Σ(0)),

and that Sd
Σ(0) is the restriction of S∗Σ(0) to V d. To prove (3.6), it remains to show

the opposite inclusion D(S∗Σ(0)) ⊂ V d. However, we postpone this for a while, and
instead look at the other assertions in Theorem 3.5.

It is clear from (3.4) that Td
τ = T∗τ , so that its generator is Ad = A∗, as

is well-known from semigroup theory, see for instance Pazy [14]. Take s ∈ ρ(A),
u0 ∈ U , x0 = (sI − A)−1Bu0, xd

0 ∈ Xd
1 and yd

0 = 0 in (3.8). We simplify this
formula, using that (by (2.18) and the definitions of C&D and [C&D]d)

SΣ(0)
[
(sI − A)−1B

I

]
=
[
s(sI − A)−1B

G(s)

]
, Sd

Σ(0)
[
xd

0

0

]
=
[
Adxd

0

Cdxd
0

]
, (3.9)
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to get 〈
s(sI − A)−1Bu0, x

d
0

〉
=
〈[

(sI − A)−1B
I

]
u0,

[
Adxd

0

Cdxd
0

]〉
.

Using that Ad = A∗, this simplifies to 〈Bu0, x
d
0〉 = 〈u0, C

dxd
0〉 for all u0 ∈ U and

all xd
0 ∈ Xd

1 . Thus Cd = B∗. A similar computation where we interchange the roles
of Σ and Σd shows that C = Bd∗, hence Bd = C∗.

Finally, we take s, u0 and x0 as above, yd
0 ∈ Y , and xd

0 = (sI − Ad)−1Bdyd
0

in (3.8). Using the first formula in (3.9) and its dual version, we obtain〈[
s(sI − A)−1B

G(s)

]
u0,

[
(sI − Ad)−1Bd

I

]
yd
0

〉

=
〈[

(sI − A)−1B
I

]
u0,

[
s(sI − Ad)−1Bd

Gd(s)

]
yd
0

〉
.

After simplification, this gives 〈G(s)u0, y
d
0〉 = 〈u0,Gd(s)yd

0〉 for all u0 ∈ U and
yd
0 ∈ Y . Thus Gd(s) = G∗(s) for s ∈ ρ(A), which is equivalent to (3.7).

We now return to prove the inclusion D(S∗Σ(0)) ⊂ V d. By the definition of the

adjoint of an unbounded operator,
[

xd
0

yd
0

]
∈ D(S∗Σ(0)) if and only if the expression〈

SΣ(0) [ x0
u0 ] ,
[

xd
0

yd
0

]〉
, regarded as a function of [ x0

u0 ] ∈ V , can be extended to a

bounded linear functional on X × U . Suppose that this is the case, i.e.,
[

xd
0

yd
0

]
∈

D(S∗Σ(0)). If we take u0 = 0, we obtain that the functional x0 �→ 〈Ax0, x
d
0〉 +

〈Cx0, y
d
0〉, originally defined on X1, can be extended to a bounded linear functional

on X. We can interpret this expression as 〈x0, A
∗xd

0 + C∗yd
0〉, where the first term

belongs to X1 and the second to Xd
−1. Since this functional has a bounded extension

to X, we must have A∗xd
0 + C∗yd

0 = Adxd
0 + Bdyd

0 ∈ X, i.e.,
[

xd
0

yd
0

]
∈ V d. �

Remark 3.6. Salamon in [17, Sect. 3] and Arov and Nudelman [1, Sect. 3] define
the dual system in terms of A, B, C and G, i.e., taking as a starting point what
appears here as Theorem 3.5. Their definitions are equivalent to our definition
(after a time-inversion in the case of [17]; Salamon’s dual system is anti-causal).
The anti-causal dual is also used by Staffans [19, 20], who defines it via the adjoints
of T and of the extended operators Φ̃0, Ψ∞ and F (Φ̃0 and F have been defined in
Section II.5). If we rewrite his definition for the causal dual in our notation, then
we get [

Td Φ̃d
0

Ψd
∞ Fd

]
=
[

T∗ Ψ∗∞ R
R̃Φ∗0 RF∗ R

]
.

Our interest in weak regularity (see Part II) is motivated by the following:

Proposition 3.7. If the well-posed system Σ is weakly regular, then its dual system
Σd is weakly regular as well, and their feedthrough operators, denoted by D and
Dd, are related by

Dd = D∗.
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Proof. Weak regularity of Σ is equivalent to the fact that limλ→+∞G(λ) = D in
the weak operator topology (see Section 2), and similarly weak regularity of Σd

means that limλ→+∞Gd(λ) = Dd in the weak operator topology. By (3.7) and
since λ is real, Gd(λ) = G∗(λ), and weak operator convergence is preserved under
duality. Thus, weak regularity of Σ and Σd are equivalent and Dd = D∗. �

Remark 3.8. Proposition 3.7 implies that if Σ is weakly regular and its input
space U is finite-dimensional, then Σd is regular. Unfortunately, there are regular
systems whose dual is not regular, as we shall see in Example 8.1.

We have explained in Section II.6 that any well-posed linear system can be
represented by a strongly continuous semigroup acting on a large product space,
and this is related to the way in which systems were represented in the work of
Lax and Phillips [9, 10]. As our following result shows, there is a simple connec-
tion between the dual system of Σ and the adjoint of the Lax–Phillips semigroup
induced by Σ (for the terminology used here we refer to Section II.6).

Proposition 3.9. We use the assumptions and the notation of Theorem 3.4. Let
ω ∈ R and let T be the Lax–Phillips semigroup of index ω induced by Σ. Then the
Lax–Phillips semigroup of index ω induced by Σd is given by

Td
τ =


 0 0 R

0 I 0
R0 0


T∗τ


 0 0 R

0 I 0
R0 0


 , τ ≥ 0. (3.10)

Proof. The semigroup T acts on H = L2
ω((−∞, 0]; Y ) × X × L2

ω([0,∞); U), so
that the adjoint semigroup T∗ acts on the dual space of H, which we iden-
tify with L2

−ω((−∞, 0]; Y ) × X × L2
−ω([0,∞); U). Since for any real α, Rmaps

L2
α((−∞, 0]; Y ) onto L2

−α([0,∞); Y ) and L2
α([0,∞); U) onto L2

−α((−∞, 0]; U), the
right-hand side of (3.10) is a bounded operator acting on L2

ω((−∞, 0]; U) × X ×
L2

ω([0,∞); Y ). Td
τ is defined as in Proposition II.6.2, but with Σd in place of Σ.

The proof of the identity (3.10) is a straightforward algebraic computation:

Td
τ =


S−τP− S−τΨd

τ S−τFd
τ

0 T
d
τ Φd

τ

0 0 P+S−τ


 =


 RSτP+ R RΦ∗τ RF∗τ Sτ R

0 T∗τ Ψ∗τSτ R
0 0 RP−Sτ R




=


 0 0 R

0 I 0
R0 0




P−Sτ 0 0

Ψ∗τSτ T∗τ 0
F∗τ Sτ Φ∗τ SτP+




 0 0 R

0 I 0
R0 0


 .

The operator matrix in the middle of the second line of the above formula is in
fact T∗τ , so that we have proved (3.10). �

4. Time-inversion

In this section we introduce the time-inverted system corresponding to a well-
posed linear system and we investigate its properties. We assume again that
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Σ = (T, Φ, Ψ, F) is a well-posed linear system with input space U , state space
X, output space Y , semigroup generator A, control operator B, observation oper-
ator C, combined observation/feedthrough operator C&D, system operator SΣ(s)
and transfer function G. We also use Pτ , Sτ and S∗τ from Section 2, as well as the
operators Rand Rτ from Section 3. We denote T−τ = T−1

τ , if the inverse exists.

Theorem 4.1. Suppose that Tτ is invertible for some τ > 0 (hence, for all τ ≥ 0).
Define the operator Σ R

τ (for all τ ≥ 0) by

Σ R
τ =
[
T R

τ Φ R
τ

Ψ R
τ F R

τ

]
=
[
I 0
0 Rτ

] [
I 0

Ψτ Fτ

] [
Tτ Φτ

0 I

]−1 [
I 0
0 Rτ

]
. (4.1)

Then Σ R= (T R, Φ R, Ψ R, F R) is a well-posed linear system. If x and y are the
state trajectory and the output function of Σ corresponding to the initial state
x0 ∈ X and the input function u ∈ L2

loc([0,∞); U), then for all τ ≥ 0,[
x(0)

Rτy

]
= Σ R

τ

[
x(τ )

Rτu

]
. (4.2)

Note that x(0) = x0. The system Σ Rintroduced above is called the time-
inverted system corresponding to Σ. We see from (4.1) that Σ Rexists if and only
if T can be extended to a group, and then T R

τ = T−1
τ . It is easy to verify that

applying time-inversion twice, we get back the original system: (Σ R) R= Σ.

Proof of Theorem 4.1. Let x and y be the state trajectory and the output func-
tion of Σ corresponding to the initial state x0 ∈ X and the input function
u ∈ L2

loc([0,∞); U). Then [
x(τ )
Pτu

]
=
[
Tτ Φτ

0 I

] [
x(0)
Pτu

]
.

The operator matrix
[

Tτ Φτ

0 I

]
is invertible whenever Tτ is invertible. Therefore, we

can express
[

x(0)
Pτ y

]
in terms of

[
x(τ)
Pτ u

]
from (1.4) to get

[
x(0)
Pτy

]
=
[

I 0
Ψτ Fτ

] [
x(0)
Pτu

]
=
[

I 0
Ψτ Fτ

] [
Tτ Φτ

0 I

]−1 [
x(τ )
Pτu

]
. (4.3)

Formula (4.2) is now an immediate consequence of (4.3).

If we denote Σa
τ =
[

T
a
τ Φa

τ

Ψa
τ F

a
τ

]
=
[

I 0
Ψτ Fτ

] [
Tτ Φτ
0 I

]−1 (this product appears in

(4.1) and (4.3)) then, in order to show that Σ Ris a well-posed linear system,
it suffices to show that Σa = (Ta, Φa, Ψa, Fa) is an anti-causal well-posed linear
system. It is well-known that T

R
t = T−t is strongly continuous, and clearly (3.2)

is satisfied. Thus, by Proposition 3.3, it suffices to show that Σa satisfies (3.3). To
do this, we proceed as follows. Let x and y be the state trajectory and the output
function of Σ with initial state x(0) and input function u. Using different special
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cases of (2.3) we find that
 x(0)

Pτy
PtS∗τy


 =


 I 0 0

Ψτ Fτ 0
0 0 I




 x(0)

Pτu
PtS∗τy


 ,


 x(τ )

Pτu
PtS∗τy


 =


Tτ Φτ 0

0 I 0
0 0 I




 x(0)

Pτu
PtS∗τy


 ,


 x(τ )

Pτu
PtS∗τy


 =


 I 0 0

0 I 0
Ψt 0 Ft




 x(τ )

Pτu
PtS∗τu


 ,


x(τ + t)

Pτu
PtS∗τu


 =


Tt 0 Φt

0 I 0
0 0 I




 x(τ )

Pτu
PtS∗τu


 .

(4.4)

We now interpret
[

x(τ+t)
Pτ+tu

]
as the initial data, from which we express


x(τ + t)

Pτu
PtS∗τu


 =


I 0

0 Pτ

0 S∗τ


[x(τ + t)

Pτ+tu

]
,

and then we solve the equations (4.4) successively (working backwards) to obtain
 x(τ )

Pτu
PtS∗τu


 ,


 x(τ )

Pτu
PtS∗τy


 ,


 x(0)

Pτu
PtS∗τy


 ,


 x(0)

Pτy
PtS∗τy


 ,

[
x(0)

Pτ+ty

]
=
[
I 0 0
0 Pτ Sτ

] x(0)
Pτy

PtS∗τy


 .

Our expression for the last of these vectors, in terms of
[

x(τ+t)
Pτ+tu

]
, shows that

[
Ta

τ+t Φa
τ+t

Ψa
τ+t Fa

τ+t

]
=
[
I 0 0
0 Pτ Sτ

] I 0 0
Ψτ Fτ 0
0 0 I




Tτ Φτ 0

0 I 0
0 0 I



−1

×

 I 0 0

0 I 0
Ψt 0 Ft




Tt 0 Φt

0 I 0
0 0 I



−1 
I 0

0 Pτ

0 S∗τ


 ,

which reduces to (3.3) after simple matrix multiplications. �
Remark 4.2. With Ta, Φa, Ψa and Fa defined as in the last proof, (3.3) gives us
some additional information. If we change the notation, replacing τ by t and τ + t
by τ , then we find that for all 0 ≤ t ≤ τ ,[

x(t)
Pτ−t Rτy

]
= Σ R

τ−t

[
x(τ )

Pτ−t Rτu

]
. (4.5)
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This formula shows that for all t ∈ [0, τ ], x(t) is the state of Σ Rat time τ − t with
initial state x(τ ) and input function Rτu. The restriction of the corresponding
output function to the interval [0, τ ] is Rτy. In the smooth case described in
Theorem 2.5 the output function of Σ Revaluated at τ − t is equal to y(t).

Theorem 4.3. The system Σ is time-invertible if and only if sI−A has a uniformly
bounded inverse on some left half-plane (equivalently, sI + A has a uniformly
bounded inverse on some right half-plane). In this case, the growth bound of T R

is equal to the infimum of those ω ∈ R for which (sI + A)−1 is uniformly bounded
on Cω.

Proof. Time-invertibility means that T is invertible, and the first claim in Proposi-
tion 4.3 follows from the recent result of Zwart [32] mentioned in the introduction.
Indeed, the condition on sI −A used in [32, Theorem 2.2] is even weaker, allowing
‖(sI −A)−1‖ to grow at a moderate rate, for example, like a polynomial in |Re s|.
The statement about the growth bound of T

Rfollows from a result in Prüss [15,
Proposition 2] (see also Huang Falun [5]). �

We mention that results related to (but weaker than) those of Zwart [32]
have been published a little earlier by Liu [11].

Our following theorem describes the system operator and the transfer func-
tion of the time-inverted system in terms of the original system operator and
transfer function. For transfer functions, we use the convention at the end of Sec-
tion 2.

Theorem 4.4. With the assumption and the notation of Theorem 4.1, denote the
semigroup generator of Σ Rby A R, its control operator by B R, its observation
operator by C Rand its combined observation/feedthrough operator by [C&D] R.
Let S R

Σ (s) be the system operator of Σ R. Then we have

S R
Σ (0) =

[
A RB R

[C&D] R

]
=
[−A − B

C&D

]
, (4.6)

in particular, A R= −A, B R= −B, C R= C and [C&D] R= C&D. The transfer
function of Σ Ris

G R(s) = G(−s), s ∈ ρ(A R). (4.7)

Proof. From (4.1) we see that

T
R

τ = T−τ , Φ R
τ = − T−τΦτ .

This implies (using (2.8)) that A R= −A and B R= −B. Hence, the space V for
the system Σ Ris the same as for the system Σ (V for Σ was defined in (2.16)).

Let x0, u, x, and y be as in Theorem 4.1, but this time we require, in addition,
that u ∈ H1

loc([0,∞); U) and
[ x0

u(0)

] ∈ V . Then by Theorem 2.5, (2.17) holds. By
Remark 4.2, for t ∈ [0, τ ], x(t) is the state and y(t) is the output of Σ Rat time
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τ−t with initial state x(τ ) and input function Rτu. In particular, by Theorem 2.5,
we have that

[
x(t)
u(t)

]
∈ V for all t ∈ [0, τ ] and
[−ẋ(t)

y(t)

]
= S R

Σ (0)
[
x(t)
u(t)

]
, t ∈ [0, τ ] .

In particular, taking t = 0 we get (4.6). The remaining assertions (concerning
[C&D] R, C Rand G R) are easy consequences of (4.6). �

If the semigroup T is invertible, then the spectrum σ(A) is contained in a
vertical strip Vσ. Let us denote by D+ the connected component of the resolvent
set ρ(A) which contains a right half-plane, and let us denote by D− the connected
component of ρ(A) which contains a left half-plane. Thus, σ(A) does not separate
the half-plane to the right of Vσ from the half-plane to the left of Vσ if and only if
D+ = D−. This is the case, for example, if σ(A) is countable. If D+ = D−, then
we cannot obtain G on D− from G on D+ by analytic continuation. In this case,
to compute G Ron a right half-plane via (4.7) we must first evaluate G on a left
half-plane via (2.18). Such an example is given in Section 8 (Example 8.3).

If Σ is regular and time-invertible, it does not follow that Σ Ris regular, see
Example 8.5. Even if Σ Ris regular, its feedthrough operator may be different from
the feedthrough operator of Σ, see Example 8.2. Both examples mentioned above
have a semigroup for which the resolvent set of A is connected.

5. Flow-inversion

The idea behind flow-inversion is very similar to the idea behind time-inversion.
We still keep the relationship between the data x(τ ), Pτy, x(0), and Pτu in (1.4)
intact, but this time we interpret

[
x(0)
Pτ y

]
as the initial data and

[
x(τ)
Pτ u

]
as the

final data. Taking x(0) = 0 in (1.4) we immediately observe that a necessary
condition for the flow-inverted system to be well-posed is that Fτ is invertible
from L2([0, τ ]; U) to L2([0, τ ]; Y ) for all τ > 0. We shall see that this condition is
also sufficient. We use the same standing assumptions and the same notation as
in Section 4.

Theorem 5.1. Suppose that Fτ is invertible as an operator from L2([0, τ ]; U) to
L2([0, τ ]; U) for some τ > 0. Then Fτ is invertible between these spaces for all
τ ≥ 0 (note that F0 is invertible since both its domain and range spaces contain
only the zero vector). Define Σ×τ (for all τ ≥ 0) by

Σ×τ =
[
T×τ Φ×τ
Ψ×τ F

×
τ

]
=
[
Tτ Φτ

0 I

] [
I 0

Ψτ Fτ

]−1

. (5.1)

We extend Φ×τ and F×τ to L2([0,∞); U) by requiring Φ×τ = Φ×τ Pτ and F×τ = F×τ Pτ .
Then Σ× is a well-posed linear system. If x and y are the state trajectory and the
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output function of Σ corresponding to the initial state x0 ∈ X and the input
function u ∈ L2

loc([0,∞); U) (so that x(0) = x0), then for all τ ≥ 0,

[
x(τ )
Pτu

]
= Σ×τ

[
x(0)
Pτy

]
. (5.2)

The system Σ× introduced above is called the flow-inverted system corre-
sponding to Σ. We see from (5.1) that Σ× exists if and only if Fτ is invertible
for all τ > 0, and then F

×
τ = F

−1
τ . It is easy to verify (from (5.2)) that applying

time-inversion twice, we get back the original system: (Σ×)× = Σ.

Proof. We begin with the proof of the fact that Fτ is invertible for all τ ≥ 0 if
it is invertible for one τ0 > 0. Assume that Fτ0 is invertible from L2([0, τ0]; U) to
L2([0, τ0]; Y ). First we show that Ft is invertible for all t ∈ [0, τ0]. Clearly Ft is
onto for all such t, since Ft = Pt Fτ0 . To see that Ft is also one-to-one, assume that
Ftu = 0. Set τ = τ0 − t. From (2.6) applied to Sτu we get Fτ0Sτu = Sτ Ftu = 0,
and now the invertibility of Fτ0 implies that Pτ0Sτu = SτPtu = 0, which implies
that Ptu = 0. Thus, Ft is one-to-one on L2([0, t]; U) for all t ∈ (0, τ0]. Being both
one-to-one and onto, by the closed graph theorem, Ft has a bounded inverse which
maps L2([0, t]; Y ) onto L2([0, t]; U) (for all t ∈ [0, τ0]).

By using (2.6) with both τ and t replaced by τ0, we find that F2τ0 is invertible
(because a block lower triangular operator matrix of size 2 × 2 is invertible if its
two diagonal blocks are invertible). Repeating the same argument we find that
Fτ is invertible for all τ = 2kτ0, k = 1, 2, 3, . . .. Combining this with our earlier
finding, we conclude that Fτ is invertible for all τ ≥ 0.

It is easy to see that the initial conditions (2.2) hold.
Next we show that Σ× satisfies the algebraic conditions (2.3). Let x and y

be the state trajectory and the output function of Σ corresponding to the initial
state x0 ∈ X and the input function u ∈ L2

loc([0,∞); U). Then

[
x(τ )
Pτu

]
=
[
T×τ Φ×τ
Ψ×τ F×τ

] [
x(0)
Pτy

]
=
[
Tτ Φτ

0 I

] [
I 0

Ψτ Fτ

]−1 [
x(0)
Pτy

]
, (5.3)

since
[

x(0)
Pτ y

]
=
[

I 0

Ψτ Fτ

] [
x(0)
Pτ u

]
, and
[

I 0

Ψτ Fτ

]
is invertible whenever Fτ is invertible.

We start with
[

x(0)
Pτ+ty

]
and use (4.4) to express successively


 x(0)

Pτu
PtS∗τy


 ,


 x(τ )

Pτu
PtS∗τy


 ,


 x(τ )

Pτu
PtS∗τu


 ,


x(τ + t)

Pτu
PtS∗τu


 ,

[
x(τ + t)
Pτ+tu

]
,
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similarly as in the proof of Theorem 4.1. Thus we get

[
T
×
τ+t Φ×τ+t

Ψ×τ+t F
×
τ+t

]
=
[
I 0 0
0 Pτ Sτ

]Tt 0 Φt

0 I 0
0 0 I




 I 0 0

0 I 0
Ψt 0 Ft



−1

×

Tτ Φτ 0

0 I 0
0 0 I




 I 0 0

Ψτ Fτ 0
0 0 I



−1 
I 0

0 Pτ

0 S∗τ




=
[
I 0 0
0 Pτ Sτ

]T
×
t 0 Φ×t
0 I 0

Ψ×t 0 F
×
t




T
×
τ Φ×τ 0

Ψ×τ F×τ 0
0 0 I




I 0

0 Pτ

0 S∗τ


 ,

which is (2.3) applied to the system Σ×.
Let us check that T×τ is strongly continuous. Take x0 ∈ X and define for all

τ > 0, [
x(τ )
Pτu

]
=
[
T×τ
Ψ×τ

]
x0 .

Then it follows from (5.3) that x(τ ) = Tτx0 + ΦτPτu, i.e., x is the state of Σ at
time τ with initial state x0 and input Pτu (and the corresponding output of Σ is
zero). Since the state trajectory is a continuous function of time, we conclude that
x(τ ) → x0 as τ ↓ 0. This proves that T

×
τ is strongly continuous. �

Now we compute the system operator of the flow-inverted system.

Theorem 5.2. With the assumption and the notation of Theorem 5.1, denote the
semigroup generator of Σ× by A×, its control operator by B×, its observation
operator by C×, its combined observation/feedthrough operator by [C&D]× and
its system operator by S×Σ (s). The operators [C&D]× and S×Σ (s) have the same
domain V ×, which is the analogue of V from (2.16) for the system Σ×. Then the
operator

[
I 0
C&D

]
maps V continuously onto V ×, with inverse

[
I 0
C&D

]−1

=
[

I 0
[C&D]×

]
, (5.4)

and

S×Σ (0) =
[
A× B×

[C&D]×

]
=
[
A B
0 I

] [
I 0
C&D

]−1

. (5.5)

In particular, A× = A + BC× on X×1 .

Note that, since (Σ×)× = Σ, it follows from this theorem that A = A×+B×C
on X1 and that

SΣ(0) =
[
A B
C&D

]
=
[
A× B×

0 I

] [
I 0
[C&D]×

]−1

. (5.6)
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Proof. Let [ x0
u0 ] ∈ V , i.e., x0 ∈ X, u0 ∈ U , and Ax0 + Bu0 ∈ X. Define

y0 = C&D

[
x0

u0

]
.

Choose an arbitrary u ∈ H1
loc([0,∞); U) with u(0) = u0. Let x and y be the state

trajectory and the output function of Σ with initial state x0 and input function u.
Then, by Theorem 2.5(i), x ∈ C1([0,∞); X), y ∈ H1

loc([0,∞); Y ) and for all t ≥ 0,[
ẋ(t)
y(t)

]
= SΣ(0)

[
x(t)
u(t)

]
,

[
x(t)
y(t)

]
=
[

I 0
C&D

] [
x(t)
u(t)

]
. (5.7)

In particular, y(0) = y0. On the other hand, we can also consider the system Σ×

with initial state x0 and input function y. By Theorem 5.1, the state trajectory and
the output function of this system are x and u, where x and u are the same func-
tions as above. The fact that x is continuously differentiable implies, in particular,
that ẋ(0) = A×x0 + B×y0 ∈ X, therefore [ x0

y0 ] ∈ V × and for all t ≥ 0,[
ẋ(t)
u(t)

]
= S×Σ (0)

[
x(t)
y(t)

]
,

[
x(t)
u(t)

]
=
[

I 0
[C&D]×

] [
x(t)
y(t)

]
. (5.8)

In particular, taking t = 0 in (5.7) and (5.8) we find that
[

I 0
C&D

]
maps V into V ×,

that it has a left inverse
[

I 0
[C&D]×

]
, and that

SΣ(0)
[
x0

u0

]
=
[
ẋ(0)
y0

]
=
[
A× B×

0 I

] [
x0

y0

]
=
[
A× B×

0 I

] [
I 0
C&D

] [
x0

u0

]
.

Thus, SΣ(0) =
[

A× B×
0 I

] [
I 0
C&D

]
. By interchanging the roles of Σ and Σ× we find

that
[

I 0
[C&D]×

]
is also a right inverse of

[
I 0
C&D

]
and that S×Σ (0) = [ A B

0 I ]
[

I 0
[C&D]×

]
.

This implies both (5.4) and (5.5).
Finally, since X×1 × {0} is included in V × and since [C&D]× [ z

0 ] = C×z for
all z ∈ X×1 , the formulas (5.4) and (5.5) imply that A×z = Az + BC×z. �

From Theorem 5.2 it is easy to derive explicit formulas for the system operator
and the transfer function of the flow-inverted system.

Corollary 5.3. Suppose that Σ is flow-invertible. We use the notation from Theo-
rem 5.2 and we denote by G× the transfer function of Σ×. Then for all s ∈ ρ(A×),
SΣ(s) is boundedly invertible and

S−1
Σ (s) =

[ −(sI − A×)−1 (sI − A×)−1B×

−C×(sI − A×)−1 G×(s)

]
. (5.9)

If, in addition, s ∈ ρ(A), then also G(s) is invertible and

S−1
Σ (s) =

[−(sI − A)−1 0
0 0

]
+
[
(sI − A)−1B

I

]
G−1(s)

[
C(sI − A)−1 I

]
. (5.10)

In particular, U and Y are isomorphic and

G×(s) = G−1(s), s ∈ ρ(A) ∩ ρ(A×). (5.11)
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Moreover, for all s ∈ ρ(A)∩ ρ(A×), the operator (sI −A×)−1(sI −A) which maps
D(A) onto D(A×) satisfies

(sI − A×)−1(sI − A) = I − (sI − A)−1BG−1(s)C

= I − (sI − A×)−1B×C,

and its inverse (sI − A)−1(sI − A×) satisfies

(sI − A)−1(sI − A×) = I − (sI − A×)−1B×G(s)C×

= I − (sI − A)−1BC× .

Proof. It follows from (5.6) that for all s ∈ C,

SΣ(s) =
[
A× − sI B×

0 I

] [
I 0
[C&D]×

]−1

.

For s ∈ ρ(A×), the right-hand side is invertible as an operator from V to X × Y ,
hence so is the left-hand side, and inverting both sides we get (5.9). Formula (5.10)
can be derived from (5.9) combined with the factorization

S−1
Σ (s) =

[
I (sI − A)−1B
0 I

] [−(sI − A)−1 0
0 G−1(s)

] [
I 0

C(sI − A)−1 I

]
,

valid for s ∈ ρ(A), which follows from Proposition II.3.6. In the next three formulas
we have simply written out some of the identities that we get by combining (5.9)
and (5.10). The fact that U and Y must be isomorphic follows from the fact that
for certain s, G(s) is a boundedly invertible mapping of U onto Y . �

From Corollary 5.3 we get the following interesting criterion for flow-inver-
tibility and an expression for the growth bound of the semigroup of the flow-
inverted system.

Theorem 5.4. The system Σ is flow-invertible if and only if SΣ has a uniformly
bounded inverse on some right half-plane, or equivalently, if and only if G has a
uniformly bounded inverse on some right half-plane. In this case, the growth bound
of T

× is the infimum of those ω ∈ R for which S−1
Σ is uniformly bounded on Cω.

Proof. First we prove that if Σ is flow-invertible, then S−1
Σ is uniformly bounded

on Cω for any ω > ω×
T

, the growth bound of T×. Indeed, by the standard Hille–
Yoshida estimates, ‖(sI−A×)−1‖ is uniformly bounded on Cω. By [26, Proposition
2.3] (or [23, Proposition 4.2.8]) with Σ replaced by Σ×, ‖(sI − A×)−1B×‖ in
uniformly bounded on Cω, and by applying this result to the dual system we find
that also ‖C×(sI − A×)−1‖ is uniformly bounded on Cω. Finally, by Proposition
I.4.1 (or Theorem II.2.7(3)) applied to Σ×, G×(s) is uniformly bounded on Cω.
Thus, by (5.9), S−1

Σ is uniformly bounded on Cω for any ω > ω×
T

.
Now we prove the equality stated in the last sentence of the theorem. What

we have proved so far means that ω0 ≤ ω×
T

, where

ω0 = inf
{
ω ∈ R
∣∣ S−1

Σ is uniformly bounded on Cω

}
.
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On the other hand, by the left upper corner of (5.9) and by the well-known result
of Prüss [15, Proposition 2] (see also Huang [5]), ω×

T
≤ ω0, so that ω×

T
= ω0.

Next we prove that if S−1
Σ is uniformly bounded on Cω for some ω ∈ R, then

G−1 exists and it is uniformly bounded on some right half-plane. Without loss of
generality, take ω > ωT. Then it follows from the first factorization in Proposition
II.3.6 that G−1 exists and it is uniformly bounded on Cω.

Finally, we show that if G−1 exists and it is uniformly bounded on Cω for
some ω ∈ R, then Σ is flow-invertible. By the converse part of Theorem I.3.6, G−1

determines a shift-invariant and continuous operator F×∞ from L2
loc([0,∞); Y ) to

L2
loc([0,∞); U), and of course F×∞ = (F∞)−1. Since shift-invariant operators are

causal, it follows that for every τ > 0, F
×
τ = Pτ F

×
∞ is the inverse of Fτ as an

operator from L2([0, τ ]; U) to L2([0, τ ]; Y ). Thus, Σ is flow-invertible. �

Remark 5.5. It is important to observe that the concept of flow-inversion can be
reduced to the concept of static output feedback and conversely. (For a detailed
treatment of output feedback we refer the reader to [28].) To see that flow-inversion
can be regarded as a special case of output feedback, we argue as follows. By
Corollary 5.3, a necessary condition for flow-invertibility is that there exists a
boundedly invertible operator E mapping Y onto U . Assume that this is the
case. We then extend the original system Σ by adding another input signal z ∈
L2

loc([0,∞); Y ) so that the new input signal is [ z
u ], and we also replace the output

signal by
[

z−y
−Ez+u

]
, where y = Ψ∞x0 + F∞u is the original output signal of Σ.

Thus, the extended system ΣE has equal input and output spaces, namely Y ×U .
The state space remains the same, the new control operator is

[
0 B
]
, the new

observation operator is
[−C

0

]
, the new transfer function is

[
I −G
−E I

]
, and the state

trajectories of ΣE are the same as those for Σ. By some simple algebra, Σ is flow-
invertible if and only if [ I 0

0 I ] is an admissible feedback operator for ΣE , and we
get the flow-inverted system Σ× from the closed-loop version of ΣE by dropping
its second input and first output.

To see that output feedback can be regarded as a special case of flow-inversion,
we argue in a similar way. Let K ∈ L(Y ; U). We extend the original system Σ by
adding the same input as earlier, and replacing the output signal by

[
z+y
−Kz−u

]
,

where y = Ψ∞x0 + F∞u is the original output signal of Σ. Again the extended
system ΣK has equal input and output spaces, namely Y × U . The state space
remains the same, the new control operator is

[
0 B
]
, the new observation opera-

tor is [ C
0 ], the new transfer function is

[
I G
−K −I

]
, and the state trajectories of ΣK

are the same as for Σ. By some simple algebra, K is an admissible feedback oper-
ator for Σ if and only if ΣK is flow-invertible, and we get the closed-loop system
ΣK from the flow-inverted system Σ×K by dropping the first input and the second
output.

Thus, it is possible to rederive many of the results given in [28] (those which do
not use regularity) from the results presented in this section. (The proofs presented
here are significantly shorter than those in [28].) Conversely, Corollary 5.3 and the



542 Staffans and Weiss IEOT

first half of Theorem 5.4 could have been obtained from the corresponding feedback
results in [28].

By using the last remark, we can reduce the flow-inversion of regular linear
systems to a certain kind of output feedback for such systems.

Proposition 5.6. With the assumptions and the notation of Corollary 5.3, assume
that Σ is regular and let D be its feedthrough operator (see (2.13)). Then Σ× is
regular if and only if D is invertible. If this is the case then, denoting the feed-
through operator of Σ× by D×, we have for all x ∈ D(A×)

A×x = Ax − BD−1CΛx, C×x = − D−1CΛx,

and for all v ∈ Y

B×v = BD−1v , D×v = D−1v .

Proof. Consider the system ΣE obtained from Σ by adding another input and
output signal, as described in the first part of Remark 5.5. If Σ is regular and its
generating operators are A, B, C and D, then ΣE is also regular, with generating
operators AE = A, BE =

[
0 B
]
, CE =

[−C
0

]
, and DE =

[
I −D
−E I

]
. As noted

in Remark 5.5, the flow-invertibility of Σ implies that K = [ I 0
0 I ] is an admissible

feedback operator for ΣE . According to [28, Theorem 4.7], ΣK
E is regular if and

only if [ I 0
0 I ] − DE is invertible, or equivalently, if and only if D is invertible. If

this is the case, then according to the theory in [28, Section 7], the generating
operators of ΣK

E are

AK
E = A +

[
0 B
]
[ 0 D
E 0 ]−1 [−CΛ

0

]
, BK

E =
[
0 B
]
[ 0 D
E 0 ]−1

,

CK
E = [ 0 D

E 0 ]−1 [−CΛ
0

]
, DK

E =
[

I −D
−E I

]
[ 0 D
E 0 ]−1

.

From here we obtain the generating operators of Σ× as stated in the proposition
by dropping the second input and the first output. �

Remark 5.7. We refer the reader to [28] for an explanation of how the identity
B× = BD−1 in Proposition 5.6 should be interpreted. (In principle, the range of
B is a subspace of X−1 whereas the range of B× is a subspace of X×−1, but there
is a subspace of X−1 ∩ X×−1 which contains both of these ranges.) The formula
A×x = Ax − BD−1CΛx in the last proposition actually holds for all x in a
much larger space than D(A×), as a consequence of [28, Proposition 7.10]. This
larger space includes a space known as D(CL) (defined in Parts I and II), which
is such that D(A) ⊂ D(CL) ⊂ D(CΛ). Another noteworthy fact is that we have
CΛ
×x = −D−1CΛx for all x ∈ D(CΛ), as a consequence of [28, Proposition 7.1].

We do not know any example of a flow-invertible regular linear system whose
flow-inverse is not regular. Maybe such a system does not exist.
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6. Time-flow-inversion

As explained in the introduction, in the time-flow-inverted system we still let
the relationship between x(0), Pτu, x(τ ), and Pτy be the same as in (1.4), but
this time we interpret

[
x(τ)
Pτ y

]
as the initial data and

[
x(0)
Pτ u

]
as the final data. We

use the standing assumptions and the notation from Section 4.

Theorem 6.1. Suppose that Στ is invertible as an operator from X × L2([0, τ ]; U)
to X ×L2([0, τ ]; Y ) for some τ > 0. Then Στ is invertible between these spaces for
all τ ≥ 0 (note that Σ0 is the identity on X × {0}.) Define Σ←τ (for all τ ≥ 0) by

Σ←τ =
[
T←τ Φ←τ
Ψ←τ F←τ

]
=
[
I 0
0 Rτ

] [
Tτ Φτ

Ψτ Fτ

]−1 [
I 0
0 Rτ

]
. (6.1)

Then Σ← is a well-posed linear system. If x and y are the state trajectory and
the output function of Σ corresponding to the initial state x0 ∈ X and the input
function u ∈ L2

loc([0,∞); U), then for all τ ≥ 0,[
x(0)

Rτu

]
= Σ←τ

[
x(τ )

Rτy

]
. (6.2)

The system Σ← introduced above is called the time-flow-inverted system
corresponding to Σ. Clearly Σ← exists if and only if Στ is invertible for some
(hence, by the preceding theorem, for all) τ > 0, and then (Σ←)← = Σ.

Proof. We begin with the proof of the fact that Στ is invertible for all τ ≥ 0 if it
is invertible for one τ0 > 0. Assume that Στ0 is invertible from X × L2([0, τ0]; U)
to X × L2([0, τ0]; Y ). Take some nonnegative τ and t such that τ + t = τ0. Then
it follows from (2.3) that Σt is onto and that Στ is one-to-one. This being true for
all τ and t with τ + t = τ0, we find that Στ is invertible for all τ ≤ τ0. To remove
the condition τ ≤ τ0, it suffices to observe that by (2.3) with τ = t = τ0, Σ2τ0 is
invertible, hence Σ4τ0 is invertible, etc. Clearly (6.2) follows from (1.4) and (6.1).

Now let us show that Σ← is a well-posed linear system. To do this it suffices
to show that the system Σa determined by Σa

τ = Σ−1
τ for all τ ≥ 0 is an anti-

causal well-posed linear system, as defined in Section 3. This follows from (2.3),
because by inverting the right-hand side of (2.3) we get (3.3), with Ta, Φa, Ψa and
F

a being the components of Σa. Formula (2.3) (with τ replaced by t and τ + t
replaced by τ ) and Remark 2.3 imply that for all 0 ≤ t ≤ τ ,[

x(t)
Pτ−t Rτu

]
= Σ←τ−t

[
x(τ )

Pτ−t Rτy

]
, t ∈ [0, τ ]. (6.3)

This formula shows that for all t ∈ [0, τ ], x(t) is the state of Σ Rat time τ − t with
initial state x(τ ) and input function Rτy.

Now we check that T←τ is strongly continuous. Take x1 ∈ X, let[
x(0)

R1u

]
=
[
T
←
1

Ψ←1

]
x1
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and, for all t ∈ [0, 1], let x(t) be the state of Σ at time t with initial state x(0)
and input u (the corresponding output y is then zero). Then x(t) is a continuous
function of t. On the other hand, by (6.3), x(t) = T

←
1−tx1. Thus T

←
1−tx1 → x1 as

t→ 1, and this shows that T← is strongly continuous. �

We have seen in Section 3 that the duality transformation has a simple in-
terpretation in terms of the Lax–Phillips semigroup induced by the system. Now
we show that a similar interpretation holds for time-flow-inversion.

Proposition 6.2. We use the assumptions and the notation of Theorem 6.1. Let
ω ∈ R, and let T be the Lax–Phillips semigroup of index ω induced by Σ. Then Σ
is time-flow-invertible if and only if T is invertible, in which case the Lax–Phillips
semigroup of index −ω induced by Σ← is given by

T←τ =


 0 0 R

0 I 0
R0 0


T−1

τ


 0 0 R

0 I 0
R0 0


 , τ ≥ 0. (6.4)

Proof. Since for any real α, Rmaps L2
α((−∞, 0]; Y ) onto L2

−α([0,∞); Y ) and also
L2

α([0,∞); U) onto L2
−α((−∞, 0]; U), the operator T←τ defined in (6.4) is bounded

on the space L2
−ω((−∞, 0]; U) × X × L2

−ω((−∞, 0]; Y ).

Let
[

y0
x0
u0

]
∈ L2

ω((−∞, 0]; Y ) × X × L2
ω([0,∞); U), let τ > 0 and let

[
yτ
xτ
uτ

]
=

Tτ

[
y0
x0
u0

]
. This means explicitly (see (II.6.1)) that

P(−∞,−τ ]yτ = S−τy0,[
xτ

PτSτyτ

]
= Στ

[
x0

Pτu0

]
,

uτ = S−τP[τ,∞)u0.

The first and last of the three equations above define invertible mappings from
L2((−∞, 0]; Y ) onto L2((−∞,−τ ]; Y ) and from L2([τ,∞); U) onto L2([0,∞); U),
so that T is invertible if and only if Σ is time-flow-invertible. In this case we get

y0 = SτP(−∞,−τ ]yτ ,[
x0

RτPτu0

]
= Σ←τ

[
xτ

RτPτSτyτ

]
,

P[τ,∞)u0 = Sτuτ ,

or equivalently,

S−τ Ruτ = P(−∞,−τ ] Ru0 ,

Σ←τ

[
xτ

Pτ Ryτ

]
=
[

x0

SτP[−τ,0] Ru0

]
,

S−τP[τ,∞) Ryτ = Ry0 .

This is the same as what we get by applying both sides of (6.4) to
[

Ruτ
xτ

Ryτ

]
. �
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Next we investigate the system operator of the time-flow-inverted system.

Theorem 6.3. With the assumption and the notation of Theorem 6.1, denote the
semigroup generator of Σ← by A←, its control operator by B←, its observation
operator by C←, its combined observation/feedthrough operator by [C&D]← and
its system operator by S←Σ (s). The operators [C&D]← and S←Σ (s) have the same
domain V←, which is the analogue of V from (2.16) for the system Σ←. Then the
operator

[
I 0
C&D

]
maps V continuously onto V←, with inverse[

I 0
C&D

]−1

=
[

I 0
[C&D]←

]
, (6.5)

and
S←Σ (0) =

[
A← B←

[C&D]←

]
=
[−A −B

0 I

] [
I 0
C&D

]−1

. (6.6)

In particular, A← = −A − BC← on X←1 .

Note that, since (Σ←)← = Σ, it follows from this theorem that A = −A← −
B←C on X1 and that

SΣ(0) =
[
A B
C&D

]
=
[−A← −B←

0 I

] [
I 0

[C&D]←

]−1

. (6.7)

Proof. We begin the proof exactly in the same way as the proof of Theorem 5.2,
up to formula (5.7). We then fix some τ > 0. By (6.3), on the interval [0, τ ],
the function t �→ x(τ − t) is the state and Rτu is the output function of Σ←

with initial state x(τ ) and input function Rτy. The fact that x is continuously
differentiable implies (as in the proof of Theorem 5.2) that

[
x(τ)
y(τ)

]
∈ V← and that

for all t ∈ [0, τ ],[−ẋ(t)
u(t)

]
= S←Σ (0)

[
x(t)
y(t)

]
,

[
x(t)
u(t)

]
=
[

I 0
[C&D]←

] [
x(t)
y(t)

]
. (6.8)

In particular, taking t = 0 in (5.7) and (6.8) we find that
[

I 0
C&D

]
maps V into

V←, that it has a left inverse
[

I 0
[C&D]←

]
, and that

SΣ(0)
[
x0

u0

]
=
[
ẋ(0)
y0

]
=
[−A← −B←

0 I

] [
x0

y0

]
=
[−A← −B←

0 I

] [
I 0
C&D

] [
x0

y0

]
.

Thus, SΣ(0) =
[−A← −B←

0 I

] [
I 0
C&D

]
. By interchanging the roles of Σ and Σ← we

find that
[

I 0
[C&D]←

]
is also a right inverse of

[
I 0
C&D

]
and that S←Σ (0) =

[−A −B
0 I

] ·[
I 0

[C&D]←
]
. This implies both (6.5) and (6.6).

Finally, since X←1 ×{0} is included in V← and since [C&D]← [ z
0 ] = C←z for

all z ∈ X←1 , the formulas (6.5) and (6.6) imply that A←z = −Az − BC←z. �

Corollary 6.4. Suppose that Σ is time-flow-invertible. We use the notation from
Theorem 6.1. Then for all s ∈ ρ(A←), SΣ(−s) =

[
sI+A B

C&D

]
is invertible and

S−1
Σ (−s) =

[
(sI − A←)−1 (sI − A←)−1B←

C←(sI − A←)−1 G←(s)

]
. (6.9)
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If, in addition, s ∈ ρ(−A), then G(−s) is invertible and

S−1
Σ (−s) =

[
(sI + A)−1 0

0 0

]
+
[−(sI + A)−1B

I

]
G−1(−s)

[−C(sI + A)−1 I
]
.

In particular, G←(s) = G−1(−s) for all s ∈ ρ(A←) ∩ ρ(−A). Thus, U and Y are
isomorphic (i.e., they have the same dimension) if ρ(A←) ∩ ρ(−A) is nonempty.

Proof. It follows from (6.7) that for all s ∈ C

SΣ(−s) =
[
sI + A B

C&D

]
=
[
sI − A← −B←

0 I

] [
I 0

[C&D]←

]−1

.

For s ∈ ρ(A←), the right-hand side is invertible as an operator from V to X × Y ,
hence so is the left-hand side, and inverting both sides we get (6.9). The verification
of the next formula in the corollary is a straightforward algebraic manipulation
which uses the same factorization as the proof of Corollary 5.3. �

Remark 6.5. The set ρ(A←) ∩ ρ(−A) can be empty, as we show in Example 8.7.
In the first part of that example we construct two time-flow-invertible systems
for which U and Y have different dimensions (1 and 0). In the second part of
the example we construct a time-flow-invertible system Σc with input and output
spaces Uc = Y c = C and transfer function Gc(s) = 0 for all s ∈ C0. For each of
these three systems, σ(A) and σ(A←) is the whole left half-plane.

We now state an expanded version of Theorem 1.1.

Theorem 6.6. The system Σ is time-flow-invertible if and only if SΣ(s) has a
uniformly bounded inverse for all s in some left half-plane (equivalently, SΣ(−s)
has a uniformly bounded inverse on some right half-plane). In this case the growth
bound of T←, denoted by ω←

T
, is equal to the infimum of those ω ∈ R for which

S−1
Σ (−s) is uniformly bounded on Cω.

Proof. If Σ is time-flow-invertible, then it follows from (6.9) that S−1
Σ (−s) is uni-

formly bounded on Cω for any ω > ω←
T

. The details of this are as in the proof of
Theorem 5.4. Moreover, as in that proof we find that ω0 ≤ ω←

T
, where

ω0 = inf
{
ω ∈ R
∣∣ S−1

Σ (−s) is uniformly bounded on Cω

}
.

Conversely, suppose that S−1
Σ (−s) is uniformly bounded on some half-plane

Cω. This means that ω0 defined above is < +∞, and ω ≥ ω0. Let A be the
generator of T, the Lax–Phillips semigroup of index ω0 induced by Σ. Then, by
Theorem II.6.3(iii), the resolvent set of A contains the open left half-plane bounded
by −ω. It follows from Proposition II.6.4(ii) (and some trivial estimates) that
(sI − A)−1 is uniformly bounded on the open left half-plane bounded by −ω. By
Theorem 4.3, T is invertible and the growth bound of T−1 is at most ω. Since this
argument is valid for any ω ≥ ω0, we obtain that the growth bound of T−1 is ≤ ω0.
By Proposition 6.2, the existence of T−1 implies that Σ is time-flow invertible. It
is easy to see (from Propositions II.6.2 and 6.2) that the growth bound of T←
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is dominated by the growth bound of T−1, so that ω←
T

≤ ω0. Thus, ω←
T

= ω0

whenever Σ is time-flow-invertible. �

We end this section with some comments on how the different inversions
interact with each other and with the duality transformation.

Proposition 6.7. The dual Σd of a system Σ is time-invertible, flow-invertible,
or time-flow-invertible if and only if Σ has the same property. In this case the
appropriate inverse of the dual system is related to the dual of the inverted system
as follows (for all τ ≥ 0):

(Σ R)d
τ =
[−I 0

0 I

]
(Σd) R

τ

[−I 0
0 I

]
,

(Σ×)d
τ =
[−I 0

0 I

]
(Σd)×τ
[−I 0

0 I

]
,

(Σ←)d
τ = (Σd)←τ .

(6.10)

We leave the easy algebraic proof of this proposition to the reader.
It is easy to find examples of systems Σ where none, or any one but not the

other two, or any two but not the third one, or all three of the “inverted” systems
Σ R, Σ×, and Σ← exist. Indeed, all combinations are possible, as can be seen
by comparing the different conditions for the existence of the different inverses.
By inspecting (4.1), (5.1), and (6.1) we can draw some additional conclusions.
For example, if Σ is both time-invertible and flow-invertible, then both the time-
inverted and flow-inverted systems are time-flow-invertible, and they are time-flow-
inverses of each other. Similar statements are true when Σ is both time-invertible
and time-flow-invertible, or both flow-invertible and time-flow-invertible. Finally, if
all the three inverses Σ R, Σ×, and Σ← exist, then they are all time-invertible, flow-
invertible, and time-flow-invertible, and a combination of any two of the inversions
gives the third.

7. Conservative Systems

Time-flow-inversion and duality are naturally linked to the theory of conservative
linear systems (see [1], [9], [12], [30]).

Definition 7.1. The well-posed system Σ is called isometric, or co-isometric, or
conservative if for all τ ≥ 0, the operator Στ from (1.4) is isometric, or co-isometric,
or unitary, respectively (from X × L2([0, τ ]; U) to X × L2([0, τ ]; Y )).

There are many different ways of characterizing unitary operators, and this
gives us several of the equivalences in the following theorem.

Theorem 7.2. The following conditions are equivalent:
(i) Σ is conservative;
(ii) Σ is time-flow-invertible and isometric;
(iii) Σ is time-flow-invertible and co-isometric;
(iv) Σ is time-flow-invertible, and Σ← = Σd;
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(v) the Lax–Phillips semigroup of index zero induced by Σ is unitary;
(vi) Σ is time-flow-invertible,

[
I 0
C&D

]
maps V continuously onto V d, and[

A B
C&D

]∗ [
I 0
C&D

]
=
[−A −B

0 I

]
.

Additional equivalent characterizations of conservativity are given in [12].

Proof. (i) ⇔ (ii): This holds because the operator Στ is unitary if and only if it is
invertible and isometric.

(i) ⇔ (iii): The operator Στ is unitary iff it is invertible and co-isometric.
(i) ⇔ (iv): The operator Στ is unitary if and only if it is invertible and its

inverse is equal to its adjoint Σ∗τ .
(iv) ⇔ (v): This follows Propositions 3.9 and 6.2 (and the fact that Tτ is

unitary if and only if Tτ is invertible and the inverse is equal to T∗τ ).
(iv) ⇔ (vi): Two systems are equal if they have the same system operator. �

Corollary 7.3. If Σ is conservative, and if for some ω ∈ R, both the limits
limε→0+ G(ε+ iω) and limε→0+ G(−ε+ iω) exist in the strong sense and are equal
(in particular, this requires that −ε + iω ∈ ρ(A) for all sufficiently small ε > 0 so
that G(−ε + iω) is defined), then this limit is a unitary operator. In particular,
G(s) is unitary at each pure imaginary point s ∈ ρ(A) (such points need not exist).

See Example 8.7 for a case where this corollary does not apply.

Proof. By Theorem 7.2(iv), Gd(s) = G←(s) for all s ∈ ρ(A←) = ρ(Ad). In partic-
ular, taking s = ε + iω with ε > 0 and ω ∈ R, and assuming that −ε + iω ∈ ρ(A)
we get from Corollary 6.4,

G∗(ε + iω) = Gd(ε − iω) = G←(ε − iω) = G−1(−ε + iω).

Thus, G∗(ε + iω)G(−ε + iω) = I. Denote the common limit in the first sentence
of the theorem by G(iω), and take the limit as ε → 0+ in the formula above to
see that G∗(iω)G(iω) = I. A similar argument shows that also G(iω)G∗(iω) = I.
Thus G(iω) is unitary, and in particular this is true if iω ∈ ρ(A). �

8. Examples

Example 8.1. Here we construct an example of a regular linear system Σ whose
dual Σd is not regular (although Σd must be weakly regular, by Proposition 3.7).

Let U = l2 (square-summable sequences) and Y = C. We define g : C0 → C

by

g(s) =
s

(1 + s)2
, s ∈ C0.

Clearly
|g(s)| ≤ min{|s|−1, |s|}, s ∈ C0, (8.1)
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since |(1 + s)| ≥ max{|s|, 1} for all s ∈ C0. For some a > 1 we define the transfer
function G : C0 →L(U, Y ) by

G(s) =
[
g(s) g(s/a) g(s/a2) g(s/a3) · · ·] .

We claim that this function is bounded on C0. By (8.1), for all s ∈ C0,

‖G(s)‖2 =
∞∑

k=0

|g(a−ks)|2 ≤
∞∑

k=0

min{a2k|s|−2, a−2k|s|2}

≤
∞∑

k=−∞
min{a2k|s|−2, a−2k|s|2}

=
∞∑

k=−∞
min{e2(k log a−log |s|), e−2(k log a−log |s|)}

=
∞∑

k=−∞
e−2
∣∣log |s|−k log a

∣∣
.

The function f(α) =
∑∞

k=−∞ e−2|α−k log a| is periodic in α with period log a. Ele-
mentary computations show that its maximum value is fmax = (1+a−2)/(1−a−2),
at α = k log a, and its minimum value is fmin = 2a−1/(1 − a−2), at α = (k +
1/2) log a, where k ∈ Z. In particular, this shows that G is bounded on C0.

Let us show that G is analytic. For any v = (vk) ∈ l2 we have

G(s)v =
∞∑

k=1

g(a−ks)vk .

Since |g(s)| ≤ |s| (see (8.1)), the partial sums of the above series converge uniformly
on compact subsets of C0. The terms of the series are analytic, so that G(s)v is
analytic for any v ∈ l2. Thus, G is strongly analytic, and hence analytic.

We show that G is regular. Let v ∈ l2 and ε > 0. We can find n ∈ N such
that ( ∞∑

k=n

|vk|2
) 1

2

≤ ε

(fmax)
1
2

.

Then, for λ ∈ (0,∞), by (8.1) and the Cauchy-Schwarz inequality,

|G(λ)v| ≤
∞∑

k=0

|g(a−kλ)vk|

≤
n−1∑
k=0

|g(a−kλ)vk| +
( ∞∑

k=n

|g(a−kλ)|2
) 1

2
( ∞∑

k=n

|vk|2
) 1

2

≤
n−1∑
k=0

akλ−1|vk| + (fmax)
1
2

( ∞∑
k=n

|vk|2
) 1

2
.
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For sufficiently large λ, the first term on the last right-hand side above is ≤ ε,
while the second term is ≤ ε according to the choice of n. Hence, |G(λ)v| ≤ 2ε for
large λ, which shows that G(λ)v → 0 as λ → ∞. Thus, G is (strongly) regular,
and its feedthrough operator is zero.

For every bounded and analytic L(U, Y )-valued function G defined on a right
half-plane there exists a well-posed linear system Σ with input space U and output
space Y , such that the transfer function of Σ is G, see Salamon [18] or Staffans
[21]. Thus, we can construct a system Σ with the transfer function G defined
earlier.

Let us show that the transfer function of the dual system, Gd(s) = G∗(s),
is not regular. The input space of the dual system is C, so regularity of Gd would
mean that limλ→+∞G∗(λ) = 0 in U , since the feedthrough operator of G is zero.
But this is not true, since for all positive integers k, ‖G∗(ak)‖ > |g(1)| = 1/4.

We can also show that for certain a, limλ→+∞ ‖G(λ)‖ does not exist. In fact,
this is true for any a > 1, but it is easiest to prove it for large a. Indeed, for
log λ = (k + 1/2) log a with k ∈ Z, we have ‖G(λ)‖ ≤ (fmin)

1
2 , and from the

expression of fmin we see that it can be made arbitrarily small for large a.
Using the same example we can show that the cascade connection of two

weakly regular systems is not necessarily weakly regular (see, e.g., [23, Section 7.2]
for the definition of a cascade connection). Consider the cascade of Σ and Σd, i.e.,
the output of Σd becomes the input of Σ. Each of these systems is weakly regular.
However, the transfer function of the cascade is the scalar function G(s)G∗(s),
which for real values of s is equal to ‖G(s)‖2. This transfer function is not regular
since, as we observed earlier, limλ→+∞‖G(λ)‖2 does not exist.

Since a cascade connection is a special case of a feedback connection (see,
e.g., [29] or [23, Section 7.2]), and a feedback connection may be regarded as a
special case of a flow-inversion (see Remark 5.5), the same example shows that in
general, weak regularity is not preserved under feedback and under flow-inversion.

Example 8.2. This is our first example meant to illustrate the difficulties with
time-inversion. We construct a regular linear system Σ which is time-invertible,
the time-inverted system Σ Ris also regular but its feedthrough operator D Ris
different from the feedthrough operator D of Σ. (This could not be the case for
a finite-dimensional system.) Our system is SISO (single-input single-output, i.e.,
U = Y = C), so that there is no difference between regularity and weak regularity.
The spectrum of the semigroup generator A does not separate the complex plane.

Consider X = L2[0, τ ], where τ > 0, and let T be the semigroup of periodic
left shifts on X:

(Ttx)(ξ) = x(ξ+̇t) ,

where ξ+̇t denotes addition modulo τ . Clearly, T extends to a unitary group on
X, and its generator is A = d

dξ , with the domain

D(A) = {x ∈ H1[0, τ ] | x(0) = x(τ )} .
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Note that D(A∗) = D(A) and A∗ = −A. Consider Y = C and C ∈ L(X1; Y )
defined by Cx = x(0), which is easily seen to determine a continuous operator
from X to L2

loc[0,∞) via (2.10). Using the terminology of [25], Parts I, II and
other papers, B = C∗ is an admissible control operator for the dual semigroup T∗.
Since T∗t = T−t, it follows that B is an admissible control operator for T. Actually,
for t ≤ τ ,

(Φtu)(ξ) =

{
0 for ξ ∈ [0, τ − t) ,

u(ξ − τ + t) for ξ ∈ [τ − t, τ ] .

It is not difficult to check that (sI − A)−1B ∈ H1[0, τ ] ⊂ D(CΛ) and

CΛ(sI − A)−1B =
e−τs

1 − e−τs
,

which is bounded on Cα, for any α > 0. By the main result of Curtain and Weiss
[4] (see also Proposition 2.1 in [29]), for any D ∈ L(U ; Y ), there exists a regular
linear system Σ whose generating operators are A, B, C and D. We choose D = 1
and then (by (2.15)) the transfer function of Σ is

G(s) =
1

1 − e−τs
.

This transfer function (which is often encountered in an engineering area called
repetitive control) has poles at s = ikν, where k ∈ Z and ν = 2π/τ . These poles
are exactly at the spectrum of A. G has an analytic continuation to the whole
complex plane except the poles mentioned earlier.

Since T extends to a group, the system Σ is time-invertible and the transfer
function of Σ Rcan be obtained from the analytic continuation of G to the left
half-plane:

G R(s) = G(−s) =
1

1 − eτs
=

−e−τs

1 − e−τs
.

We see from here (by taking a limit) that Σ Ris regular and its feedthrough
operator is D R= 0, which is different from D.

Example 8.3. This is again an example of a time-invertible system Σ, but here
σ(A) separates C and the restrictions of G and G Rto the right half-plane cannot
be obtained from each other (see the comments at the end of Section 4). Actually,
these restrictions could be any two functions in H∞(C0). More precisely, we let G+

be an arbitrary function in H∞(C0), and let G− be an arbitrary function which is
analytic and bounded on the left half-plane. We shall construct a time-invertible
SISO system Σ whose transfer function G is defined on C \ iR, its restriction to
C0 is equal to G+, and its restriction to the left half-plane is equal to G−. Thus,
G R(s) = G−(−s) for s ∈ C0, and G R(s) = G+(−s) for Re s < 0.

Our construction of the realization of the transfer function described above is
based on Remark II.5.4, i.e., we define the system Σ which realizes G by defining
its semigroup T, its extended input map Φ̃0, its extended output map Ψ∞, and its
bilaterally shift-invariant input-output map F . (The realization described below
is a slight modification of the bilateral input shift realization described in [23,
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Section 2.6]; another possibility would have been to modify the bilateral output
shift realization described in [23, Section 2.6] in a similar way.)

The state space of Σ is X = L2(R) and we take the semigroup T of Σ to be
the bilateral left shift semigroup on X: Tt = S−t (this T extends to a group, of
course). The generator A of T is the usual differentiation operator A = d

dξ , with

domain H1(R). We define the extended input map Φ̃0 of the system Σ by

Φ̃0u = P−u, u ∈ L2(R) .

This operator satisfies the functional equation

TtΦ̃0 = Φ̃0S−tP−, t ≥ 0 ,

as required in Remark II.5.4. It is not difficult to see that the control operator B
corresponding to this extended input map is the unit pulse B = δ0 (which is a
distribution in H−1(R) = X−1, by definition 〈δ0, ϕ〉 = ϕ(0) for all ϕ ∈ H1(R)).

We define two bilaterally shift-invariant operators F and F− acting on L2(R)
as follows: For almost all ω ∈ R we define G+(iω) by a nontangential limit of G+

from the right, and we define G−(iω) by a nontangential limit of G− from the
left. Both limit functions are in L∞(iR). For all u ∈ L2(R), we define Fu and F−u
through their bilateral Laplace transforms for almost all ω ∈ R :

F̂u(iω) = G+(iω)û(iω), F̂−u(iω) = G−(iω)û(iω). (8.2)

Both F and F− commute with St for all t ∈ R, F is causal and F− is anticausal:

P−FP+ = 0, P+F−P− = 0.

Moreover, D(A) = H1(R) is invariant under both F and F− (since both of these
operators commute with Tt). We define the bilaterally shift-invariant input-output
map of Σ to be F . Finally, we define the extended output map of Σ by

Ψ∞ = P+(F − F−) . (8.3)

Then Ψ∞ satisfies the functional equation

Ψ∞Tt = S∗t Ψ∞, t ≥ 0 ,

as required in Remark II.5.4. The corresponding observation operator C is

Cx = ((F − F−)x)(0), x ∈ H1(R) .

We have now verified most of the identities listed in Remark II.5.4. The only
remaining one is also easily verified:

P+FP− = P+(F − F−)P− = Ψ∞Φ̃0 .

By Remark II.5.4, if we define the families Φ, Ψ and F by

Φτ = Φ̃0S−τP+ = S−τPτ , Ψτ = PτΨ∞, Fτ = PτFPτ ,

for all τ ≥ 0, then Σ = (T, Φ, Ψ, F) is a well-posed linear system. In particular,
F∞u = Fu for all u ∈ L2[0,∞), and this together with the definition of F implies
that the transfer function G of Σ satisfies G(s) = G+(s) for all s ∈ C0.
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The system Σ is time-invertible, since T is a group. We compute the time-
inverted system Σ R. Using (4.1), we get (as for any time-inverted system)[

T
R

τ Φ R
τ

Ψ R
τ F

R
τ

]
=
[

T−τ −T−τΦτ Rτ
RτΨτT−τ Rτ (Fτ − ΨτT−τΦτ ) Rτ

]
.

In particular, we get (after a short computation) that F R
τ = RτF− Rτ . We claim

that the extended input-output map of Σ Ris

F
R
∞u = RF− Ru, u ∈ L2[0,∞) . (8.4)

Recall that F R
∞ is uniquely determined by the fact that PτF R

∞ = F R
τ , for all τ ≥ 0.

To prove (8.4), we use the elementary identities Pτ R= RτSτ , Rτ = RτP+ and
P+Sτ Ru = Rτu for all u ∈ L2[0,∞). These identities, together with P+F− =
P+F−P+ (which is just another way of writing that F− is anticausal) enable us
to make the following reasoning: for every u ∈ L2[0,∞),

Pτ RF− Ru = Rτ SτF− Ru = RτP+F−Sτ Ru

= RτF−P+Sτ Ru = RτF− Rτu = F
R

τ u, τ ≥ 0 ,

which proves (8.4). Now (8.4) together with the definition of F− in (8.2) implies
that the transfer function G Rof Σ Rsatisfies (by looking at its boundary values
on iR) G R(iω) = G−(−iω), for almost every ω ∈ R. This implies that G R(s) =
G−(−s) for all s ∈ C0. Therefore, by (4.7), the restriction of G to the left half-
plane is G−. Thus, Σ has all the properties mentioned at the beginning of this
example.

We remark that the extended input operator Φ̃ R
0 , the extended output oper-

ator Ψ R
∞, and the bilaterally shift-invariant input-output map F Rof Σ Rare given

by
Φ̃ R

0 = − RP− , Ψ R
∞ = P+ R(F − F−) , F R= RF− R.

Example 8.4. Here we construct a time-invertible SISO system Σ such that neither
Σ nor Σ Ris regular. The spectrum of A is contained in the imaginary axis iR and
it does not separate the open right half-plane from the open left half-plane. It is
based on Example 8.3, with specific choices of G− and G+, but using a smaller
state space, after factoring out an unnecessary subspace of L2(R).

Let E = (−∞,−1] ∪ [1,∞) and put Ω = C \ iE. Thus, Ω contains the open
left and right half-planes and also a connecting bridge between them. For s ∈ Ω,
s2 + 1 is not a real number in (−∞, 0]. Since the function log can be defined to be
analytic on C \ (−∞, 0] and such that log z is real for z > 0, we can define

G(s) = cos log(s2 + 1) , for s ∈ Ω . (8.5)

Then G is a bounded analytic function on Ω (its nontangential limits on iE are
different, depending if we come from the right or from the left). Moreover, G does
not have limits as s→+∞ or s→−∞ along the real axis. The non-regular SISO
transfer function cos log s was proposed by K. Morris in [13], and we have arrived
at our G above by modifying her example.
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We now use Example 8.3 to construct a time-invertible realization Σ̃ of G
(which is not yet the final realization). We simply take G+ to be the restriction of
G to C0, and G− to be the restriction of G to the open left half-plane. According
to Example 8.3 we get a realization Σ̃ whose state space is X̃ = L2(R), whose
semigroup is T̃t = S−t, with generator Ã = d

dξ , D(Ã) = H1(R), and whose control

operator is B̃ = δ0. The extended output map of Σ̃ is given, according to (8.2)
and (8.3), as follows: y = Ψ̃∞x if and only if y = P+z, where ẑ = (G+ − G−)x̂.

Since G+(iω) − G−(iω) = 0 if (and only if) ω ∈ [−1, 1], the space X0 of all
band-limited functions in L2(R) whose spectrum is confined to [−1, 1] (i.e., their
bilateral Laplace transforms vanish on iE) is an unobservable subspace for Σ̃ (this
means that X0 is invariant for T̃ and X0 ⊂ KerΨ̃∞). Moreover, X0 is invariant
also for the adjoint semigroup T̃

∗. We factor out X0, obtaining a reduced system
Σ whose state space is the orthogonal complement of X0. Thus, the state space of
Σ is

X =
{
x ∈ L2(R) | x̂ ∈ L2(iE)

}
.

Thus, the functions in X contain “only high frequencies”. The semigroup Tt of the
reduced system Σ is the restriction of S−t to X. The spectrum of the generator A
of this semigroup is iE, and so ρ(A) = Ω is connected. Denoting the orthogonal
projection of L2(R) onto X by PX , we have Φτ = PXΦ̃τ = PXS−τPτ . Ψτ is
simply the restriction of Ψ̃τ to X. Thus, for every x ∈ X, we have y = Ψτx if
and only if y = Pτz, where ẑ = (G+ −G−)x̂. The extended input-output map of
the reduced system Σ coincides with that of Σ̃, and therefore the restriction of the
transfer function G of Σ to C0 is G+. As Ω is connected, the transfer function of
Σ must be equal to the (analytic) function G defined in (8.5) on all of Ω.

Finally, we make an interesting observation. We have here G+(s) = G−(−s)
for all s ∈ C0, and Ω is invariant under a 180◦ rotation of the complex plane.
In particular, F− = RF R. This implies that the realization Σ̃ constructed as in
Example 8.3 has the property that Σ̃ Ris unitarily similar to Σ̃, with similarity
operator − R. Since Rcommutes with PX , the reduced system Σ has the same
property: Σ Ris unitarily similar to Σ, with similarity operator − R.

Example 8.5. Taking the cascade connection of Σ Rfrom Example 8.2 and Σ from
Example 8.4, we get a time-invertible system whose transfer function is the product
of the two transfer functions, i.e., for all s ∈ Ω with e−τs = 1,

G(s) =
−e−τs

1 − e−τs
cos log(s2 + 1) .

We once more refer the reader to [23, Section 7.2] for a closer description of the
cascade connection; in particular, the semigroup of the cascade connection is in-
vertible whenever the two factors are time-invertible. It is easy to see that this
system is regular (with feedthrough operator zero) since G(s) → 0 as s → +∞,
but the time-inverted system is not regular, since lims→−∞G(s) does not exist.
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Example 8.6. The construction presented in Example 8.4 can be extended into a
general procedure to construct time-invertible systems with ρ(A) connected, whose
transfer functions behave in a specified way at +∞ and −∞. In all the cases we
may choose the group T to be the same left-shift as in Example 8.4, and we only
vary the transfer function G. We start with an arbitrary H∞ function ϕ in the
unit disk D. Then we use a conformal map η to map the unit disk onto the region
Ω in Example 8.4 in such a way that 1 is mapped onto +∞ and −1 is mapped onto
−∞. After that we define G(s) = ϕ(η−1(s)) and realize G in the same way as we
did in Example 8.4. By an appropriate choice of ϕ we can adjust the behavior of G
at ±∞ (and also at any point of iE). For example, if ϕ is bounded away from zero
at ±1 but does not have limits (taken along the real axis) at these points, then
the system that we get is time-invertible, flow-invertible, and time-flow-invertible,
but neither the system itself nor any of the inverted systems is regular.

Example 8.7. Here we give the construction promised in Remark 6.5. Consider
the state space X = L2(−∞, 0]. On X we define the semigroup T by restricting
the bilateral left-shift to X, i.e., Tt = S−t. The generator of T is A = d

dξ on its
domain H1

0 (−∞, 0] = {u ∈ H1(−∞, 0] | u(0) = 0}. We take U = C, and define
the extended input map (defined in Section II.5) to be Φ̃0 = I. The corresponding
control operator is the unit pulse at zero: B = δ0. We take Y = {0}. This forces us
to take C = 0 and Ψ∞ = 0. Using Remark II.5.4 we can check that the operators

Στ =
[
Tτ Φτ

]
=
[S−τ S−τPτ

]
determine a well-posed linear system Σ (with no output). Clearly, Στ maps X ×
L2[0, τ ] one-to-one onto X = L2(−∞, 0], and it is even norm-preserving (i.e.,
unitary). Therefore, Σ is conservative, hence time-flow-invertible. The time-flow-
inverted system Σ← coincides with the dual Σd, and it is given by

Σ←τ = Σd
τ =
[
P−Sτ

RτSτ

]
.

The input space of this system is {0}, and its output space is C (the observation
operator is point observation at zero). We get a slightly different version of Σ←

if we use a unitary similarity transformation of its state space: we use Rto map
L2(−∞, 0] onto L2[0,∞). This means that we construct the conservative system
Σ1 as follows: we replace T←τ = P−Sτ by the semigroup T1

τ = RT←τ Racting on
X1 = L2[0,∞). It turns out that T

1
τ = S∗τ (the unilateral left-shift). Similarly, we

replace Ψ←τ = Rτ Sτ by Ψ←τ R. It turns out that Ψ1
τ = Pτ . Thus,

Σ1
τ =
[
S∗τ
Pτ

]

is another example of a conservative system with no input.
Σ and Σ1 constructed above are examples of a time-flow-invertible (even

conservative) systems where the input and output spaces have different dimensions.
In both cases the whole left half-plane belongs to the spectrum of the semigroup
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generator (as it must always do when U and Y are not isomorphic, see Corollary
6.4).

By combining the systems Σ and Σ1, we can construct a time-flow-invertible
system Σc whose input and output spaces are the same, but whose transfer function
is zero. This time we take the state space to be Xc = L2(R), and the semigroup
Tc to be a modified bilateral left-shift which does not permit any information to
pass through the origin:

T
c
τ = S−τ (I − Pτ ) .

Using the orthogonal splitting X = L2(−∞, 0] ⊕ L2[0,∞), which corresponds to
the state spaces of the two systems which we are combining, we can write

T
c
τ =
[S−τ 0

0 S∗τ

]
.

The generator of Tc is Ac = d
dξ , defined on D(Ac) = H1

0 (−∞, 0] ⊕ H1[0,∞). We

take Uc = Y c = C, Φ̃c
0 =
[
P−
0

]
and Ψc

∞ = P+ =
[
0 I
]
. The control operator of

Σc is Bc =
[

δ0
0

]
, and its observation operator is given by Cc

[ x−
x+

]
= x+(0), for all

x =
[ x−

x+

] ∈ D(Ac). By the formulas in Remark II.5.4, we get

Φc
τ = S−τPτ , Ψc

τ = Pτ .

This system is easily seen to be conservative, hence time-flow-invertible.
Finally, we remark that Corollary 7.3 does not apply to any of the three

conservative systems in this example, due to the fact that G is not defined on the
left half-plane (which belongs to the spectrum of the semigroup generator).
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Birkhäuser-Verlag, Basel, 1989.

[5] F. Huang. Characteristic conditions for exponential stability of linear dynamical
systems in Hilbert space. Annals of Differential Equations, 1:43–56, 1985.

[6] H. Kimura. Chain-Scattering Approach to H∞-Control. Systems & Control: Foun-
dations & Applications. Birkhäuser-Verlag, Basel, 1997.
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