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Scattering and Inverse Scattering

This talk is about scattering.
Think about an electro-magnetic wave travelling in space which
hits an object and is scattered, i.e., partially absorbed, and partially
reflected in different directions.
Several questions can be asked about this phenomenon:

The direct scattering problem: Compute the scattered wave
when we know the object and the incident wave.

The inverse scattering problem: Try to compute the shape
and the properties of the object if we know both the incident
wave and the scattered wave.

Here I do not focus specifically on either of these, but instead talk
about the mathematical formulation of the scattering problem.
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General Plan

In the first half of the talk I give a short review of contraction
semigroups in Hilbert spaces, to explain the background (the
autonomous evolution inside the scatterer is modelled as a
contraction semigroup).

In the second half of the talk I include the incident and
scattered waves, to get a passive scattering system.
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PDE Formulation

Electro-magnetic waves are described by Maxwell’s equations, as a
connection between time derivatives (= the evolution of the
system) and the space derivatives (= the variation in space) of the
wave.
Let us denote the 6-dimensional vector which contains the
components of the electric and magnetic field at the point ξ at
time t by x(ξ, t). Then the equation which describes the
propagation of an electro-magnetic wave in free space is of the
form

∂

∂t
x(ξ, t) = Ax(ξ, t), ξ ∈ R6, t ≥ 0,

x(ξ, 0) = ϕ(ξ), ξ ∈ R6,
(1)

where A is a partial differential operator involving only space
derivatives.
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Abstract Formulation: Idea

This is too complicated. To simplify the equation we suppress the
space variable ξ (= do not write it out explicitly), and replace (1)
by

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0,
(2)

where ẋ = ∂
∂t x . We still think about x as being a function of both

ξ and t, but “hide” the variable ξ.
Mathematically, x(t) is a function of ξ, and it can be interpreted
as a vector in an infinite-dimensional vector space X . We call X
the state space of the system.
The operator A on the right-hand side is an unbounded linear
operator. It is not defined for all vectors x ∈ X (only those that
are sufficiently differentiable). We denote the set of vectors x ∈ X
for which Ax is defined by Dom (A).
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Abstract Formulation:

The equation
ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0,
(2)

formally looks like a standard linear system of differential
equations, but it is still a complicated object. Since Ax(t) is not
defined for all x(t) ∈ X we still need to add one more condition,
namely x(t) ∈ Dom (A). Thus, the correct way of writing (2) is

x(t) ∈ Dom (A) , t ≥ 0,

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0.

(3)
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Energy Preservation and Passivity: Idea

All electro-magnetic waves contain energy, and to create an
electro-magnetic wave one must supply energy.

In the absence of energy sources the the energy of the wave
cannot increase. In particular, electro-magnetic waves do not
appear spontaneously from nowhere.

In the additional absence of energy absorbing materials the
energy is preserved.

Terminology:

A system is passive if the energy cannot increase.

A system is energy preserving if the energy is preserved.

(A system is conservative if both the system and its adjoint
preserve energy.)
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Mathematical Characterization of Passivity

We denote the energy of the wave x at time t by E (x(t)), and
define ‖x(t)‖X =

√
2E (x(t)), or equivalently,

E (x(t)) = 1
2‖x(t)‖2X . (The constant 1

2 is not important.)

With the right choice of X we can use ‖·‖X as a norm in X ,
and X then has a natural interpretation as a Hilbert space
with this norm (of L2-type).

The system
x(t) ∈ Dom (A) , t ≥ 0,

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0.

(3)

is passive if E (x(t)) ≤ E (x(s)) for t ≥ s, or equivalently, if

‖x(t)‖2X ≤ ‖x(s)‖2X , t ≥ s ≥ 0. (4)

The system (3) is energy preserving if

‖x(t)‖2X = ‖x(s)‖2X , t ≥ s ≥ 0. (5)
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Differential Characterization of Passivity

We rewrite the passivity inequality

‖x(t)‖2X ≤ ‖x(s)‖2X , t ≥ s ≥ 0, (4)

in the form

‖x(t)‖2X − ‖x(s)‖2X
t − s

≤ 0, t ≥ s ≥ 0,

and let t − s → 0. This gives

d

dt
‖x(t)‖2X ≤ 0, t ≥ 0. (6)
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Dissipative Operators

Since ‖x(t)‖2X = 〈x(t), x(t)〉X where 〈·, ·〉X is the inner product in
X , we can carry out the differentiation in (6) to get

0 ≥ d

dt
‖x(t)‖2X =

d

dt
〈x(t), x(t)〉X

= 〈ẋ(t), x(t)〉X + 〈x(t), ẋ(t)〉X
= 2<〈x(t), ẋ(t)〉X ,

where the second equality follows from the rule for the derivative
of a product. By (3), ẋ(t) = Ax(t). Thus, we get

<〈x(t),Ax(t)〉X ≤ 0, x(t) ∈ Dom (A) .

Definition

An operator A : X → X with domain Dom (A) is called dissipative
(or anti-accretive) if

<〈x ,Ax〉X ≤ 0, x ∈ Dom (A) .
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Dissipative Operators

Lemma

The system
x(t) ∈ Dom (A) , t ≥ 0,

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0.

(3)

is passive if and only if A is dissipative.

The proof in one direction was given above. The opposite direction
is also easy. However, there is something missing in the above
result. It does not say anything about existence of solutions of (3).

For example, if we take Dom (A) = ∅, then formally the above
theorem applies, but (3) does not have any solutions at all.
If we instead take Dom (A) = {0} and A0 = 0, then (3) is
also passive, but it has only the zero solution x(t) ≡ 0.
From physics we certainly expect the Maxwell’s equations to
have plenty of solutions.
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Well-Posed Passive Systems

Definition

A system
x(t) ∈ Dom (A) , t ≥ 0,

ẋ(t) = Ax(t), t ≥ 0,

x(0) = x0.

(3)

is well-posed if

x(t) depends continuously on x0 for all fixed t ≥ 0 (trivially
true if the system is passive).

The set of all possible “smooth initial states” x0 ∈ Dom (A) is
“as large as possible”, and all initial states x0 are allowed if we
replace “classical solutions” by “generalized solutions”.

For examples, in the right setting Maxwell’s equations define a
well-posed passive system (like most other linear dynamical PDEs).
The two “pathetic” examples on the preceding page are not
well-posed.
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(Almost) Without Loss of Generality: A is closed

It turn out that one can usually “without loss of generality” require
the operator A to be closed.

This is a natural physical condition, which says that the graph of A
is closed. If (3) is derived using “basic physical principles”, then A
is typically closed.
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Maximal Dissipative Operators

Theorem

A closed operator A : X → X with domain Dom (A) generates a
well-posed passive system (= semi-group) if and only if the
following two conditions hold:

1 A is dissipative, i.e.,

<〈x ,Ax〉 ≤ 0, x ∈ Dom (A) .

2 A is maximal, i.e., it is not possible to enlarge Dom (A)
without loosing the above property (1).

We call an operator A satisfying (1) and (2) maximal dissipative.
If, in addition, A is closed, then we call A m-dissipative.

This is a classical theorem due to Phillips (Phi59). It marked the
beginning of the modern era of looking at basic partial differential
equations in mathematical physics.
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Non-Closed Maximal Dissipative Operators

The above theorem is not true if we remove the word closed. See
counter example in (Phi59). But it can be replaced by densely
defined.

Theorem

A densely defined operator A : X → X with domain Dom (A)
generates a well-posed passive system (= semi-group) if and only if
A is maximal dissipative.

Thus, if A is maximal dissipative and has dense domain, then
it is closed.

If A is not closed (⇒ Dom (A) not dense), then the closure of
A is a relation, whose multi-valued part is contained in
Dom (A)⊥. If we “peal off” the multi-valued part, then the
remainder is an operator, which is closed and maximal
dissipative in Dom (A), and hence gererates a well-posed
passive system in Dom (A).
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Separating Incoming and Outgoing Data

The above two theorems do apply to Maxwell’s equations, but
they does not yet give a precise description of what happens
in the scattering case, where an incident wave hits an object
(= the scatter) and is partially absorbed and partially
reflected (= scattered) into an outgoing wave.

To get a more precise picture of this situation we must
separate the incoming wave and the outgoing wave from each
other and from the state.

In this connection boundary conditions become important,
since they determine which proportion of the wave is
absorbed, and which portion is reflected.
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System with Input and Output

In the new formulation we have, as before, the
state x(t) ∈ X , but in addition we have the
incoming signal u(t) ∈ U and the
outgoing signal y(t) ∈ Y.

The equation describing the dynamics of the system say that
the time derivative of the state and the output are determined
by the present values of the state and the input.

This leads to an equation of the type[
x(t)
u(t)

]
∈ Dom (S) , t ≥ 0,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0,

x(0) = x0.

(7)

Here S maps Dom (S) ⊂
[ X
U
]

into
[ X
Y
]
. We assume “without

loss of generality” that S is closed.
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Energy Inequality

When we take account of the power entering the system via the
input u(t) and the power leaving the system via the output y(t)
the earlier passivity inequality

d

dt
‖x(t)‖2X ≤ 0, t ≥ 0. (6)

is replaced by

d

dt
‖x(t)‖2X + ‖y(t)‖2Y ≤ ‖u(t)‖2U , t ≥ 0, (8)

where 1
2‖u(t)‖2U and 1

2‖y(t)‖2Y are the power carried by the
incoming and outgoing signals. As before,
d
dt ‖x(t)‖2X = 2<〈x(t), ẋ(t)〉X . Thus, in the new setting passivity
means that

2<〈x(t), ẋ(t)〉X + ‖y(t)‖2Y ≤ ‖u(t)‖2U ,
[
x(t)
u(t)

]
∈ Dom (S) .
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Scattering Dissipative Operators

Definition

I call an operator S :
[ X
U
]
→
[ X
Y
]

with domain Dom (S) scattering
dissipative if

2<〈ẋ , x〉+ ‖y‖2Y ≤ ‖u‖2U , [ xu ] ∈ Dom (S) ,
[
ẋ
y

]
:= S [ xu ] . (9)

Note that

If there is no input and no output (i.e., U = {0} and
Y = {0}), then scattering dissipative = dissipative in the
usual sense.

If there is no state (i.e., X = {0}), then S is scattering
dissipative if and only if S is a (not necessarily everywhere
defined) contraction.
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Main Theorem (First Version)

Theorem

A closed operator S :
[ X
U
]
→
[ X
Y
]

with domain Dom (S)
generates a well-posed scattering passive system with input u and
output y if and only if the following two conditions hold:

1 A is scattering dissipative, i.e.,

2<〈ẋ , x〉+ ‖y‖2Y ≤ ‖u‖2U , [ xu ] ∈ Dom (S) ,
[
ẋ
y

]
:= S [ xu ] .

(9)

2 A is maximal, i.e., it is not possible to enlarge Dom (A)
without loosing the inequality (9).

We call an operator S satisfying (1) and (2) maximal scattering
dissipative.

This theorem was proved one year ago in (Sta12).
This characterization of a well-posed scattering system with input
and output is much simpler than the one in the book (Sta05).
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System Node (the “simplest” version from (Sta05))

Definition

By a system node on a triple of Hilbert spaces (X ,U ,Y) we mean
a (possibly unbounded) linear operator S :

[ X
U
]
→
[ X
Y
]

with the
following properties. We denote
Dom (A) =

{
x ∈ X

∣∣ [ x0 ] ∈ Dom (S)
}

, define A : Dom (A)→ X
by Ax = PXS [ x0 ], and require the following conditions to hold:

1 S is closed as an operator from
[ X
U
]

to
[ X
Y
]

(with domain
Dom (S)).

2 PXS is closed as an operator from
[ X
U
]

to X (with domain
Dom (S)).

3 A is the generator of a C0 semigoup (i.e., the autonomous
system is well-posed).

4 For every u ∈ U there exists a x ∈ X with [ xu ] ∈ Dom (S).

(The “complicated” version in (Sta05) use “extrapolation space”.)
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Main Theorem (Classical Version)

Theorem

An operator S :
[ X
U
]
→
[ X
Y
]

with domain Dom (S) generates a
well-posed passive system with input u and output y if and only if
S is a scattering dissipative system node.

This is a much more “complicated” characterization than the new
one. In the new version we have replaced conditions (2)–(4) on the
preceding slide by the single word maximal.
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Main Theorem (Second Version)

It is again possible to replace closed by densely defined.

Theorem

A densely defined operator S :
[ X
U
]
→
[ X
Y
]

with domain Dom (S)
generates a well-posed passive system with input u and output y if
and only if S is maximal scattering dissipative.

The same counter example can be used to show that one cannot
remove both “closed” and “densely defined” from the above two
theorems.
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The Cayley Transform

If A is a dissipative operator in X (need not be closed or maximal),
then the Cayley transform of A with parameter α ∈ C+ is given by

A(α) = (α + A)(α− A)−1 = 2<α (α− A)−1 − 1X .

It has the following properties:

A(α) is always a contraction.

A is closed ⇔ A(α) is closed ⇔ Dom (A(α)) is closed.

Dom (A(α)) = X , if and only if A is closed and maximal
dissipative.

A(α) + 1X is always injective (typically not surjective).

A can be recovered from A(α): Dom (A) = Ran (A(α) + 1X )
and

A = α1X − 2<α(A(α) + 1X )−1.

With the help of the Cayley transform Phillips (Phi59) studied
dissipative operators by converting them into contractions.
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The Internal Cayley Transform

If S is a scattering dissipative operator (maximal or non-maximal)
mapping Dom (S) ⊂

[ X
U
]

into
[ X
Y
]
, then we define the internal

Cayley transform T(α) of A with parameter α ∈ C+ by “taking the
Cayley transform with parameter α of the first component, and
leaving the second component untouched”. It has the following
properties:

T(α) is always a contraction
[ X
U
]
⊃ Dom (T(α))→

[ X
Y
]
.

S is closed ⇔ T(α) is closed ⇔ Dom (T(α)) is closed.

Dom (T(α)) =
[ X
U
]

if and only if S is closed and maximal
scattering dissipative.

S can be recovered from T(α).

With the help of the internal Cayley transform one can study
scattering dissipative operators by converting them into
contractions

[ X
U
]
→
[ X
Y
]
.
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Application

In recent joint study with George Weiss of Maxwell’s
equations we begin in (SW12) by using “the external Cayley
transform” to prove an abstract result which says that an
operator with a certain structure always generates a
well-posed scattering passive (or conservative) system.

In our second paper (WS12) we show that Maxwell’s
equations can be fit into the above structure if the
conductivity, the electric permittivity, and the magnetic
permeability are all constants.

From this special case one can then get the general
(non-isotropic) case (as we also show in (WS12)) by using the
following lemma (see next slide):
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System Transformation Lemma

Lemma

Let U , X , and Y be Hilbert spaces, let S be a linear operator[ X
U
]
→
[ X
Y
]
, and let P a be positive self-adjoint and boundedly

invertible operator in X . Define

SP =

[
P 0
0 1Y

]
S

[
P 0
0 1U

]
, D

(
SP

)
=

[
P−1 0

0 1U

]
D(S).

Then S generates a well-posed scattering passive (or conservative)
system if and only if SP generates a scattering passive (or
conservative) system.

Note that this is not a similarity transformation but a congurence
transformation. The above lemma says that
scattering passivity is invariant under congruence transformations.
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System Transformation Lemma

Proof.

Clearly, it suffices to prove this lemma in one direction, since the
other direction then follows if we interchange S and SP and also
replace P by P−1.
Suppose that S generates a well-posed scattering passive system,
i.e., that S is closed and maximal scattering dissipative. Let
[ xPu ] ∈ Dom (SP), and denote

[
ẋP
y

]
:= SP [ xPu ]. Let x = PxP and

ẋ = P−1ẋP . Then [ xu ] ∈ Dom (S), and
[
ẋ
y

]
= S [ xu ]. Consequently,

0 ≤ 2<〈ẋ , x〉+ ‖y‖2Y − ‖u‖2U = 2<〈P−1ẋP ,PxP〉+ ‖y‖2Y − ‖u‖2U
= 2<〈ẋP , xP〉+ ‖y‖2Y − ‖u‖2U .

This shows that SP is scattering dissipative. It is also easy to see
that SP is closed (since S is closed) and maximal scattering
dissipative (since S is maximal scattering dissipative). Thus, by the
main theorem, SP generates a well-posed scattering passive
system.

Olof Staffans Åbo Akademi Passive Scattering Systems



Frame 29 of 29

References

Ralph S. Phillips, Dissipative operators and hyperbolic systems of
partial differential equations, Trans. Amer. Math. Soc. 90 (1959),
193–254.

Olof J. Staffans, Well-posed linear systems, Cambridge University
Press, Cambridge and New York, 2005.

, On scattering passive system nodes and maximal
scattering dissipative operators, To appear in Proc. Amer. Math.
Soc., 2012, available from http://users.abo.fi/staffans.

Olof J. Staffans and George Weiss, A physically motivated class of
scattering passive linear systems, To appear in SIAM J. Contrtol
Optim., 2012, available from http://users.abo.fi/staffans.

George Weiss and Olof J. Staffans, Maxwell’s equations as a
scattering passive linear system, submitted on March 9, 2012,
available at http://users.abo.fi/staffans, 2012.

Olof Staffans Åbo Akademi Passive Scattering Systems


