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• Impedance systems and Carathéodory functions (positive real)

• Transmission systems and Potapov functions

• State/signal systems

– Definition of state/signal system
– Passivity of state/signal systems
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Discrete time-invariant i/s/o systems
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Discrete Time-Invariant I/S/O System

Linear discrete-time-invariant systems are typically modeled as i/s/o (in-
put/state/output) systems of the type

x(k + 1) = Ax(k) +Bu(k), k ∈ Z+, x(0) = x0,

y(k) = Cx(k) +Du(k), k ∈ Z+.
(1)

Here Z+ = {0, 1, 2, . . .} and
A, B, C, D, are bounded operators.
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Discrete Time-Invariant I/S/O System

Linear discrete-time-invariant systems are typically modeled as i/s/o (in-
put/state/output) systems of the type

x(k + 1) = Ax(k) +Bu(k), k ∈ Z+, x(0) = x0,

y(k) = Cx(k) +Du(k), k ∈ Z+.
(1)

Here Z+ = {0, 1, 2, . . .} and
A, B, C, D, are bounded operators.

u(k) ∈ U = the input space,
x(k) ∈ X = the state space,
y(k) ∈ Y = the output space (all Hilbert spaces).

By a trajectory of this system we mean a triple of sequences (u, x, y) satisfying (1).

We denote this system by Σi/s/o =
(
[A B
C D ] ;X ,U ,Y)

.
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Forward H-Passive I/S/O System

The system (1) is forward H-passive if all trajectories satisfy the inequality

‖
√
Hx(k + 1)‖2X − ‖

√
Hx(k)‖2X ≤

〈[
y(k)
u(k)

]
, J

[
y(k)
u(k)

]〉
Y⊕U

, k ∈ Z+, (2)

where H > 0 and J is a given signature operator (J = J∗ = J−1).
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The system (1) is forward H-passive if all trajectories satisfy the inequality

‖
√
Hx(k + 1)‖2X − ‖

√
Hx(k)‖2X ≤

〈[
y(k)
u(k)

]
, J

[
y(k)
u(k)

]〉
Y⊕U

, k ∈ Z+, (2)

where H > 0 and J is a given signature operator (J = J∗ = J−1).

The positive quadratic form

EH(x) = ‖
√
Hx‖2X = 〈x,Hx〉X

is called the storage function (Lyapunov function), and the indefinite bilinear form

j(u, y) = 〈[ yu ] , J [ yu ]〉Y⊕U .

is called the supply rate.
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Forward H-Conservative System

In terms of the storage function and the supply rate the forward H-passivity inequality
(2) becomes

EH(x(k + 1)− EH(x(k)) ≤ j(u(k), y(k)), k ∈ Z+. (3)

5



Forward H-Conservative System

In terms of the storage function and the supply rate the forward H-passivity inequality
(2) becomes

EH(x(k + 1)− EH(x(k)) ≤ j(u(k), y(k)), k ∈ Z+. (3)

The system is forward H-conservative if we have equality instead of inequality:

EH(x(k + 1))− EH(x(k)) = j(u(k), y(k)), k ∈ Z+. (4)

5



Forward H-Conservative System

In terms of the storage function and the supply rate the forward H-passivity inequality
(2) becomes

EH(x(k + 1)− EH(x(k)) ≤ j(u(k), y(k)), k ∈ Z+. (3)

The system is forward H-conservative if we have equality instead of inequality:

EH(x(k + 1))− EH(x(k)) = j(u(k), y(k)), k ∈ Z+. (4)

Thus, forward H-conservative ⇒ forward H-passive.
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Adjoint I/S/O System

The corresponding backward notions refer to the adjoint (or dual) I/S/O system

x∗(k + 1) = A∗x∗(k) + C∗y∗(k),

u∗(k) = B∗x∗(k) +D∗y∗(k), k ∈ Z+,

x∗(0) = x∗0.

(5)
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The corresponding backward notions refer to the adjoint (or dual) I/S/O system

x∗(k + 1) = A∗x∗(k) + C∗y∗(k),

u∗(k) = B∗x∗(k) +D∗y∗(k), k ∈ Z+,

x∗(0) = x∗0.

(5)

Same state space X , but the input and output have been interchanged: Input space
is now Y and output space is U .

We denote this system by Σ∗i/s/o =
([

A∗ C∗
B∗ D∗

]
;Y,X ,U)

.
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Dual Storage Function and Supply Rate

The dual storage function and the dual supply rate are different:

• Storage function: H is replaced by H−1.

• Supply rate: j is replaced by the dual supply rate

j∗(y∗, u∗) =
〈[
u∗
y∗

]
, J∗

[
u∗
y∗

]〉

U⊕Y
, (6)

where

J∗ =
[

0 −1U
1Y 0

]
J−1

[
0 −1Y
1U 0

]
. (7)
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Backward H-Passive I/S/O System

(i) Σi/s/o is backward H-passive if the adjoint system Σ∗i/s/o is forward H−1-passive

(with respect to the dual supply rate j∗).

(ii) Σi/s/o is backward H-conservative if the adjoint system Σ∗i/s/o is forward H−1-

conservative (with respect to the dual supply rate j∗)

(iii) Σi/s/o is H-passive if it is both forward and backward H-passive.

(iv) Σi/s/o is H-conservative if it is both forward and backward H-conservative.

(v) By passive or conservative (with or without the attributes “forward” or “back-
ward”) we mean 1X -passive or 1X -conservative, respectively.
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(i) The scattering supply rate jsca(u, y) = ‖u‖2U − ‖y‖2Y with signature operator

Jsca =
[
−1Y 0

0 1U

]
. The signature operator of the dual supply rate is Jsca∗ =[

−1U 0
0 1Y

]
.

(ii) The impedance supply rate jimp(u, y) = 2<〈Ψu, y〉Y with signature operator
Jimp =

[
0 Ψ

Ψ∗ 0

]
, where Ψ is a unitary operator U → Y. The signature operator of

the dual supply rate is Jimp∗ =
[

0 Ψ∗
Ψ 0

]
.

(iii) The transmission supply rate jtra(u, y) = 〈u, JUu〉U − 〈y, JYy〉Y with signature

operator Jtra =
[
−JY 0

0 JU

]
, where JY and JU are signature operators in Y and U ,

respectively. The signature operator of the dual supply rate is Jtra∗ =
[
−JU 0

0 JY

]
.
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The KYP Inequality

Easy: Σi/s/o is forward H-passive if and only if H > 0 is a solution of the (forward)
generalized i/s/o KYP (Kalman–Yakubovich–Popov) inequality1

EH(Ax+Bu)− EH(x) ≤ j(u,Cx+Du), x ∈ D(
√
H), u ∈ U , (8)

1In particular, in order for the first term in this inequality to be well-defined we require A to map D(
√
H) into itself

and B to map U into D(
√
H).
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Easy: Σi/s/o is forward H-passive if and only if H > 0 is a solution of the (forward)
generalized i/s/o KYP (Kalman–Yakubovich–Popov) inequality1

EH(Ax+Bu)− EH(x) ≤ j(u,Cx+Du), x ∈ D(
√
H), u ∈ U , (8)

Σi/s/o is forward H-conservative if and only if H > 0 is a solution of the (forward)
generalized i/s/o KYP (Kalman–Yakubovich–Popov) equality

EH(Ax+Bu)− EH(x) = j(u,Cx+Du), x ∈ D(
√
H), u ∈ U , (9)

Named after Kalman [Kal63], Yakubovich [Yak62], and Popov [Pop61] (the finite-
dimensional case with scattering or impedance supply rate).

1In particular, in order for the first term in this inequality to be well-defined we require A to map D(
√
H) into itself

and B to map U into D(
√
H).
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History

• Finite-dimensional case: See, e.g., [PAJ91], [IW93], and [LR95], plus their
references.

• Infinite-dimensional case: Started by Yakubovich’ school [Yak74, Yak75, LY76].
See also [Pan99].

• Unbounded H and H−1: [AKP06].
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Scattering Systems

jsca(u, y) = ‖u‖2U − ‖y‖2Y.

jsca∗(y∗, u∗) = ‖y∗‖2Y − ‖u∗‖2U .

‖√H(Ax+Bu)‖2X − ‖
√
Hx‖2X ≤ ‖u‖2U − ‖Cx+Du‖2Y.
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Forward Scattering H-passive ⇔ Backward H-passive

A scattering system is forward H-passive ⇔ backward H-passive.2 Proof:

2This, together with the correspodning impedance result, is why Kalman, Popov and Yakubovich never mention
backward H-passivity.
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Forward Scattering H-passive ⇔ Backward H-passive

A scattering system is forward H-passive ⇔ backward H-passive.2 Proof:

Case H = 1X :

• Σi/s/o is forward passive ⇔ [A B
C D ] is a contraction

• ⇔ [
A∗ C∗
B∗ D∗

]
is a contraction ⇔ Σ∗i/s/o is forward passive

• ⇔ Σi/s/o is backward passive.

Case where H is bounded with a bounded inverse: almost as easy.

General case: See [AKP06].

Forward scattering H-conservative ; backward H-conservative (not every isometric
operator is unitary).

2This, together with the correspodning impedance result, is why Kalman, Popov and Yakubovich never mention
backward H-passivity.
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The Transfer Function

Recall: Σi/s/o is H-passive ⇔ H is a nonnegative solution of the KYP inequality.

When does such a solution exist?

The answer is related to the transfer function or characteristic function D of this
system. It is given by

D(z) = zC(1X − zA)−1B +D, z ∈ Λ(A),

where Λ(A) is the set of points z ∈ C for which 1X − zA has a bounded inverse,
plus the point at infinity if A has a bounded inverse.

Roughly:

The KYP-inequlity has a nonnegative solution ≈ D is a Schur function.
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The Restricted Schur class S(U ,Y; Ω)

The Schur class S(U ,Y;D) is the unit ball in H∞(U ,Y,D), i.e.,

θ ∈ S(U ,Y; Ω) ⇔ θ is a B(U ;Y)-valued analytic function in the open unit disk
D = {z ∈ C | |z| < 1} satisfying ‖θ(z)‖ ≤ 1 for all z ∈ D.

15



The Restricted Schur class S(U ,Y; Ω)

The Schur class S(U ,Y;D) is the unit ball in H∞(U ,Y,D), i.e.,

θ ∈ S(U ,Y; Ω) ⇔ θ is a B(U ;Y)-valued analytic function in the open unit disk
D = {z ∈ C | |z| < 1} satisfying ‖θ(z)‖ ≤ 1 for all z ∈ D.

However, the transfer function D of Σi/s/o need not be defined in the full unit disk
D.

15



The Restricted Schur class S(U ,Y; Ω)

The Schur class S(U ,Y;D) is the unit ball in H∞(U ,Y,D), i.e.,

θ ∈ S(U ,Y; Ω) ⇔ θ is a B(U ;Y)-valued analytic function in the open unit disk
D = {z ∈ C | |z| < 1} satisfying ‖θ(z)‖ ≤ 1 for all z ∈ D.

However, the transfer function D of Σi/s/o need not be defined in the full unit disk
D.

The restricted Schur class S(U ,Y; Ω), where Ω ⊂ D, contains all functions θ which
are restrictions to Ω of some function in S(U ,Y;D).

15



The Restricted Schur class S(U ,Y; Ω)

The Schur class S(U ,Y;D) is the unit ball in H∞(U ,Y,D), i.e.,

θ ∈ S(U ,Y; Ω) ⇔ θ is a B(U ;Y)-valued analytic function in the open unit disk
D = {z ∈ C | |z| < 1} satisfying ‖θ(z)‖ ≤ 1 for all z ∈ D.

However, the transfer function D of Σi/s/o need not be defined in the full unit disk
D.

The restricted Schur class S(U ,Y; Ω), where Ω ⊂ D, contains all functions θ which
are restrictions to Ω of some function in S(U ,Y;D).

Thus, every θ ∈ S(U ,Y; Ω) has an analytic extension to a function in S(U ,Y; Ω).

15



The Restricted Schur class S(U ,Y; Ω)

The Schur class S(U ,Y;D) is the unit ball in H∞(U ,Y,D), i.e.,

θ ∈ S(U ,Y; Ω) ⇔ θ is a B(U ;Y)-valued analytic function in the open unit disk
D = {z ∈ C | |z| < 1} satisfying ‖θ(z)‖ ≤ 1 for all z ∈ D.

However, the transfer function D of Σi/s/o need not be defined in the full unit disk
D.

The restricted Schur class S(U ,Y; Ω), where Ω ⊂ D, contains all functions θ which
are restrictions to Ω of some function in S(U ,Y;D).

Thus, every θ ∈ S(U ,Y; Ω) has an analytic extension to a function in S(U ,Y; Ω).

Equivalently, the Nevanlinna–Pick interpolation problem with the (possibly infinite)
set of data points (z, θ(z)), z ∈ Ω, has a solution in S(U ,Y;D).

15



The Restricted Schur class S(U ,Y; Ω)

The Schur class S(U ,Y;D) is the unit ball in H∞(U ,Y,D), i.e.,

θ ∈ S(U ,Y; Ω) ⇔ θ is a B(U ;Y)-valued analytic function in the open unit disk
D = {z ∈ C | |z| < 1} satisfying ‖θ(z)‖ ≤ 1 for all z ∈ D.

However, the transfer function D of Σi/s/o need not be defined in the full unit disk
D.

The restricted Schur class S(U ,Y; Ω), where Ω ⊂ D, contains all functions θ which
are restrictions to Ω of some function in S(U ,Y;D).

Thus, every θ ∈ S(U ,Y; Ω) has an analytic extension to a function in S(U ,Y; Ω).

Equivalently, the Nevanlinna–Pick interpolation problem with the (possibly infinite)
set of data points (z, θ(z)), z ∈ Ω, has a solution in S(U ,Y;D).

(In our case Ω is open, the set of data points is infinite, and the solution is unique.)
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Known Facts

The following conditions are equivalent:
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(i) The above Nevanlinna–Pick interpolation problem has a solution

(ii) The Pick kernel

Kθ
sca(z, ζ) =

1Y − θ(z)θ(ζ)∗

1− zζ
, z, ζ ∈ Ω,

is nonnegative definite on Ω× Ω.

(iii) The dual Pick kernel

Kθ∗
sca(z, ζ) =

1U − θ(ζ)∗θ(z)
1− ζz

, z, ζ ∈ Ω,

is nonnegative definite on Ω× Ω (see [RR82]).
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• Σi/s/o is controllable if the sets of all states x(n), n ≥ 1, which appear in some
trajectory (u, x, y) of Σi/s/o with x0 = 0 (i.e., an externally generated trajectory)
is dense in X .

• Σi/s/o is observable if there do not exist any nontrivial trajectories (u, x, y) where
both u and y are identically zero.

• Σi/s/o is minimal if Σi/s/o is both controllable and observable.
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The “Bounded Real Lemma”

Theorem 1. Let Σi/s/o =
(
[A B
C D ] ;U ,X ,Y; jsca

)
be an i/s/o system with scattering

supply rate and transfer function D, and let Λ0(A) be the connected component of
Λ(A) ∩ D which contains the origin.
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(
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C D ] ;U ,X ,Y; jsca

)
be an i/s/o system with scattering

supply rate and transfer function D, and let Λ0(A) be the connected component of
Λ(A) ∩ D which contains the origin.

(i) If Σi/s/o is forward H-passive for some H > 0, then Σi/s/o is H-passive and
D|Λ0(A) ∈ S(U ,Y; Λ0(A)).

(ii) Conversely, if Σi/s/o is minimal and D|Λ0(A) ∈ S(U ,Y; Λ0(A)), then Σi/s/o is
H-passive for some H > 0.
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Impedance Systems

jimp(u, y) = 2<〈Ψu, y〉Y.

jimp∗(y∗, u∗) = 2<〈Ψ∗y∗, u∗〉U .

‖√H(Ax+Bu)‖2X − ‖
√
Hx‖2X ≤ 〈Ψu,Cx+Dy〉Y + 〈Cx+Dy,Ψu〉Y.
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Forward Impedance H-passive ⇔ Backward H-passive

Claim. An impedance system is forward H-passive ⇔ backward H-passive.
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Claim. An impedance system is forward H-passive ⇔ backward H-passive.

Proof: By reduction to the scattering case as follows:

• Define new input u× = 1√
2
(u+ Ψ∗y) and new output y× = 1√

2
(Ψu− y).

• Solve the resulting equations for x(n+1) and y×(n) in terms of x(n) and u×(n).
This is possible iff Ψ +D has a bounded inverse.

• By the impedance KYP-inequality with x = 0, we have both (Ψ+D)∗(Ψ+D) ≥ 1U
and (Ψ +D)(Ψ +D)∗ ≥ 1U , and therefore Ψ +D is always invertible.

• The above transformation has been designed so that jimp(u, y) = jsca(y×, u×).
Thus, the resulting system Σ×i/s/o is forward scattering H-passive.

• Being a scattering system, Σ×i/s/o is also backward scattering H-passive.

• This implies that Σi/s/o itself is backward impedance H-passive.
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The External Cayley Transofrm

The above transform is called (by me) the external Cayley transform.
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The External Cayley Transofrm

The above transform is called (by me) the external Cayley transform.

The external Cayley transform is its own inverse:

Ψ +D× always has a bounded inverse, and
if we apply the external Cayley transform to Σ×i/s/o, then we recover Σi/s/o.

All the results about scattering systems can be converted into results for impedance
systems by means of the external Cayley transform.
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The Restricted Carathéodory class C(U ; Ω)

For simplicity: Take Y = U and Ψ = 1U (i.e., replace y by Ψ∗y).
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For simplicity: Take Y = U and Ψ = 1U (i.e., replace y by Ψ∗y).

The Carathéodory class C(U ;D) consists of all analytic B(U)-valued functions ψ on
D with nonnegative ‘real part’, i.e., ψ(z) + ψ(z)∗ ≥ 0 for all z ∈ D.

The restricted Carathéodory class C(U ; Ω), where Ω ⊂ D, contains all functions θ
which are restrictions to Ω of some function in C(U ;D).

Thus, θ ∈ C(U ; Ω) ⇔ the Carathéodory interpolation problem with the (possibly
infinite) set of data points (z, θ(z)), z ∈ Ω, has a solution in C(U ,Y;D).

This is true if and only if the Carathéodory kernel

Kψ
imp(z, ζ) =

ψ(z) + ψ(ζ)∗

1− zζ
, z, ζ ∈ Ω,

is nonnegative definite on Ω× Ω.
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The “Positive Real Lemma”

Theorem 2. Let Σi/s/o =
(
[A B
C D ] ;U ,X ,U ; jimp

)
be an i/s/o system with impedance

supply rate, signature operator Jimp =
[ 0 1U

1U 0

]
, and transfer function D. Let Λ0(A)

be the connected component of Λ(A) ∩ D which contains the origin.
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be an i/s/o system with impedance

supply rate, signature operator Jimp =
[ 0 1U

1U 0

]
, and transfer function D. Let Λ0(A)

be the connected component of Λ(A) ∩ D which contains the origin.

(i) If Σi/s/o is forward H-passive for some H > 0, then Σi/s/o is H-passive and
D|Λ0(A) ∈ C(U ; Λ0(A)).

(ii) Conversely, if Σi/s/o is minimal and D|Λ0(A) ∈ C(U ; Λ0(A)), then Σi/s/o is
H-passive for some H > 0.
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History

The impedance version is older than the scattering version. It is related to Neumark’s
dilation theorem for positive operator-valued measures (see [Bro71, Appendix 1]).

Historically, scattering results were derived from impedance results (not the other
way around). Even today there is a big scool which regards the impedance case as
the “basic reference case”.

Which one is the better reference case: Impedance or scattering?
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Impedance or Scattering as the Reference Case?

My personal answer: Scattering!

Reason: The impedance case is “incomplete” (especially when dimU = ∞).

There exist scattering systems which have no impedance counterpart (even if we
take Y = U).

The external Cayley transform maps the class of impedance systems into but not
onto the class of scattering systems:

For a given scattering system there need not exist any operator Ψ such that Ψ+D is
invertible, hence the external Cayley transform cannot be defined for every scattering
system (even if Y = U).
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Generalized Carathéodory Class

The problem is that the Carathéodory class is not “complete”: There is no reason
why the values of a positive real function should be bounded operators.
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Generalized Carathéodory Class

The problem is that the Carathéodory class is not “complete”: There is no reason
why the values of a positive real function should be bounded operators.

For example, the constant function θ = D, where −D is an unbounded maximal
dissipative operator is “positive real”.

There is no reason why a “positive real function” should be single-valued: the
“relation” u = 0, y = arbitrary, is also positive real.

To get a “complete” class we have to replace “positive real function” by “positive
real relation”.

But transfer functions of i/s/o systems are always funtions, not relations. To realize
a relation we need a larger class of systems than the i/s/o systems.

Solution: State/signal systems!
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Transmission Systems

jtra(u, y) = 〈u, JUu〉U − 〈y, JYy〉Y
jtra∗(y∗, u∗) = 〈y∗, JYy∗〉Y − 〈u∗, JUu∗〉U .

‖√H(Ax+Bu)‖2X − ‖
√
Hx‖2X ≤ 〈u, JUu〉U − 〈Cx+Dy, JY(Cx+Dy)〉Y.
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Forward Transmission H-passive ; Backward H-passive

Recall: Forward impedance H-passive ⇒ backward H-passive. The proof is based
on the fact that the impedance case can be reduced to the scattering case by means
of the external Cayley transform.
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Forward Transmission H-passive ; Backward H-passive

Recall: Forward impedance H-passive ⇒ backward H-passive. The proof is based
on the fact that the impedance case can be reduced to the scattering case by means
of the external Cayley transform.

Does there exist a counterpart to the external Cayley transform which maps trans-
mission into scattering?

Yes: The Potapov–Ginzburg (or chain scattering) transform.

(Unfortunately, is is not always defined!)
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The Potapov–Ginzburg Transform
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• Split both Y and U into a positive and a negative subspace, which are orthogonal to
each other: Y = −Y− [u]Y+ and U = −U− [u]U+ (fundamental decompositions).

• Split the feed-through operator D accordingly into D =
[
D11 D12
D21 D22

]
. Note that

D11 maps the negative part of U into the negative part of Y.

• Split the output y and the input u into y = [ y−y+ ] and u = [ u−u+ ].

• Interchange the negative parts of y and u with each other, so that the new input
becomes ux = [ y−u+ ] and a new output becomes yx = [ u−y+ ].

• Solve the resulting equations for x(n+1) and yx(n) in terms of x(n) and ux(n).
This is possible iff D11 has a bounded inverse.

Transmission H-passivity implies that D11 always have a bounded left-inverse, but
D11 need not be surjective (except when dimY− = dimU− <∞).

Thus, forward transmission H-passive ⇒ the Potapov–Ginzburg transfrom is well
defined if and only if D11 is surjective.
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The Potapov–Ginzburg Transform (continues)

The Potapov–Ginzburg transform has been designed so that jtra(u, y) =
jsca(yx, ux). Thus, the resulting system Σxi/s/o is forward scattering H-passive
whenever Σi/s/o is forward transmission H-passive.
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The Potapov–Ginzburg Transform (continues)

The Potapov–Ginzburg transform has been designed so that jtra(u, y) =
jsca(yx, ux). Thus, the resulting system Σxi/s/o is forward scattering H-passive
whenever Σi/s/o is forward transmission H-passive.

Thus, forward transmission H-passive ⇒ backward transmission H-passive if (and
only if) D11 is surjective.

The Potapov–Ginzburg transfrom maps a subclass of all transmission systems (those
for which D11 is invertible) into but not onto the class of scattering systems.

Many results about scattering systems can be converted into results for transmission
systems by means of the Potapov–Ginzburg transform.
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The Restricted Potapov class P(U ,Y; Ω)

The transfer of an transmission H-passive system belongs to the restricted Potapov
class P(U ,Y; Ω).
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in the Carathéodory class C(U ;D)

But functions in the Potapov class can have singularities in D (even uncountably
many), and their domain need not even be connected.

31



The Restricted Potapov class P(U ,Y; Ω)

The transfer of an transmission H-passive system belongs to the restricted Potapov
class P(U ,Y; Ω).

What is the Potapov class? More precisely, where are the functions in the Potapov
class defined?

Recall: Functions in the Schur class S(U ,Y;D) are defined on D, and so are functions
in the Carathéodory class C(U ;D)

But functions in the Potapov class can have singularities in D (even uncountably
many), and their domain need not even be connected.

Solution: We start by first defining the restricted Potapov class P(U ,Y; Ω).
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The Restricted Potapov class P(U ,Y; Ω) (continues)
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• We interpret U and Y as Krĕın spaces, i.e., we replace the original Hilbert space
inner products in Y and U by the Krĕın space inner products

[y, y′]Y = 〈y, JYy′〉Y, [u, u′]U = 〈u, JUu′〉U .
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• We interpret U and Y as Krĕın spaces, i.e., we replace the original Hilbert space
inner products in Y and U by the Krĕın space inner products

[y, y′]Y = 〈y, JYy′〉Y, [u, u′]U = 〈u, JUu′〉U .
• We compute all adjoints with respect to these Krĕın space inner products, and we

also interpret positivity with respect to these inner products.

• Let Ω ⊂ D. A function ϕ : Ω → B(U ;Y) belongs to P(U ,Y; Ω) if both the kernels

Kϕ
tra(z, ζ) =

1Y − ϕ(z)ϕ(ζ)∗

1− zζ
, z, ζ ∈ Ω,

Kϕ∗
tra(z, ζ) =

1U − ϕ∗(ζ)ϕ(z)
1− ζz

, z, ζ ∈ Ω,
(10)

are nonnegative definite on Ω× Ω.
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The “Potapov Real Lemma”

Theorem 3. Let Σi/s/o =
(
[A B
C D ] ;U ,X ,Y; jtra

)
be an i/s/o system with transmis-

sion supply rate, signature operator Jtra =
[
JY 0
0 JU

]
, and transfer function D. Let

Λ0(A) be the connected component of Λ(A) ∩ D which contains the origin.
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Theorem 3. Let Σi/s/o =
(
[A B
C D ] ;U ,X ,Y; jtra

)
be an i/s/o system with transmis-

sion supply rate, signature operator Jtra =
[
JY 0
0 JU

]
, and transfer function D. Let

Λ0(A) be the connected component of Λ(A) ∩ D which contains the origin.

(i) If Σi/s/o is H-passive for some H > 0, then D|Λ0(A) ∈ P(U ,Y; Λ0(A)).

(ii) Conversely, if Σi/s/o is minimal and D|Λ0(A) ∈ P(U ,Y; Λ0(A)), then Σi/s/o is
H-passive for some H > 0.
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A function ϕ belongs to the (full) Potapov class P(U ,Y;D) if it belongs to P(U ,Y; Ω)
where the domain Ω is maximal in the sense that the function ϕ does not have an
extension to any larger domain Ω′ ⊂ D with the property that the two kernels in
(10) are still nonnegative on Ω′ × Ω′.
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The Full Potapov class P(U ,Y;D)

A function ϕ belongs to the (full) Potapov class P(U ,Y;D) if it belongs to P(U ,Y; Ω)
where the domain Ω is maximal in the sense that the function ϕ does not have an
extension to any larger domain Ω′ ⊂ D with the property that the two kernels in
(10) are still nonnegative on Ω′ × Ω′.

The existence of such a maximal domain is proved in [AS06b].

This maximal domain need not be connected, but it is still true that if we start from
an open set Ω ⊂ D, then the values of ϕ on Ω define the extension of ϕ to its
maximal domain uniquely.

As shown in [AS06b], if ϕ ∈ P(U ,Y;D), then ϕ does not have an analytic extension
to any boundary point of its domain contained in the open unit disk D.
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Generalized Potapov Class

The Potapov class suffers from the same problem as the Carathéodory class: It is
not “complete” in the sense that there is no reason why the values of a Potapov
class function should be bounded operators.
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Generalized Potapov Class

The Potapov class suffers from the same problem as the Carathéodory class: It is
not “complete” in the sense that there is no reason why the values of a Potapov
class function should be bounded operators.

Thus, the Potapov class of functions should be replaced by the Potapov class of
relations!
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Combine the Scattering, Impedance, and Transmission Cases
into One Master Case!
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Combine the Scattering, Impedance, and Transmission Cases
into One Master Case!

The three different cases that we have considered (scattering, impedance, and
transmission) are “slightly” different from each other, but they have many similarities
and many common properties.

Both the transformations that we have described, the external Cayley transformation
and the Potapov–Ginzburg transformation act only on the input and output vectors,
whereas the state remains the same.

Question: Is it possible to combine all the three cases into one single case?

Yes: Use a state/signal system!
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State/Signal Systems

ICM 2006 37



The Signal Space
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The Signal Space

We start by combining the input space U and the output space Y into one signal
space W =

[ Y
U

]
. This signal space has a natural Krĕın space inner product obtained

from the signature operator J in the supply rate j, namely

[[
y
u

]
,

[
y′

u′

]]

W
=

〈[
y
u

]
, J

[
y′

u′

]〉

Y⊕U
.
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The Signal Space

We start by combining the input space U and the output space Y into one signal
space W =

[ Y
U

]
. This signal space has a natural Krĕın space inner product obtained

from the signature operator J in the supply rate j, namely

[[
y
u

]
,

[
y′

u′

]]

W
=

〈[
y
u

]
, J

[
y′

u′

]〉

Y⊕U
.

The (forward) H-passivity-inequality (2) now becomes (with w(k) =
[
y(k)
u(k)

]
)

‖
√
Hx(k + 1)‖2X − ‖

√
Hx(k)‖2X ≤ [w(k), w(k)]W, k ∈ Z+.
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The Node Space and the Generating Subspace

When we combine the input sequence u and the output sequence y into one signal
sequence w = [ yu ], then the basic i/s/o relation (1) can be rewritten in the form



x(n+ 1)
x(n)
w(n)


 ∈ V, n ∈ Z+ = {0, 1, 2, . . .}, x(0) = x0, (11)

where the generating subspace V is the subspace of the node space K :=
[ XXW

]
given

by (in this case)

V =
{[ z

x
w

] ∈
[ XXW

] ∣∣∣∣
z = Ax+Bu,

y = Cx+Du,
w = [ yu ] , x ∈ X , u ∈ U

}
. (12)
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When we combine the input sequence u and the output sequence y into one signal
sequence w = [ yu ], then the basic i/s/o relation (1) can be rewritten in the form



x(n+ 1)
x(n)
w(n)


 ∈ V, n ∈ Z+ = {0, 1, 2, . . .}, x(0) = x0, (11)

where the generating subspace V is the subspace of the node space K :=
[ XXW

]
given

by (in this case)

V =
{[ z

x
w

] ∈
[ XXW

] ∣∣∣∣
z = Ax+Bu,

y = Cx+Du,
w = [ yu ] , x ∈ X , u ∈ U

}
. (12)

By a trajectory of this system we mean a pair of sequences (x,w) satisfying (11).
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Properties of the Generating Subspace

Easy: The generating subspace V has the following properties:

(i) V is closed in K;

(ii) For every x ∈ X there is some [ zw ] ∈ [ XW ] such that
[ z
x
w

] ∈ V ;

(iii) If
[
z
0
0

]
∈ V , then z = 0;

(iv) The set
{

[ xw ] ∈ [ XW ]
∣∣ [ z

x
w

] ∈ V for some z ∈ X
}

is closed in [ XW ].
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Interpretation of (i)–(iv)

(ii) For every initial state x0 ∈ X there is some trajectory (x,w) satisfying x(0) = x0.

(iii) A trajectory (x,w) is uniquely determined by the initial state x0 and the signal
part w.

(i) & (iv) The trajectory (x,w) depends continuously on the intial state x0 and the
signal part w.
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State/Signal System: Definition

Definition 4. A triple Σ = (V ;X ,W), where the (internal) state space X is a
Hilbert space and the (external) signal space W is a Krĕın space and V is a subspace

of the product space K :=
[ XXW

]
is called a s/s (state/signal) node if it has properties

(i)–(iv) listed above. We interpret K as a Krĕın space with the inner product

[[ z
x
w

]
,

[
z′
x′
w′

]]

K

= −〈z, z′〉X + 〈x, x′〉X + [w,w′]W,
[ z
x
w

]
,

[
z′
x′
w′

]
∈ K, (13)

and we call K the node space and V the generating subspace.
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State/Signal System: Definition

Definition 4. A triple Σ = (V ;X ,W), where the (internal) state space X is a
Hilbert space and the (external) signal space W is a Krĕın space and V is a subspace

of the product space K :=
[ XXW

]
is called a s/s (state/signal) node if it has properties

(i)–(iv) listed above. We interpret K as a Krĕın space with the inner product

[[ z
x
w

]
,

[
z′
x′
w′

]]

K

= −〈z, z′〉X + 〈x, x′〉X + [w,w′]W,
[ z
x
w

]
,

[
z′
x′
w′

]
∈ K, (13)

and we call K the node space and V the generating subspace.

By a trajectory of Σ we mean a pair of sequences (x,w) satisfying (11). We call
x the state component and w the signal component of this trajectory. By the s/s
system Σ we mean the s/s node Σ together with all its trajectories.
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A “Complete” S/S Theory

It is possible to build a “complete” theory which is quite “natural” and contains all
the ingredents mentioned earlier:
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A “Complete” S/S Theory

It is possible to build a “complete” theory which is quite “natural” and contains all
the ingredents mentioned earlier:

Forward H-passivity and H-conservativity is defined in the same way as before.

Every s/s system has an adjoint s/s system which is defined by a certain “orthog-
onality” relation (so that trajectories of the original system are “orthogonal” to
trajectories of the adjoint system).

Backward H-passivity and H-conservativity is defined in the same way as before.

(Full) H-passivity and H-conservativity is defined in the same way as before.

Controllability, observability, minimality are defined in the same way as before.
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The Behavior Induced by a State/Signal System

The Schur, Carathéodory, and Potapov classes consist of analytic function defined in
a subset of the frequency domain (a subset of D).
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The Schur, Carathéodory, and Potapov classes consist of analytic function defined in
a subset of the frequency domain (a subset of D).

In the s/s setting is is more natural to work directly in the time domain, and talk
about the behavior W of a s/s system.

This is the set of all possible signal sequences w which are the signal part of some
externally generated trajectory (x,w). (Externally generated means that x0 = 0, so
that x is uniquely determined by w).

Easy: W is a closed and right-shift invariant subspace of the Fréchet space WZ+
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The Behavior Induced by a State/Signal System

The Schur, Carathéodory, and Potapov classes consist of analytic function defined in
a subset of the frequency domain (a subset of D).

In the s/s setting is is more natural to work directly in the time domain, and talk
about the behavior W of a s/s system.

This is the set of all possible signal sequences w which are the signal part of some
externally generated trajectory (x,w). (Externally generated means that x0 = 0, so
that x is uniquely determined by w).

Easy: W is a closed and right-shift invariant subspace of the Fréchet space WZ+
.

By a (general) behavior W we mean a closed and right-shift invariant subspace of

WZ+
.
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Passive Behaviors

The forward H-passivity inequality says

‖
√
Hx(k + 1)‖2X − ‖

√
Hx(k)‖2X ≤ [w(k), w(k)]W, k ∈ Z+.
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Passive Behaviors

The forward H-passivity inequality says

‖
√
Hx(k + 1)‖2X − ‖

√
Hx(k)‖2X ≤ [w(k), w(k)]W, k ∈ Z+.

Sum over k = 0, 1, 2, . . . , n and take x(0) = 0. This gives∑n
k=0[w(k), w(k)]W ≥ ‖√Hx(n+ 1)‖2X . In particular,

n∑

k=0

[w(k), w(k)]W ≥ 0, w ∈ W, n ∈ Z+. (14)
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The forward H-passivity inequality says

‖
√
Hx(k + 1)‖2X − ‖

√
Hx(k)‖2X ≤ [w(k), w(k)]W, k ∈ Z+.

Sum over k = 0, 1, 2, . . . , n and take x(0) = 0. This gives∑n
k=0[w(k), w(k)]W ≥ ‖√Hx(n+ 1)‖2X . In particular,

n∑

k=0

[w(k), w(k)]W ≥ 0, w ∈ W, n ∈ Z+. (14)

We say that a (general) behavior if forward passive if (14) holds for all w ∈ W. It is
backward passive if the adjoint behavior3 W∗ is forward passive. It is passive if it is
realizable4 and both forward and backward passive.

3The adjoint behavior is the intersection of the null spaces of the convolution operators w∗ where w ∈ W.
4W is realizable if it is induced by some s/s system.
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The “State/Signal Passivity Lemma”

Theorem 5. Let W be the behavior induced by a s/s system Σ.
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The “State/Signal Passivity Lemma”

Theorem 5. Let W be the behavior induced by a s/s system Σ.

(i) If Σ is forward H-passive for some H > 0, then W is forward passive.

(ii) If Σ is backward H-passive for some H > 0, then W is backward passive.

(iii) If Σ is forward H-passive for some H > 0 and W is passive, then Σ is H-passive.

(iv) If Σ is minimal and W is passive, then Σ is H-passive for some H > 0.
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Scattering, Impedance and Transmission Representations

We can recover the earlier mentioned scattering, impedance and transmission results
from corresponding the state/signal results by simply splitting the signal space W
into an input space U and an output space Y in different ways:

If we take W = −Y [u] U , where −Y is negative and U is positive (a fundamental
decomposition), then we recover the scattering results.

If we take W = Y u U where both Y and U are Lagrangian (i.e., they coincide with
their own orthogonal companions), then we recover the impedance results.

If we take W = −Y [u] U , where both Y and U are Krĕın spaces (a regular
decomposition), then we recover the transmission results

If we take W = Y u U without any special conditions on Y and U , then the theory
still applies, even though we are not in one of the special cases listed above.

Thus, the state/signal setting contains all the other settings!
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Additional Results on State/Signal Systems

See [AS05, AS06a, AS06b, AS06c] for additional results on

• Various representations of s/s systems (i/s/o, driving variable, output nulling) and
their connections.

• A s/s system is forward H-passive if and only if H is a positive solution of the
(forward) KYP-inequality (Kalman–Yakubovich–Popov inequaltiy).

• The KYP-inequality has a minimal and a maximal solution satisfying a certain
controllability and observability assumption. These correspond to the avaliable
storage and the required supply (Willems).

• Left and right coprime representations of s/s systems (of, e.g., impedance or
transmission type).

• Generalized input/state/output representations of impedance systems where the
bounded operator [A B

C D ] has been replaced by a closed unbounded system operator.
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Work in Progress and Planned Work

• The study of the interconnection of two s/s systems (this is the s/s analogue of
feedback).

• Lossless behaviors and and bi-lossless extensions of passive behaviors (including
the s/s analogue of Darlington synthesis).

• External and internal symmetry of s/s systems (including reciprocal systems).

• Further studies of the stability properties of passive s/s systems.

• Conditions for ordinary similarity (as opposed to pseudo-similarity) of minimal
passive realizations.

• Extension of the s/s theory to continuous time systems.
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