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Abstract— We study the setMΣ of all generalized solutions
(that may be unbounded and have an unbounded inverse)
of the KYP (Kalman–Yakubovich–Popov) inequality for a
infinite-dimensional linear time-invariant system Σ in contin-
uous time with scattering supply rate. It is shown that if MΣ

is nonempty, then the transfer function of Σ coincides with a
Schur class function in some right half-plane. For a minimal
systemΣ the converse is also true. In this case the set of all
H ∈ MΣ with the property that the system is still minimal
when the original norm in the state space is replaced by the
norm induced by H is shown to have a minimal and a maximal
solution, which correspond to the available storage and the
required supply, respectively. We show by an example that
the stability of the system with respect to the norm induced
by someH ∈ MΣ depends crucially on the particular choice
of H. In this example, depending on the choice of the original
realization, some or all H ∈ MΣ will be unbounded and/or
have an unbounded inverse.

I. I NTRODUCTION

Linear finite-dimensional time-invariant systems in con-
tinuous time are typically modeled by the equations

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t), t ≥ 0,
x(0) = x0,

(1)

on a triple of finite-dimensional vector spaces, namely, the
input spaceU , the state spaceX , and theoutput space
Y. We haveu(t) ∈ U , x(t) ∈ X and y(t) ∈ Y. We are
interested in the case where, in addition to the dynamics
described by (1), the components of the system satisfy an
energy inequality. In this paper we shall use thescattering
supply rate

j(u, y) = ‖u‖2 − ‖y‖2 =
〈
[ uy ] ,

[
1U 0
0 −1Y

]
[ uy ]

〉
(2)

and thestorage (or Lyapunov) function

EH(x) = 〈x,Hx〉, H > 0. (3)

A system is scattering H-passive (or simply scattering
passive ifH = 1X ) if for any admissible data(x0, u(·))
the solution of the system (1) satisfies the condition

d
dt
EH(x(t)) ≤ j(u(t), y(t)) a.e. on(0,∞). (4)

This inequality is often written in integrated form

EH(x(t))−EH(x(s)) ≤
∫ t

s

j(u(v), y(v)) dv, 0 ≤ s ≤ t.

(5)
It is not difficult to see that the inequality (4) with supply
rate (2) is equivalent to the inequality

2<〈Ax+Bu,Hx〉+ ‖Cx+Du‖2

≤ ‖u‖2, x ∈ X , u ∈ U ,
(6)

which is usually rewritten in the form[
HA+A∗H + C∗C HB + C∗D

B∗H +D∗C D∗D − 1U

]
≤ 0. (7)

This is the standard KYP (Kalman–Yakubovich–Popov)
inequality for continuous time and scattering supply rate.

In the development of the theory of absolute stability (or
hyperstability) of systems which involve nonlinear feedback
those linear systems which areH-passive with respect to a
scattering supply rate are of special interest, especially in
H∞ control. One of the main problems is to find conditions
on the coefficientsA, B, C, andD under which the KYP
inequality has at least one solutionH > 0.

To formulate a classical result about the solution of this
problem we introduce the main frequency characteristic of
the system (1), namely itstransfer functiondefined by

D(z) = D + C(z −A)−1B, z ∈ ρ(A). (8)

We also introduce theSchur classS(U ,Y; C+) of holomor-
phic contractivefunctionsD defined onC+ with values in
B(U ,Y). HereC+ = {z ∈ C | <z > 0}. If X , U , andY
are finite-dimensional, then the transfer function is rational
and dimX ≥ deg D, where deg D is the MacMillan
degree ofD. A finite-dimensional system isminimal if
dimX = deg D. The state space of a minimal system has
the smallest dimension among all systems with the same
transfer functionD.

The (finite-dimensional) system (1) iscontrollable if,
given anyz0 ∈ X andT > 0, there exists some continuous
function u on [0, T ] such that the solution of (1) with
x(0) = 0 satisfiesx(T ) = z0. It is observableif it has
the following property: if both the input functionu and the



output functiony vanish on some interval[0, T ] with T > 0,
then necessarily the initial statex0 is zero.

Theorem 1.1 (Kalman):A finite-dimensional system is
minimal if and only if it is controllable and observable.

Theorem 1.2 (Kalman–Yakubovich–Popov):Let Σ =
([A B
C D ] ;X ,U ,Y) be a finite-dimensional system with trans-

fer functionD.

(i) If the KYP inequality (7) has a solutionH > 0 then
C+ ⊂ ρ(A) andD|C+ ∈ S(U ,Y; C+).

(ii) If Σ is minimal and D|C+ ∈ S(U ,Y; C+), then
the KYP inequality (7) has a solutionH, i.e., Σ is
scatteringH-passive for someH > 0.

HereD|Ω is the restriction ofD to Ω ⊂ ρ(A).
It is can be shown thatH > 0 is a solution of (7) if

and only if H̃ = H−1 is a solution of the the dual KYP
inequality[

H̃A∗ +AH̃ +BB∗ H̃C∗ +BD∗

CH̃ +DB∗ DD∗ − 1Y

]
≤ 0. (9)

The discrete timescattering KYP inequality is given by[
A∗HA+ C∗C −H A∗HB + C∗D
B∗HA+D∗C D∗D +B∗HB − 1U

]
≤ 0. (10)

The corresponding Kalman–Yakubovich–Popov theorem is
still valid with C+ replaced byD+ = {z ∈ C | |z| > 1}
and with the transfer function defined by the same formula
(8).1

In the seventies the classical results on the KYP inequal-
ities were extended to systems withdimX = ∞ by V. A.
Yakubovich and his students and collaborators (see [22],
[23], [8] and the references listed there). There is now a rich
literature on this subject; see, e.g., the discussion in [10] and
the references cited there. However, as far as we know, in
these and all later generalizations it was assumed (until [2])
thateitherH itself is bounded orH−1 is bounded.2 This is
not always a realistic assumption. The operatorH is very
sensitive to the choice of the state spaceX and its norm,
and the boundedness ofH andH−1 depends entirely on
this choice. By allowing bothH andH−1 to be unbounded
we can use an analogue of the standard finite-dimensional
procedure to determine whether a given transfer functionθ
is a Schur function or not, namely tochoose an arbitrary
minimal realization ofθ, and then check whether the KYP
inequality (7) has a positive (generalized) solution. This
procedure would not work if we requireH or H−1 to
be bounded, because our first main theorem (Theorem 3.3)
is not true in that setting. We shall discuss this further in
Section V by means of an example.

A generalized solution of the discrete time KYP inequal-
ity (10) that permits bothH andH−1 to be unbounded was

1This is the standard “engineering” version of the transfer function. In
the mathematical literature one usually replacez by 1/z and D+ by the
unit disk D = {z ∈ C | |z| < 1}.

2Results whereH−1 is bounded are typically proved by replacing the
primal KYP inequality by the dual KYP inequality (9).

developed by Arov, Kaashoek and Pik in [2]. There it was
required that

AD(
√
H) ⊂ D(

√
H) andR(B) ⊂ D(

√
H), (11)

and (10) was rewritten using the corresponding quadratic
form defined onD(

√
H)⊕U . Here we extend this approach

to continuous time.

II. CONTINUOUS TIME SYSTEM NODES

In discrete time one always assumes thatA, B, C, andD
are bounded operators. In continuous time this assumption
is not reasonable. Below we will use a natural continuous
time setting, earlier used in, e.g., [3], [9], [12], [13], and
[14] (in slightly different forms).

In the sequel, we think about the block matrixS = [A B
C D ]

as one single closed (possibly unbounded) linear operator
from [XU ] (the cross product ofX andU) to

[X
Y

]
with dense

domainD(S) ⊂ [XU ], and write (1) in the form[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0. (12)

In the infinite-dimensional case such an operatorS need
not have a four block decomposition corresponding to the
decompositions[XU ] and

[X
Y

]
of the domain and range

spaces. However, we shall throughout assume that the
operator

Ax := PXS [ x0 ] ,
x ∈ D(A) := {x ∈ X | [ x0 ] ∈ D(S)},

(13)

is closed and densely defined inX (herePX is the orthog-
onal projection ontoX ). We defineX 1 := D(A) with the
graph norm ofA, X 1

∗ := D(A∗) with the graph norm ofA∗,
and letX−1 to be the dual ofX 1

∗ when we identify the dual
of X with itself. ThenX 1 ⊂ X ⊂ X−1 with continuous
and dense embeddings, and the operatorA has a unique
extension to an operator̂A = (A∗)∗ ∈ B(X ;X−1), where
we interpretA∗ as an operator inB(X 1

∗ ;X ).3 Additional
assumptions onA will be added in Definition 2.1 below.

The remaining blocks ofS will be only partially defined.
The ‘block’ B will be an operator inB(U ;X−1). In
particular, it may happen thatR(B) ∩ X = {0}. The
‘block’ C will be an operator inB(X 1;Y). We shall make
no attempt to define the ‘block’D in general since this
can be done only under additional assumptions (see, e.g.,
[14, Chapter 5] or [17], [18]). Nevertheless, we still use a
modified block notationS =

[
A&B
C&D

]
, whereA&B = PXS

andC&D = PYS.
Definition 2.1: By a system nodewe mean a colligation

Σ := (S;X ,U ,Y), whereX , U andY are Hilbert spaces
and the system operatorS =

[
A&B
C&D

]
is a (possibly

unbounded) linear operator from[XU ] to
[X
Y

]
with the

following properties:

3This construction is found in most of the papers listed in the bibliog-
raphy (in slightly different but equivalent forms), including [3], [9], and
[11]–[19].



(i) S is closed.
(ii) The operatorA defined in (13) is the generator of a

C0 semigroupt 7→ T t, t ≥ 0, onX .
(iii) A&B has an extension

[
Â B

]
∈ B([XU ] ;X−1)

(whereB ∈ B(U ;X−1)).
(iv) D(S) =

{
[ xu ] ∈ [XU ]

∣∣ Âx+Bu ∈ X
}

, andA&B =[
Â B

]
|D(S);

It can be shown that (ii)–(iv) imply that the domain ofS
is dense in[XU ]. It is also true that if (ii)–(iv) holds, then
(i) is equivalent to the following condition:

(v) C&D ∈ B(D(S);Y), where we use the graph norm
of A&B on D(S).

We callA ∈ B(X 1;X ) the main operatorof Σ, t 7→ T t,
t ≥ 0, is the evolution semigroup, B ∈ B(U ;X−1) is the
control operator, and C&D ∈ B(V ;Y) is the combined
observation/feedthrough operator. From the last operator
we can extractC ∈ B(X 1;Y), the observation operator
of Σ, defined by

Cx := C&D
[
x
0

]
, x ∈ X 1. (14)

It can be proved that[
(z − Â)−1Bu

u

]
∈ D(S)

for all z ∈ ρ(A) and u ∈ U . We can therefore define the
transfer functionD of Σ by

D(z) = C&D
[

(z− bA)−1B
1U

]
, z ∈ ρ(A). (15)

In the case where the ‘block’D is well-defined, e.g., in the
case whereR(B) ⊂ X , the formula (15) can be written in
the standard form (8).

If Σ := (S;X ,U ,Y) is a system node, then (12) has
(smooth) trajectories of the following type.

Lemma 2.2:Let Σ := (S;X ,U ,Y) be a system node.
Then for eachx0 ∈ X and u ∈ W 2,2

loc ([0,∞);U) such
that

[ x0
u(0)

]
∈ D(S), there is a unique functionx ∈

C1([0,∞);X ) (called astate trajectory) satisfyingx(0) =
x0,

[
x(t)
u(t)

]
∈ D(S), t ≥ 0, andẋ(t) = A&B

[
x(t)
u(t)

]
, t ≥ 0.

If we define the output byy(t) = C&D
[
x(t)
u(t)

]
, t ≥ 0,

theny ∈ C([0,∞);Y), and the three functionsu, x, andy
satisfy (12).

The lemma is contained in [14, Lemmas 4.7.7–4.7.8].
By the system induced by a system nodeΣ :=

(S;X ,U ,Y) we mean the node itself together with all the
trajectories ofΣ. We use the same notationΣ for the system
as for the node.

A systemΣ is (approximately)controllable if the set of
all possible statesx(t) in Lemma 2.2 withx0 = 0 and
u(0) = 0 is dense inX (i.e., we letu vary over all functions
in u ∈ W 2,2

loc ([0,∞);U) with u(0) = 0, and let t vary
over [0,∞)). It is (approximately)observableif the only
trajectoryx(·) with x(0) ∈ D(A) for which both the input

function u(·) and output functiony(·) vanish identically is
the zero trajectoryx(·) = 0. Finally, we defineΣ to be
minimal if it is both controllable and observable. It can be
shown thatΣ is controllable if and only if∨

λ∈ρ+∞(A)

R((λ− Â)−1B) = X , (16)

where ρ+
∞(A) is the connected component ofA which

contains a right half-plane. Similarly,Σ is observable if
and only if ⋂

λ∈ρ+∞(A)

N (C(λ−A)−1) = 0. (17)

Finally, it is minimal if and only if both (16) and (17) hold.

III. T HE GENERALIZED KYP INEQUALITY

In our study of the KYP inequality we do not only allow
the operatorsA, B, andC to be unbounded (as explained
above), but we allow both thestorage operatorH > 0 and
its inverseH−1 to beunboundedas well. This means that
one must be very careful about the domain on which the
different operators act.

In the case of an unbounded operatorH we rewrite the
storage functionEH in (3) in the form

EH(x) = ‖
√
Hx‖2, x ∈ D(

√
H). (18)

This is equivalent to replacing the operatorH > 0 by
the corresponding (closed) quadratic form induced byH.
In addition we shall requireD(

√
H) to be invariant under

trajectories ofΣ.
Definition 3.1: A system node Σ := (S =[
A&B
C&D

]
;X ,U ,Y) is (scattering)H-passive (or simply

passiveif H = 1X ) if the following conditions hold:

(i) H is a positive (injective, possibly unbounded) self-
adjoint operator onX . We denote the positive self-
adjoint square root ofH by Q :=

√
H.

(ii) If u ∈W 2,2
loc ([0,∞);U) and

[ x0
u(0)

]
∈ D(S) with x0 ∈

D(Q) andA&B
[ x0
u(0)

]
∈ D(Q), then the solutionx

in Lemma 2.2 satisfiesx(t), ẋ(t) ∈ D(Q) for all
t ≥ 0, and bothQx andQẋ are continuous inX on
[0,∞).

(iii) Each solution of the type described in (ii) satisfies

〈Qx(t), Qx(t)〉X +
∫ t

s

‖y(v)‖2Y dv

≤ 〈Qx(s), Qx(s)〉X +
∫ t

s

‖u(v)‖2U dv,

0 ≤ s ≤ t.

(19)

In the present infinite-dimensional case the connection
between theH-passivity of a system node and the gen-
eralized KYP inequality is more subtle than in the finite-
dimensional case. In particular, solutions of the generalized
KYP inequality must satisfy a certain invariance condition.



The following is our first main result.
Theorem 3.2:Let Σ = (S;X ,U ,Y) be a system node

with main operatorA and control operatorB, and let
ρ+
∞(A) be the connected component ofρ(A) ∩ C+ which

contains some right half-plane. ThenΣ is H-passive if and
only if the following conditions hold:

(i) H is a positive (injective, possibly unbounded) self-
adjoint operator onX . We denote the positive self-
adjoint square root ofH by Q :=

√
H.

(ii) (λ−A)−1D(Q) ⊂ D(Q) for someλ ∈ ρ+
∞(A).

(iii) (λ− Â)−1BU ⊂ D(Q) for someλ ∈ ρ+
∞(A).

(iv) The operatorQAQ−1, defined on its natural domain
consisting of thosex ∈ R(Q) for which Q−1x ∈
D(A) andAQ−1x ∈ D(Q), is closable.

(v) For all [ x0
u0 ] ∈ D(S) with x0 ∈ D(Q) and

A&B [ x0
u0 ] ∈ D(Q) we have

2<〈Q[A&B] [ x0
u0 ] , Qx0〉X

+ ‖C&D [ x0
u0 ]‖2Y ≤ ‖u0‖2U .

(20)

Here conditions (ii) and (iv) can alternatively be replaced
by the condition
(ii’) T tD(Q) ⊂ D(Q) for all t ≥ 0, and the function

t 7→ QT tx0 is continuous on[0,∞) (with values in
X ) for all x0 ∈ D(Q),

wheret 7→ T t is the evolution semigroup ofΣ.
One half of the proof of Theorem 3.2 is easy, namely the

claim that (i)–(iii) in Definition 3.1 imply (i)–(v) in The-
orem 3.2. The most difficult part of the opposite direction
of the proof is to show that (i)–(v) in Theorem 3.2 imply
condition (ii) in Definition 3.1.

We shall call (20) thegeneralized (continuous time scat-
tering) KYP inequality, and we callH a solution of this
inequality if and only if (i)–(v) in Theorem 3.2 hold. Thus,
by Theorem 3.2,H is a solution of the generalized KYP
inequality if and only ifΣ is H-passive. If all the operators
in (20) are bounded together withH−1, then (20) reduces
to the standard KYP inequality (7).

For the formulation of our next main theorem we recall
the definition of the restricted Schur classS(U ,Y; Ω),
whereΩ is an open connected subset ofC+: θ ∈ S(U ,Y; Ω)
means thatθ is the restriction toΩ of a function in the Schur
classS(U ,Y,C+). It is known thatθ ∈ S(U ,Y; Ω) if and
only if θ is a B(U ,Y)-valued holomorphic function onΩ
and the kernel

Kθ(z, ω) =
1Y − θ(z)θ(ω)∗

z + ω
, z, ω ∈ Ω,

is positive definite onΩ×Ω (or more generally, onΩ0×Ω0

whereΩ0 ⊂ Ω contains some interior cluster point; see [1]).
Theorem 3.3:Let Σ := (S;X ,U ,Y) be a system node

with main operatorA and transfer functionD. Let ρ+
∞(A)

be the connected component ofρ(A)∩C+ which contains
some right half-plane.

(i) If the generalized KYP inequality (20) has a solu-
tion H, i.e., if Σ is H-passive, thenD|ρ+∞(A) ∈
S(U ,Y; ρ+

∞(A)).

(ii) Conversely, suppose thatΣ is minimal and that
D|ρ+∞(A) ∈ S(U ,Y; ρ+

∞(A)). Then the generalized
KYP inequality (20) has a solutionH satisfying the
two additional minimality conditions∨

λ∈ρ+∞(A)

R(
√
H(λ− Â)−1B) = X ,

⋂
λ∈ρ+∞(A)

N (C(λ−A)−1|D(
√
H)) = 0.

(21)

These minimality conditions mean that if we replace the
original norm in the state space by the norm obtained from
the storage functionEH (and then complete the space with
respect to the new norm), then the resulting systemΣH is
still minimal. The KYP inequality says that this new system
is scattering passive. If bothH andH−1 are bounded, then
the conditions (21) hold if and only if the original system
Σ is minimal.

In our third main theorem we compare solutions of the
generalized KYP inequality to each other by using the
partial ordering of nonnegative self-adjoint operators onX :
if H1 andH2 are two nonnegative self-adjoint operators on
the Hilbert spaceX , then we writeH1 � H2 whenever
D(H1/2

2 ) ⊂ D(H1/2
1 ) and ‖H1/2

1 x‖ ≤ ‖H1/2
2 x‖ for all

x ∈ D(H1/2
2 ). For boundednonnegative operatorsH1 and

H2 with D(H2) = D(H1) = X this ordering coincides with
the standard ordering of bounded self-adjoint operators.

We denote the set of all solutionsH of the generalized
KYP inequality (20) satisfying the additional minimality
conditions (21) byMmin

Σ .
Theorem 3.4:Let Σ := (S;X ,U ,Y) be a minimal sys-

tem node with transfer functionD satisfying the condition
D|ρ+∞(A) ∈ S(U ,Y; ρ+

∞(A)) (this notation is explained
before and in Theorem 3.3). ThenMmin

Σ is nonempty, and
it contains a minimal elementH◦ and a maximal element
H•, i.e.,

H◦ � H � H•, H ∈Mmin
Σ .

The two extremal storage functionsEH◦ andEH• corre-
spond to Willems’ [20], [21]available storageandrequired
supply, respectively. See [14, Remark 11.8.11] for details.
We defineH� ∈ Mmin

Σ to be thebalancedsolution of the
generalized KYP inequality (20), i.e., the solutionH� for
which the systemΣH� is the passive balanced realization
constructed in [14, Theorem 11.8.14].4

IV. H -STABILITY

The possible unboundedness ofH and andH−1 where
H is a solution of the generalized KYP inequality (20)
has important consequences for the stability analysis ofΣ.
Indeed, in the finite-dimensional setting it is sufficient to
prove stability with respect to the storage functionEH
defined in (3) in order to get stability with respect to
the original norm in the state space, since all norms in

4H� can in a certain sense be interpreted as a geometric mean ofH◦
andH•.



a finite-dimensional space are equivalent. This is not true
in the infinite-dimensional setting unlessH andH−1 are
bounded. Stability with respect to one storage functionEH1

is not equivalent to stability with respect to another storage
function EH2 . Moreover, the natural norm to use for the
adjoint system is the one obtained fromEH−1 instead
of EH , taking into account thatH is a solution of the
generalized KYP inequality (20) if and only if̃H = H−1

is a solution of the adjoint generalized KYP inequality.
Definition 4.1: Let H be a solution of the generalized

KYP inequality (20). Then the evolution semigroupt 7→ T t,
t ≥ 0, is

(i) stronglyH-stable, if

lim
t→∞

‖H1/2T tx‖ → 0 for all x ∈ D(H1/2),

(ii) strongly H-∗-stable, if

lim
t→∞

‖H−1/2(T t)∗x∗‖ → 0 for all x∗ ∈ R(H1/2),

(iii) strongly H-bistable if both (i) and (ii) above hold.

Theorem 4.2:Let Σ := (S;X ,U ,Y) be a minimal sys-
tem node with transfer functionD satisfying the condition
D|ρ+∞(A) = θ|ρ+∞(A) for someθ ∈ S(U ,Y; C+). Let H◦,
H•, andH� be the special solutions inMmin

Σ defined in
and after Theorem 3.4. Lett 7→ T t, t ≥ 0, be the evolution
semigroup ofΣ. Then the following claims are true:

(i) t 7→ T t is strongly H◦-stable if and only if the
factorization problem

ϕ(z)∗ϕ(z) = 1U − θ(z)∗θ(z) a.e. oniR

has a solutionϕ ∈ S(U ,Yϕ; C+) for some Hilbert
spaceYϕ.

(ii) t 7→ T t is stronglyH•-∗-stable if and only if the
factorization problem

ψ(z)ψ(z)∗ = 1Y − θ(z)θ(z)∗ a.e. oniR

has a solutionψ ∈ S(Uψ,Y; C+) for some Hilbert
spaceUψ.

(iii) t 7→ T t is stronglyH�-bistable if and only if both
the factorization problems in (i) and (ii) are solvable.

V. A N EXAMPLE

In this section we present an example where all the
solutionsH of the generalized KYP inequality (20) are
unbounded and have an unbounded inverse. This example
is a continuous time analogue of the discrete time examples
given in [7, p. 267] and [2]. The same example will be used
to illustrate the conclusion of Theorem 4.2.

The impulse response of a suitably normalized damped
heat equation on[0,∞) with Neumann control and Dirichlet
observation at the origin is given byb(t) = 1√

π
t−1/2e−2t,

t ≥ 0, with transfer functionθ(z) = 1/
√
z + 2, z ∈ C+.

This is a Schur function onC+, and it is possible to
realize this function with the help of the damped heat

equation. However, instead we choose another realization,
namely an exponentially weighted version of one of the
standard Hankel realizations. We begin by first replacingθ
by the shifted functionθ0(z) := 1/

√
z + 3, z ∈ C+. The

corresponding impulse response isb0(t) = 1√
π
t−1/2e−3t,

t ≥ 0. We realizeθ0 by means of the standard time domain
output normalized Hankel realization described in, e.g.,
[14, Example 2.6.5(ii)], and we denote this realization by
Σ0 := (S0;X ,C,C). The state space of this realization is

X = L2(0,∞) and the system operatorS0 =
[

[A&B]0
[C&D]0

]
is defined as follows. We take the main operator to be
(A0x)(ξ) = x′(ξ) for x ∈ D(A0) := W 2,1(0,∞).
Then X−1 = W−1,2(0,∞), and Â0x is the distribution
derivative ofx ∈ L2(0,∞). We take the control operator
to be (B0c)(ξ) = b0(ξ)c for c ∈ C. We defineD(S0)
to consist of those[ xc ] for which x ∈ L2(0,∞) is of
the form x(ξ) = x(0) +

∫ ξ
0
h(ν) dν − c

∫ ξ
0
b0(ν) dν for

some h ∈ L2(0,∞), and define[A&B]0 [ xc ] = h and
[C&D]0 [ xc ] = x(0). This realization is output normalized
in the sense that the observability Gramian is the identity,
and it is minimal because the range of the Hankel operator
induced byb0 is dense inL2(0,∞) (see [7, Theorem 3-
5, p. 254]). The evolution semigroupt 7→ T t0 is the left-
shift semigroup onL2(0,∞), i.e., (T t0x)(ξ) = x(t + ξ)
for t, ξ ≥ 0, and the spectrum ofA0 is the closed
left half-plane {<z ≤ 0}. From this realization we get
a minimal realizationΣ := (S;X ,C,C) of the original
transfer functionθ by takingS = S0 +

[
1X 0
0 0

]
. Clearly the

spectrum of the main operatorA := A0 + 1X is the closed
half-plane{<z ≤ 1}, the evolution semigroupt 7→ T t,
given by(T tx)(ξ) = etx(t+ ξ) for t, ξ ≥ 0, is unbounded,
and the transfer functionD is the restriction ofθ to the
half-plane<z > 1.

Since θ is a Schur function, it follows from Theorem
3.3 that the generalized KYP inequality (20) has a solution
H. Suppose that bothH and H−1 are bounded. Then
our original realization becomes passive if we replace the
original norm by the norm induced by the storage function
EH . In particular, with respect to this norm the evolution
semigroup is contractive. However, this is impossible since
we known that the semigroup is unbounded with respect
to the original norm, and the two norms are equivalent.
This contradiction shows thatH or H−1 is unbounded.
In this particular case it follows from [14, Theorems 9.4.7
and 9.5.2] thatH−1 is bounded, henceH itself must be
unbounded.

From the above example we can get another one where
bothH andH−1 must be unbounded as follows. We take
two independent copies of the transfer functionθ considered
above, i.e, we look at the matrix-valued transfer function[
θ(z) 0
0 θ(z)

]
. We realize this transfer function by taking two

independent realizations of the two blocks, so that we
realize one of them with the exponentially weighted output
normalized shift realization described above, and the other



block with the adjoint of this realization. This will force
both H andH−1 to be unbounded for every solutionH
of the generalized KYP inequality (20) for the combined
system.

The above example illustrates our earlier claim that it
is possible that all the solutions of the generalized KYP
inequality (20) are unbounded and have an unbounded
inverse. However, taking a closer look at the situation
we find that there is another even more severe problem.
Through a careful choice of the original realization one
can always assure that the identity is a solution of (20) (in
particular,H andH−1 are bounded) whenever the function
θ that we want to realize is a Schur function (one way to do
this is to start with an arbitrary minimal realization, find an
arbitrary solution of the generalized KYP inequality (20),
replace the norm in the state space by the norm induced
by the storage functionEH , and finally complete the space
with respect to this norm). However, it will still be true in
many cases that (20) also has other solutionsH for which
H or H−1 is unbounded. In particular, if we choose the
original realization to be the passive balanced realization
constructed in [14, Theorem 11.8.14] (which corresponds to
the balanced solutionH� of the generalized KYP inequality
(20)), then it is more a rule than an exception that the
maximal solutionH• in Theorem 3.4 is unbounded, and that
the minimal solutionH◦ in Theorem 3.4 has an unbounded
inverse. The only case where this isnot true is where
the norms induced by the two storage functionsEH◦ and
EH• are equivalent.5 In the example discussed above the
balanced realization can be identified with the standard
realization based on the damped heat equation, and its
spectrum is the half-line(−∞,−2]. If we want to study
this example by starting from the damped heat equation
realization, thenH• is unbounded andH◦ has an unbounded
inverse.

To illustrate Theorem 4.2 we observe that in the example
studied above withθ(z) = 1/

√
z + 2 both factorization

problems (i) and (ii) in that theorem coincide, and they are
solvable. Consequently, the evolution semigroupt 7→ T t is
stronglyH◦-stable, stronglyH•-∗-stable, and stronglyH�-
bistable (and even exponentiallyH�-stable in this case).
Nevertheless,t 7→ T t is notstronglyH◦-∗-stable or strongly
H•-stable. This follows from the fact thatθ does not have
a meromorphic pseudo-continuation into the left half-plane
(see [5] and [6] for details).

The proofs of all the results mentioned above are given
in [6]. They are based on the corresponding results for the
discrete time case proved in [2], some new results on the
pseudo-similarity of continuous time system nodes obtained
in [6], and the connection between discrete and continuous
time-invariant systems via the Cayley transform, considered
in [3] (this transform is described in detail in [14]).

5Necessary and sufficient condition on the transfer function for these
two norms to be the same or equivalent can be derived from [4, Theorems
2 and 3].
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Birkhäuser-Verlag, 1997, vol. 96.

[2] D. Z. Arov, M. A. Kaashoek, and D. R. Pik, “The Kalman–
Yakubovich–Popov inequality and infinite dimensional discrete time
dissipative systems,”J. Operator Theory, 46 pages, 2005, to appear.

[3] D. Z. Arov and M. A. Nudelman, “Passive linear stationary dy-
namical scattering systems with continuous time,”Integral Equations
Operator Theory, vol. 24, pp. 1–45, 1996.

[4] ——, “Tests for the similarity of all minimal passive realizations of
a fixed transfer function (scattering or resistance matrix),”Sbornik:
Mathematics, vol. 193, pp. 791–810, 2002.

[5] D. Z. Arov and O. J. Staffans, “Bi-inner dilations and bi-stable pas-
sive scattering realizations of Schur class operator-valued functions,”
Integral Equations Operator Theory, 14 pages, 2005, to appear.

[6] ——, “The infinite-dimensional continuous time Kalman–
Yakubovich–Popov inequality,” Operator Theory: Advances
and Applications, 32 pages, 2006, manuscript available at
http://www.abo.fi/˜staffans/.

[7] P. A. Fuhrmann,Linear Systems and Operators in Hilbert Space.
New York: McGraw-Hill, 1981.

[8] A. L. Lihtarnikov and V. A. Yakubovich, “A frequency theorem for
equations of evolution type,”Sibirsk. Mat. Ž., vol. 17, no. 5, pp.
1069–1085, 1198, 1976, translation in Sib. Math. J. 17 (1976), 790–
803 (1977).

[9] J. Malinen, O. J. Staffans, and G. Weiss, “When is a linear system
conservative?”Quart. Appl. Math., 2005, to appear.

[10] L. Pandolfi, “The Kalman-Yakubovich-Popov theorem for stabi-
lizable hyperbolic boundary control systems,”Integral Equations
Operator Theory, vol. 34, no. 4, pp. 478–493, 1999.

[11] D. Salamon, “Infinite dimensional linear systems with unbounded
control and observation: a functional analytic approach,”Trans. Amer.
Math. Soc., vol. 300, pp. 383–431, 1987.

[12] ——, “Realization theory in Hilbert space,”Math. Systems Theory,
vol. 21, pp. 147–164, 1989.
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I,” Sibirsk. Mat.Ž., vol. 15, pp. 639–668, 703, 1974, translation in
Sib. Math. J. 15 (1974), 457–476 (1975).

[23] ——, “The frequency theorem for the case in which the state space
and the control space are Hilbert spaces, and its application in certain
problems in the synthesis of optimal control. II,”Sibirsk. Mat.Ž.,
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