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Abstract

One of the basic axioms of a continuous time well-posed

linear system says that the Hankel operator of the input-

output map of the system factors into the product of

the input map and the output map. Here we prove the

converse: every factorization of the Hankel operator of a

bounded causal time-invariant map from L

2

to L

2

which

satis�es a certain necessary admissibility condition in-

duces a stable well-posed linear system. In particular,

there is a one-to-one correspondence between the set of

all minimal stable well-posed realizations of a given stable

causal time-invariant input-output map (or equivalently,

of a given H

1

transfer function) and all minimal stable

admissible factorizations of the Hankel operator of this

input-output map. The corresponding discrete time re-

sult is valid as well, and these results can be extended to

unstable systems.

1 The Main Result

Let U and Y be two Hilbert spaces, and let TIC(U ;Y )

denote the space of all bounded linear time-invariant

and causal operators from L

2

(R;U) to L

2

(R;Y ), where

R = (�1;1). The purpose of this note is to show that

there is a one-to-one correspondence between the set of all

minimal stable realizations of a given input-output map

D 2 TIC(U ;Y ) and the set of all minimal bounded fac-

torizations of the Hankel operator ofD which satisfy a cer-

tain admissibility condition. We begin by de�ning what

we mean by a stable well-posed linear system in continu-

ous time.

Let R

�

= (�1; 0), R

+

= [0;1), and for any function

u de�ned on R, let

(�

t

u)(s) = u(t+ s); t; s 2 R;

(�

�

u)(s) =

(

u(s); s 2 R

�

;

0; s 2 R

+

;

(�

+

u)(s) =

(

u(s); s 2 R

+

;

0; s 2 R

�

:

In particular, we can apply these operators to functions

u 2 L

2

(R;U) (the space of U -valued L

2

-functions on R),

where U is a Hilbert space. Then t 7! �

t

is the (bilateral)

left-shift group on L

2

(R;U), t 7! �

t

+

= �

+

�

t

is the (uni-

lateral) left-shift semigroup on L

2

(R

+

;U), and �

t

�

= �

t

�

�

is the (unilateral) left-shift semigroup on L

2

(R

�

;U).

De�nition 1.1. Let U , H and Y be Hilbert spaces. A sta-

ble well-posed linear system 	 on (Y;H;U) is a quadruple

	 =

�

A B

C D

�

of bounded linear operators satisfying the fol-

lowing conditions:

(i) t 7! A

t

is a bounded strongly continuous semigroup

on H;

(ii) B : L

2

(R

�

;U) ! H satis�es B�

t

�

= A

t

B for all t 2

R

+

;

(iii) C : H ! L

2

(R

+

;Y ) satis�es CA

t

= �

t

+

C for all t 2

R

+

;

(iv) D : L

2

(R;U)! L

2

(R;Y ) satis�es �

t

D = D�

t

for all

t 2 R, �

�

D�

+

= 0, and �

+

D�

�

= CB.

The di�erent components of 	 are called as follows: U

is the input space, H is the state space, Y is the output

space, A is the semigroup, B is the input map, C is the

output map, and D is the input-output map.

Thus, (ii) says that the input map B intertwines the

left shift on R

�

with the basic state space semigroup A,

and (iii) says that the output map C intertwines A with

the left shift on R

+

. The condition �

t

D = D�

t

says that

1



D is time-invariant, the condition �

�

D�

+

= 0 says that D

is causal (thus, D 2 TIC(U ;Y )), and the �nal condition

�

+

D�

�

= CB in (iv) says that the Hankel operator of the

input-output map D factors into the product of the input

map B and the output map C. For more details of this

particular formulation of a well-posed linear system we re-

fer the reader to Sta�ans [1995, 1996, 1997, 1998a,c,d,b,

1999b]. Alternative (but more or less equivalent) formula-

tions are given in Arov and Nudelman [1996], Curtain and

Weiss [1989], Helton [1976], Jacob and Zwart [1998], Ober

and Montgomery-Smith [1990], Ober and Wu [1996], Sala-

mon [1987, 1989], Weiss [1989a,b,c, 1991, 1994b,a], and

Weiss and Weiss [1997].

Here we are primarily interested in the converse of part

(iv) of De�nition 1.1. Suppose that D 2 TIC(U ;Y ),

i.e., D : L

2

(R;U) ! L

2

(R;Y ) satis�es both the time-

invariance requirement �

t

D = D�

t

and the causality re-

quirement �

�

D�

+

= 0 in (iv). Suppose also that in

one way or another we have succeeded to factor �

+

D�

�

into �

+

D�

�

= CB, where B : L

2

(R

�

;U) ! H and

C : H ! L

2

(R

+

;Y ) are bounded linear operators and H

is an arbitrary Hilbert space. Is it then always possible to

�nd a semigroup A on H such that the quadruple

�

A B

C D

�

is a stable well-posed linear system?

Our answer to the preceding question, given in Theo-

rem 1.3 below, is a quali�ed \yes". One necessary restric-

tion is that the factors in the factorization �

+

D�

�

= CB

satisfy some \hidden" regularity assumptions imposed on

them by the fact that they also have to satisfy (ii) and

(iii). To derive these hidden regularity assumptions we

argue as follows: If (ii) holds then B�

t

�

= A

t

B, hence

kB�

t

�

uk

H

� KkBuk

H

; 8t 2 R

+

; 8u 2 L

2

(R

�

;U); (1)

where K = sup

t�0

kA

t

k. In particular, for all u 2

L

2

(R

�

;U),

Bu = 0) B�

t

�

u = 0; 8t 2 R

+

: (2)

The same computation applied to the adjoint of the out-

put intertwining condition CA

t

= �

t

+

C gives an analogous

condition for the output map, namely

k(�

t

+

C)

�

yk

H

� KkC

�

yk

H

; 8t 2 R

+

; 8y 2 L

2

(R

+

;Y ):

(3)

Another important property of the factorization

�

+

D�

�

= CB is related to the controllability and ob-

servability of the resulting system.

De�nition 1.2.

(i) A stable well-posed linear system

�

A B

C D

�

on (Y;H;U)

is controllable if B has dense range, and exactly con-

trollable in in�nite time if the range of B is the whole

state space H. The system is observable if C is one-

to-one and exactly observable in in�nite time if, in

addition, the range of C is closed in L

2

(R

+

;Y ). A

system is minimal if it is both controllable and ob-

servable.

(ii) By a stable factorization �

+

D�

�

= CB of the Hankel

operator of D 2 TIC(U ;Y ) we mean a factorization

where H is a Hilbert space, and B : L

2

(R

�

;U)! H

and C : H ! L

2

(R

+

;Y ) are bounded linear opera-

tors. This factorization is minimal if, in addition,

the range of B is dense in H and C is one-to-one.

It is well known that every well-posed linear system can

be turned into a minimal system by factoring out the or-

thogonal complement of the range of the input map and

projecting onto the orthogonal complement of the null

space of the output map. See, for example, [Salamon,

1987, p. 159] or [Arov and Nudelman, 1996, Theorem 7.1]

(the corresponding discrete time version is found in, e.g.,

[Helton, 1974, Theorem 3a.1]).

The following is our main result:

Theorem 1.3. Let D 2 TIC(U ;Y ), and suppose that the

Hankel operator �

+

D�

�

of D factors into �

+

D�

�

= CB,

where H is a Hilbert space, and B : L

2

(R

�

;U) ! H and

C : H ! L

2

(R

+

;Y ) are bounded linear operators (i.e., CB

is a stable factorization of �

+

D�

�

).

(i) If B has dense range then (1) implies (3), and if C

is one-to-one then (3) implies (1).

(ii) Let H

B

be the closure of the range of B in H. Then

the following conditions are equivalent:

(a) condition (1) holds;

(b) there is a (unique) semigroup A

B

on H

B

such

that

�

A

B

B

C

B

D

�

is a stable well-posed linear system

on (Y;H

B

; U); here C

B

is the restriction of C to

H

B

.

(iii) Let H

C

be the orthogonal complement to the null space

of C in H. Then the following conditions are equiva-

lent:

(a) condition (3) holds;

(b) there is a (unique) semigroup A

C

on H

C

such

that

�

A

C

B

C

C D

�

is a stable well-posed linear system

on (Y;H

C

; U); here B

C

= P

C

B, where P

C

is the

orthogonal projection of H onto H

C

.

(iv) If the factorization �

+

D�

�

= CB is minimal (i.e.,

B has dense range and C is one-to-one), then the

following conditions are equivalent:

(a) condition (1) holds;

(b) condition (3) holds;

(c) there is a (unique) semigroup A on H such that

�

A B

C D

�

is a stable well-posed linear system.

The proof of Theorem 1.3 is given in Sta�ans [1999a].



Corollary 1.4. There is a one-to-one correspondence be-

tween the set of all minimal stable realizations of an input-

output map D 2 TIC(U ;Y ) and the set of all minimal

stable factorizations of the Hankel operator of D satisfy-

ing the admissibility conditions (1) and (3).

This follows from De�nitions 1.1 and 1.2 and Theorem

1.3(iv). We remark that all the realizations in Corol-

lary 1.4 are weakly similar (with a one-to-one, closed, pos-

sibly unbounded, densely de�ned similarity operator with

dense range); see [Arov and Nudelman, 1996, Proposition

7.10] or Sta�ans [1999b].

2 The History of the Problem

Theorem 1.3 is in the spirit of [Kalman et al., 1969, Part

4] (although the setting is di�erent). The importance

of the Hankel operator of the input-output map in re-

alization theory has long been recognized. There is some

formal resemblence between Theorem 1.3 and the factor-

izations results presented in [Kalman, 1963, Theorem 1],

[Kalman et al., 1969, Theorem (13.19)], and [Brockett,

1970, Theorem 1, p. 93], but there is a very signi�cant

non-technical di�erence: the realization presented there

is intrinsically time-dependent (and time-reversible), and

its state space dynamics is trivial. A much more closely

related result is found in [Kalman et al., 1969, Section

10.6] and [Fuhrmann, 1981, pp. 31{32]: there we �nd the

same algebraic construction (in discrete time), but with-

out any continuity considerations of type (1){(3). Even

closer to Theorem 1.3 is [Baras and Brockett, 1975, The-

orem 6], [Baras and Dewilde, 1976, Theorem II.2.2] and

[Fuhrmann, 1981, Theorem 6-3, p. 293], which give suf-

�cient conditions for the existence of a realization with

bounded control and observation operators in the case of

�nite-dimensional U and Y . As a special case of a stable

factorization we can take either B or C to be the iden-

tity operator; this leads to the exactly controllable (or

restricted shift) and exactly observable (or restricted �-

shift) realizations, respectively, di�erent versions of which

are found in, e.g., Baras and Dewilde [1976], [Fuhrmann,

1974, Theorem 2.6], [Fuhrmann, 1981, Section 3.2], [Hel-

ton, 1974, p. 31], [Jacob and Zwart, 1998, Theorem A.1],

[Ober and Wu, 1996, Sections 5.2{5.3], and [Salamon,

1987, Theorem 4.3].

Various types of in�nite-dimensional discrete and con-

tinuous time realizations have recently been studied in

Ober and Montgomery-Smith [1990] and Ober and Wu

[1993, 1996] (the restricted shift and �-shift, input nor-

mal, output normal, and (par)balanced realizations, as

well as their spectral and stability properties) and in Ja-

cob and Zwart [1998] (minimal realizations of a scalar in-

ner transfer function with an invertible or exponentially

stable semigroup).

3 The Corresponding Frequency

Domain Result

To derive a frequency domain analogue of Theorem 1.3

we �rst recall that the space TIC(U ;Y ) is isometrically

isomorphic to the space H

1

(U ;Y ) of L(U ;Y )-valued

bounded analytic functions of the right half-plane:

Proposition 3.1. There is a one-to-one correspondence

between TIC(U ;Y ) and H

1

(U ;Y ) of the following type:

To every D 2 TIC(U ;Y ) there is a unique

b

D 2

H

1

(U ;Y ), and to every

b

D 2 H

1

(U ;Y ) there is a uniqe

D 2 TIC(U ;Y ) such that, for every u 2 L

2

(R

+

;Y ),

the Laplace transform

c

Du of Du is given by

c

Du(z) =

b

D(z)û(z), <z > 0, where û is the Laplace transform of

u. Moreover, the operator norm of D in TIC(U ;Y ) is

equal to the H

1

(U ;Y )-norm of

b

D (= sup

<z>0

k

b

D(z)k).

This result is well known. See, for example [Weiss, 1991,

Theorem 1.3 and Remark 1.6].

Thus, Theorem 1.3 may be interpreted as a realization

result for the H

1

transfer function

b

D. Usually U , H and

Y are taken to be separable, in which case

b

D has a well-

de�ned boundary function on the imaginary axis, and the

Hankel operator �

+

D�

�

has a standard frequency domain

interpretation (projection ontoH

2

(U)

?

followed by multi-

plication by the boundary function followed by projection

onto H

2

(Y )). However, in its present form Theorem 1.3

does not look like a \standard" realization result for an

H

1

transfer function

b

D, which is typically expected to

provide a representation of

b

D of the form

b

D(z) = C(zI �A)

�1

B +D; <z > 0; (4)

where [

A B

C D

] are the generators of the system 	. To get

such a representation we have to write the system 	 in

\di�erential" form

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

(5)

where A is the generator of the semigroup A, B and C

are the (unbounded) control and observation operators,

determined by the fact that (in a well-de�ned sense)

Bu =

Z

0

�1

A

�s

Bu(s) ds;

(Cx)(t) = CA

t

x; t � 0;

(6)

and D is the feedthrough operator. For this to be possible

we need to restrict the set of permitted H

1

functions

slightly, and consider only functions

b

D for which the (weak

or strong) limit

Du = lim

�!+1

b

D(�)u u 2 U; (7)

exists in Y ; here � ! +1 along the real axis. Following

Weiss [1994b,a] and Weiss and Weiss [1997], we call such



a transfer function (weakly or strongly) regular. By a

regular system we mean a system with a regular trans-

fer function. It has been known for roughly a decade

how to construct the generators [

A B

C D

] of a regular system

from the system operators

�

A B

C D

�

; see Arov and Nudel-

man [1996], Salamon [1987], Weiss [1989a,b, 1994b,a], and

Sta�ans [1999b]. Our Theorem 1.3, combined with the

general theory of regular systems, gives us a representa-

tion of the form (4) for a regular transfer function via the

factorization of its Hankel operator. We refer the reader

to the works cited above for details of how to construct

the representation (4) of

b

D from the system

�

A B

C D

�

. Even

in the non-regular case it is possible to get a representa-

tion similar to (4) but slightly more complicated; see the

cited references.

4 Applications and Extensions

One possible way of factoring the Hankel operator �

+

D�

�

is to factor the time-invariant operator D itself into D =

XY, where Y : L

2

(R;U)! L

2

(R;Z) and X : L

2

(R;Z)!

L

2

(R;Y ) are bounded and time-invariant (but not neces-

sarily causal), and Z is some auxiliary Hilbert space. We

can then take H = L

2

(R;Z), A

t

= �

t

, B = Y�

�

, and

C = �

+

X. Strictly speaking, this is not a special case of

Theorem 1.3 since this realization is, in general, neither

controllable nor observable, but it is easy to see that this

is a realization of D (to get into the context of Theorem

1.3 we have to factor out the orthogonal complement to

the reachable subspace H

B

, or project the state space H

onto the orthogonal complement of the unobservable sub-

space, i.e., ontoH

C

). In this realization all the information

about the factor Y is contained in the input map B, and

all the information about the factor X is contained in the

output map C. In particular, we can let X and Y be the

factors in an inner-outer factorization of D, or the factors

in a co-inner-outer factorization of D, or the factors in

a Douglas-Shapiro-Shields factorization in the case where

D is strictly noncyclic. (See, e.g., [Ober and Wu, 1996,

Theorem 4.8] for a description of the last factorization.)

We shall return to this question elsewhere.

It is also easy to prove a version of Theorem 1.3 which

applies to unstable systems: Instead of using the stan-

dard L

2

-spaces we can use L

2

-spaces with an exponential

weight for the input and output functions. This method

is useful also in the construction of an exponentially sta-

ble realization (whenever such a realization exists). In the

case where B, C, and D are stable, if we are willing to

accept an unbounded semigroup A

t

in Theorem 1.3 then

it su�ces to take t 2 [0; 1] in (1){(3). See Sta�ans [1999b]

for details. There it is also shown how to extend Theo-

rem 1.3 to the class of L

p

-well-posed linear systems on a

triple on Banach spaces (Y;X;U), and an alternative ver-

sion of (3) is given which refers directly to C instead of

C

�

.

The discrete time analogues of of the results presented

here are valid as well, and the proofs remain the same.

See Sta�ans [1999a].
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