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“Classical” infinite-dimensional i/s/o system

One of the first serious attempts to do infinite-dimensional control
theory was to study systems of the type

Σ :

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
t ∈ R+, x(0) = x0. (1)

x(t) ∈ X is the state,
u(t) ∈ U is the input,
y(t) ∈ Y is the output
X , U and Y are Hilbert spaces.
The main operator A is the generator of a C0 semigroup, but
the control operator B,
the observation operator C , and
the feed-through operator D are all bounded linear operators.
This class of systems is studied in the book (CZ95).
However, it is not really “good enough” to study boundary control
systems.
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“Regular” infinite-dimensional i/s/o systems

One gets a significantly more powerful theory by keeping the same
set of equations

Σ :

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
t ∈ R+, x(0) = x0. (1)

but allowing also B and C to be unbounded:
A is the generator of a C0 semigroup,
C maps dom (A)→ Y (continuous w.r.t. graph norm of A),
B maps U → X−1, where X−1 is an “extrapolation space”, which
contains X as a dense subspace,
D maps U → Y.
This class of systems has been studied in a sequence of papers by
George Weiss (the first of these appeared in 1989). (See also
(Sal87) and (Šmu86).)
After a small modification (replace “regular” by “compatible”) this
becomes a good class for the study of boundary control systems.
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System Nodes

In the theory of “regular” and “compatible” systems the definition
of the operator feed-through operator D causes some problems.
One solution to this problem is to collapse the block matrix
operator

[
A B
C D

]
into one operator, called the system node S , and

to rewrite (1) in the form[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0. (2)

A classical trajectory [ xu ] of (2) satisfies x , ẋ ∈ C (R+;X ),

u ∈ C (R+;U), and
[
x(t)
u(t)

]
∈ dom (S) for all t ∈ R+.

In the regular case the operators A, B, C , and D can be recovered
from S , but (2) makes sense also without any “regularity”
assumptions. Of course, we still need some assumptions on S .
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ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0. (2)

A classical trajectory [ xu ] of (2) satisfies x , ẋ ∈ C (R+;X ),

u ∈ C (R+;U), and
[
x(t)
u(t)

]
∈ dom (S) for all t ∈ R+.

In the regular case the operators A, B, C , and D can be recovered
from S , but (2) makes sense also without any “regularity”
assumptions. Of course, we still need some assumptions on S .
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System Node (the “simplest” version from (Sta05))

Definition

By an operator node on a triple of Hilbert spaces (X ,U ,Y) we
mean a (possibly unbounded) linear operator S :

[ X
U
]
→
[ X
Y
]

with
the following properties. We denote
dom (A) =

{
x ∈ X

∣∣ [ x0 ] ∈ dom (S)
}

, define A : dom (A)→ X by
Ax = PXS [ x0 ], and require the following conditions to hold:

1 S is closed as an operator from
[ X
U
]

to
[ X
Y
]

(with domain
dom (S)).

2 PXS is closed as an operator from
[ X
U
]

to X (with domain
dom (S)).

3 dom (A) is dense in X and ρ(A) 6= ∅.
4 For every u ∈ U there exists a x ∈ X with [ xu ] ∈ dom (S).

We call S a system node if, in addition, A generates a C0

semigroup.
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Time domain well-posed i/s/o systems

Definition

An i/s/o system Σ = (S ;X ,U ,Y), where S is a “system node”, is
time-domain well-posed if there exists a nonnegative function η

such that all classical trajectories
[
x
u
y

]
of Σ on R+ satisfy

‖x(t)‖2
X +

∫ t

0
‖y(s)‖2

Y ds

≤ η(t)2

(
‖x(0)‖2

X +

∫ t

0
‖u(s)‖2

U ds

)
, t ∈ R+.
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Graph form of i/s/o system

We can rewrite the i/s/o equation[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0, (2)

in graph form to get: ẋ(t)
y(t)
x(t)
u(t)

 ∈ graph (S) , t ∈ R+, x(0) = x0, (3)

graph (S) :=

{[
z
y
x
u

] ∣∣∣∣ [ xu ] ∈ dom (S) , [ zy ] = S [ xu ]

}
. (4)

In this form it does not matter if S is a (single-valued) operator or
a multi-valued operator, i.e., a relation.

Olof Staffans, Åbo Akademi University, Finland Aalto University, FinlandFrequency Domain Well-Posed Linear Systems



Frame 10 of 45

Graph form of i/s/o system

We can rewrite the i/s/o equation[
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Graph form of i/s/o system

If S is a relation, then S maps every pair [ xu ] into an affine
subspace (which may be empty for some [ xu ]), and the equation[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0, (2)

must be replaced by the inclusion[
ẋ(t)
y(t)

]
∈ S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0. (5)

Can we say anything about equations of this type?
Throughout the rest of the talk I assume that S is a closed relation

(i.e., the graph of S is a closed subspace of

[ X
X
U
Y

]
).

For this class of systems I shall not say anything about time
domain well-posedness.
Instead I shall look at frequendy domain well-posedness.
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Frequency domain well-posedness

By taking (formal) Laplace transforms in the equation[
ẋ(t)
y(t)

]
∈ S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0, (5)

and using the fact that S is closed we get[
λx̂(λ)− x0

ŷ(λ)

]
∈ S

[
x̂(λ)
û(λ)

]
. (6)

Definition

The system (5) is frequency domain well-posed if there exists at
least one λ ∈ C such that the equation (6) defines a bounded

linear everywhere defined map from
[ x0

û(λ)

]
to
[
x̂(λ)
ŷ(λ)

]
.

(In the time-domain well-posed case this condition will be true for
all λ in some right half-plane.)
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The node bundle

Clearly the condition (6) is (by definition) equivalent to λx̂(λ)−x0

ŷ(λ)
x̂(λ)
û(λ)

 ∈ graph (S) . (??)

and this can further be rewritten in another equivalent form,
namely [ x0

ŷ(λ)
x̂(λ)
û(λ)

]
∈ E(λ), (7)

where

E(λ) =

[
−1X 0 λ 0

0 1Y 0 0
0 0 1X 0
0 0 0 1U

]
graph (S) . (8)

We call E the node bundle of the system. It is a subspace-valued
analytic function of the complex variable λ. If U = Y = {0}, then
E(λ) = graph (λ− A).
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The graph representation

Lemma

The system (3) is frequency domain well-posed if and only if there
exists at least one λ ∈ C such that E(λ) has the graph
representation

E(λ) = im

 1X 0

Ĉ(λ) D̂(λ)

Â(λ) B̂(λ)
0 1U

 (9)

for some bounded linear operator

Ŝ(λ) =
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
:
[ X
U
]
→
[ X
Y
]
.

The proof is trivial.
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Another graph representation

Of course, the same condition can be written directly in terms of
graph (S) without using the node bundle E(λ):

Lemma

The system (3) is frequency domain well-posed if and only if there
exists at least one λ ∈ C such that V has the graph representation

graph (S) = im

 λÂ(λ)−1X λB̂(λ)

Ĉ(λ) D̂(λ)

Â(λ) B̂(λ)
0 1U

 (10)

for some operator Ŝ(λ) =
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
∈ L

([ X
U
]

;
[ X
Y
])

.

The proof is still trivial.
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The i/s/o resolvent matrix

Definition

1 The i/s/o resolvent set ρiso(S) of a closed relation
S :
[ X
U
]
→
[ X
Y
]

consists of those point λ ∈ C for which
graph (S) has a representation of the type

graph (S) = im

 λÂ(λ)−1X λB̂(λ)

Ĉ(λ) D̂(λ)

Â(λ) B̂(λ)
0 1U

 (10)

for some operator Ŝ(λ) =
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
∈ L

([ X
U
]

;
[ X
Y
])

.

2 The i/s/o resolvent matrix of S is the operator-valued function

Ŝ(λ) above defined for all λ ∈ dom
(
Ŝ(λ)

)
:= ρiso(S).
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Definition

1 The i/s/o resolvent set ρiso(S) of a closed relation
S :
[ X
U
]
→
[ X
Y
]

consists of those point λ ∈ C for which the
following identity is valid[
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]
∈ L
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U
]
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Y
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.
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The (standard) resolvent of a relation

By taking U = Y = {0} our i/s/o resolvent becomes the
“standard” resolvent of a closed relation:

Definition

1 The resolvent set ρ(A) of a closed relation A : X → X
consists of those point λ ∈ C for which
graph (λ− A) :=

{[
λx−y

x

] ∣∣ x ∈ dom (A) , y ∈ Ax
}

has a
representation of the type

graph (λ− A) =
[
−1X λ

0 1X

]
graph (A) = im

([
1X
Â(λ)

])
(11)

for some operator Â(λ) ∈ L (X ).

2 The resolvent of A is the operator-valued function Ŝ(λ)

above defined for all λ ∈ dom
(
Ŝ(λ)

)
:= ρ(A).

In this case the “node bundle” is simply the graph of λ− A.
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Terminology

We call:

Ŝ(λ) =
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
is the i/s/o resolvent matrix,

Â(λ) is the s/s resolvent function,

B̂(λ) is the i/s resolvent function (= the “incoming wave
function” or the “Gamma field”),

Ĉ(λ) is the s/o resolvent function (= the “outgoing wave
function”),

D̂(λ) is the i/o resolvent function (= the “transfer function”
or the “Weyl function”).
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The i/s/o resolvent identities

Theorem

The i/s/o resolvent matrix Ŝ =
[
Â B̂
Ĉ D̂

]
satisfies the following i/s/o

resolvent identities for all λ, µ ∈ dom
(
Ŝ
)

:

Ŝ(λ) = Ŝ(µ) + (µ− λ)

[
Â(µ)

Ĉ(µ)

] [
Â(λ) B̂(λ)

]
. (12)

or equivalently,

Â(λ)− Â(µ) = (µ− λ)Â(µ)Â(λ) = (µ− λ)Â(λ)Â(µ),

B̂(λ)− B̂(µ) = (µ− λ)Â(µ)B̂(λ) = (µ− λ)Â(λ)B̂(µ),

Ĉ(λ)− Ĉ(µ) = (µ− λ)Ĉ(µ)Â(λ) = (µ− λ)Ĉ(λ)Â(µ),

D̂(λ)− D̂(µ) = (µ− λ)Ĉ(µ)B̂(λ) = (µ− λ)Ĉ(λ)B̂(µ).

(13)

These identities imply, among others, that Ŝ must be analytic.
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Mark Opmeer’s “Resolvent Linear Systems

In (Opm06) Mark Opmeer uses the above i/s/o resolvent
identities to define what he calls a resolvent linear system. It
consists of a quadruple of operator-valued functions

Ŝ =
[
Â B̂
Ĉ D̂

]
which satisfy the i/s/o resolvent identities on

some open connected subset Ω of the complex plane.

By adding the condition that Ω contains some right half-plane
and that the above functions are polynomially bounded on
that half plane he gets a class of dynamical systems, which he
calls integrated resolvent linear systems.

He also defines a slightly larger class of dynamical systems
that he calls distributional resolvent linear systems.
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Ĉ D̂

]
which satisfy the i/s/o resolvent identities on

some open connected subset Ω of the complex plane.

By adding the condition that Ω contains some right half-plane
and that the above functions are polynomially bounded on
that half plane he gets a class of dynamical systems, which he
calls integrated resolvent linear systems.

He also defines a slightly larger class of dynamical systems
that he calls distributional resolvent linear systems.
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Frame 22 of 45

Pseudo-resolvents

Definition

1 A L(X )-valued function Â defined on some open set Ω ∈ C is
called a pseudo-resolvent if it satisfies

Â(λ)− Â(µ) = (µ− λ)Â(µ)Â(λ) (14)

for all λ, µ ∈ Ω.

2 A L
([ X
U
]

;
[ X
Y
])

-valued function Ŝ =
[
Â B̂
Ĉ D̂

]
defined on some

open set Ω ∈ C is called an i/s/o pseudo-resolvent matrix if it
satisfies the i/s/o resolvent identity

Ŝ(λ)− Ŝ(µ) = (µ− λ)

[
Â(µ)

Ĉ(µ)

] [
Â(λ) B̂(λ)

]
(12)

for all λ, µ ∈ Ω.
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Pseudo-resolvents are resolvents!

Lemma

1 If Â is the resolvent of a closed relation A : X → X , then Â
satisfies the resolvent identity (14) for all λ, µ ∈ ρ(A).

2 Conversely, if Â is a pseudo-resolvent defined on some open
set Ω ⊂ C, then Â is the restriction to Ω of the resolvent of
some closed relation A : X → X .

3 A is single-valued if and only if Â(λ) is injective for some (and
hence for all) λ ∈ Ω.

4 dom (A) is dense in X if and only if im
(
Â(λ)

)
is dense in X

for some (and hence for all) λ ∈ Ω.

5 Â is an analytic function of λ on Ω.

This was proved in (DdS87).
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Frame 24 of 45

I/s/o pseudo-resolvents are i/s/o resolvents!

Theorem

1 Recall: If Ŝ is the i/s/o resolvent of a closed relation
S :
[ X
U
]
→
[ X
Y
]
, then Ŝ satisfies the resolvent identity (12)

for all λ, µ ∈ ρiso(S).

2 Conversely, if Ŝ is an i/s/o pseudo-resolvent matrix defined
on some open set Ω ⊂ C, then Ŝ is the restriction to Ω of the
i/s/o resolvent matrix of some closed relation
S :
[ X
U
]
→
[ X
Y
]
.

3 S is single-valued if and only if the s/s resolvent function
Â(λ) is injective for some (and hence for all) λ ∈ Ω.

4 dom (S) is dense in
[ X
U
]

if and only if im
(
Â(λ)

)
is dense in

X for some (and hence for all) λ ∈ Ω.

5 Ŝ is an analytic function of λ on Ω.

This result will be found in the work (AS16).
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Â(λ)

)
is dense in

X for some (and hence for all) λ ∈ Ω.
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Frame 25 of 45

How is all this related to “operator nodes”?

Definition

Recall: By an operator node on a triple of Hilbert spaces (X ,U ,Y)
we mean a (possibly unbounded) linear operator S :

[ X
U
]
→
[ X
Y
]

with the following properties. We denote
dom (A) =

{
x ∈ X

∣∣ [ x0 ] ∈ dom (S)
}

, define A : dom (A)→ X by
Ax = PXS [ x0 ], and require the following conditions to hold:

1 S is closed as an operator from
[ X
U
]

to
[ X
Y
]

(with domain
dom (S)).

2 PXS is closed as an operator from
[ X
U
]

to X (with domain
dom (S)).

3 dom (A) is dense in X and ρ(A) 6= ∅.
4 For every u ∈ U there exists a x ∈ X with [ xu ] ∈ dom (S).

We call S a system node if, in addition, A generates a C0

semigroup.
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Frame 26 of 45

S operator node ⇔ ρiso(S) 6= ∅

Theorem

A linear (single-valued) operator S :
[ X
U
]
→
[ X
Y
]

is an operator
node if and only if ρiso(S) 6= ∅, i.e., the if and only if the system[

ẋ(t)
y(t)

]
∈ S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0. (5)

is frequency domain well-posed.

In particular, every time domain well-posed i/s/o system is
automatically frequency domain well-posed. The converse is
not true.

The system (5) can be frequency domain well-posed even in
the case where S is a relation.
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Frame 27 of 45

Example: the differentiator

Take X = U = Y = C,
A = 0, B = 1, C = 1, D = 0, S = [ 0 1

1 0 ],

Σ :

{
ẋ(t) = u(t),

y(t) = x(t),
t ∈ R+, x(0) = x0.

This is a integrator: y(t) = x0 +
∫ t

0 u(s) ds, t ∈ R+, and the i/s/o
resolvent matrix of this system is

Ŝ(λ) =

[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
=

[
1/λ 1/λ
1/λ 1/λ

]
.

Let us in this system change the meaning of u and y , so that y
becomes the input, and u the output. This inverted system will
then be a differentiator, and it will be a system of the type[

ẋ(t)
u(t)

]
∈ S

[
x(t)
y(t)

]
, t ∈ R+, x(0) = x0, (5)

for a suitable relation S .
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ẋ(t)
u(t)

]
∈ S

[
x(t)
y(t)

]
, t ∈ R+, x(0) = x0, (5)

for a suitable relation S .
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Frame 28 of 45

Example: the differentiator

It turns out that S is the purely multi-valued relation whose graph
is

graph (S) = im

([
0 1
0 1
1 0
1 0

])
.

Thus,

dom (S) = {[ xx ] | x ∈ C} , mul (S) = im (S) = {[ uu ] | u ∈ C} .

If

[
x(t)
y(t)
u(t)

]
is a trajectory of this system, then

[
x(t)
y(t)

]
∈ dom (S), or

equivalently, x(t) = y(t), and
[
ẋ(t)
u(t)

]
∈ im (S), i.e., ẋ(t) = u(t).

Thus, u(t) = ẏ(t). The i/s/o resolvent matrix of this system is

Ŝ(λ) =
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
=

[
0 1
−1 λ

]
.
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Frame 29 of 45

Outline of Talk

Time domain well-posed input/state/output systems

Frequency domain well-posed input/state/output systems

Intertwinement in time and frequency domain

Compressions and dilations in time and frequency domain

Controllability, observability, and minimality

Work in progress
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Frame 30 of 45

Intertwinement in time domain

Definition

Let Σ1 = (S1;X1,U ,Y) and Σ2 = (S2;X2,U ,Y) be two time
domain well-posed i/s/o systems (with the same input and output
spaces), and let R be a linear relation X1 → X2. We say that Σ1

and Σ2 are intertwined by R if the following condition holds:

If
[
x1
y1
u

]
and

[
x2
y2
u

]
are trajectories of Σ1 and Σ2 on R+, respectively

(with the same input function u), and if x2(0) ∈ Rx1(0), then
y1 = y2 and x2(t) ∈ Rx1(t) for all t ∈ R+.
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Frame 31 of 45

The characteristic time domain operators

Notation for well-posed systems:

At is the map from the initial state x0 ∈ X at time t = 0 to
the final state x(t) ∈ X at time t ≥ 0 when the input is zero.

B is the map from an input u ∈ L2(R−;U) with compact
support into the final state x(0) ∈ X at time zero, when we
take the initial state to be zero for large negative time.

C is the map from the initial state x0 ∈ X at time t = 0 to
the output y ∈ L2

loc(R+;Y) when the input is zero.

D is the map from an input u ∈ L2
loc(R;U) whose support is

bounded to the left to the output y ∈ L2
loc(R;Y), when we

take the initial state to be zero for large negative time.

Olof Staffans, Åbo Akademi University, Finland Aalto University, FinlandFrequency Domain Well-Posed Linear Systems



Frame 32 of 45

Intertwinement in terms of characteristic operators

Theorem

The two time domain well-posed i/s/o systems Σ1 and Σ2 are
intertwined by the closed relation R if and only if the characteristic
time domain operators of these systems satisfy:

1 At
2x2 ∈ RAt

1x1 for all x2 ⊂ Rx1 and all t ∈ R+.

2 For all u ∈ L2(R−;U) with compact support we have
B2u ∈ RB1u.

3 C2x2 = C1x1 for all x2 ⊂ Rx1

4 D2 = D1.

Theorem

The two time domain well-posed i/s/o systems Σ1 and Σ2 are
intertwined by some closed relation R if and only if they have the
same i/o map.
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Intertwinement in frequency domain

Theorem

Let Σ1 and Σ2 be two time domain well-posed linear systems, with
growth rates ω1 and ω2, respectively, let ω = max{ω1, ω2}, and
denote C+

ω = {λ ∈ C | <λ > ω}. Then Σ1 and Σ2 are intertwined
by the closed relation R if and only if the following frequency
domain conditions hold:

1 Â2(λ)x2 ∈ RÂ1(λ)x1 for all x2 ⊂ Rx1 and all λ ∈ C+
ω .

2 B̂2(λ)u0 ∈ RB̂1(λ)u0 for all u0 ∈ U and λ ∈ C+
ω .

3 Ĉ2(λ)x2 = Ĉ1(λ)x1 for all x2 ⊂ Rx1 and all λ ∈ C+
ω .

4 D̂2(λ) = D̂1(λ) for all λ ∈ C+
ω .
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Frame 34 of 45

Outline of Talk

Time domain well-posed input/state/output systems

Frequency domain well-posed input/state/output systems

Intertwinement in time and frequency domain

Compressions and dilations in time and frequency
domain

Controllability, observability, and minimality

Work in progress
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Compressions and dilations in time domain

Definition

Let X1 be a closed subspace of X2, and let Σ1 =
(
S1;X1,U ,Y

)
and Σ2 =

(
S2;X2,U ,Y

)
be two time domain well-posed i/s/s

systems. We call Σ1 the (orthogonal) compression of Σ2 onto X1,
and we call Σ2 an (orthogonal) dilation of Σ1, if the following
condition holds:

For each x0 ∈ X and each u ∈ L2
loc(R+;U), if we denote the

(generalized) future trajectories of Σ1 and Σ2 with initial state

x0 and input function u by
[
x1
y1
u

]
and

[
x2
y2
u

]
, respectively, then

y1 = y2 and x1(t) = PX1x2(t) for all t ∈ R+.
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Compressions in terms of characteristic operators

Theorem

The time domain well-posed i/s/o system Σ is the compression
onto X of the time domain well-posed i/s/o system Σ1 (i.e., Σ1 is
a dilation of Σ) if and only if the characteristic time domain
operators of these systems satisfy:

1 At
1 = PX1A

t
2|X1 for all t ∈ R+.

2 B1 = PX1B2.

3 C1 = C2|X1 .

4 D1 = D2.

Theorem

Every dilation (and compression) can be interpreted as a special
case of an intertwinement (for a suitable bounded single-valued
intertwining operor R with closed domain).
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Compressions in frequency domain

Theorem

Let Σ1 and Σ2 be two time domain well-posed linear systems, with
growth rates ω1 and ω2, respectively, let ω = max{ω1, ω2}, and
denote C+

ω = {λ ∈ C | <λ > ω}. Then Σ1 is the projection of Σ2

onto X1 if and only if the following frequency domain conditions
hold:

1 Â1(λ) = PX1Â2(λ)|X1 for all λ ∈ C+
ω .

2 B̂1(λ) = B̂2(λ) for all λ ∈ C+
ω (in particular,

im
(
B̂2(λ

)
⊂ X1).

3 Ĉ1(λ) = Ĉ2(λ)|X1 for all λ ∈ C+
ω .

4 D̂2(λ) = D̂1(λ) for all λ ∈ C+
ω .
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Frame 38 of 45

Outline of Talk

Time domain well-posed input/state/output systems

Frequency domain well-posed input/state/output systems

Intertwinement in time and frequency domain

Compressions and dilations in time and frequency domain

Controllability, observability, and minimality

Work in progress
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Controllable and observable systems

Definition

Let Σ = (X ;X ,U ,Y) be a time domain well-posed i/s/o system.

Σ is controllable if im (B) is dense in X
Σ is observable if ker (C) = {0}.

Theorem

Let Σ = (X ;X ,U ,Y) be a time domain well-posed i/s/o system
with growth bound ω(Σ).

Σ is controllable if and only if ∨λ∈C+
ω(Σ)

im
(
B̂(λ)

)
= X .

Σ is observable if and only if ∩λ∈C+
ω(Σ)

ker
(
Ĉ(λ)

)
= {0}.
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Minimal Systems

Definition

A time domain well-posed i/s/o system Σ is minimal if it does not
have any nontrivial compressions (i.e., it is not a nontrivial dilation
of any other well-posed i/s/o system).

Theorem

A time domain well-posed i/s/o system Σ is minimal if and only if
it is both controllable and observable.

Theorem

Every non-minimal time domain well-posed i/s/o system Σ can be
compressed into a minimal time domain well-posed i/s/o system.
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compressed into a minimal time domain well-posed i/s/o system.
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Outline of Talk

Time domain well-posed input/state/output systems

Frequency domain well-posed input/state/output systems

Intertwinement in time and frequency domain

Compressions and dilations in time and frequency domain

Controllability, observability, and minimality

Work in progress
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Intertwinements, Dilations, Compressions for multi-valued
i/s/o systems

Above I defined the basic notions of intertwinements,
dilations, compressions, controllability, observability, and
minimality in the time domain, assuming time domain
well-posedness, and then gave frequency domain
interpretations of these notions.

If a system is not time-domain well-posed, then the above
time domain definitions are no longer valid.

However, nothing prevents us from using the frequency
domain characterizations of intertwinements, dilations,
compressions, controllability, observability, and minimality as
definitions of these notions. Such definitions make sense as
soon as the system is frequency domain well-posed.

This seems to work well even when the generating operator S
is allowed to be multi-valued (as long as the system is
frequency domain well-posed).
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Observations

We seem to be able to prove more or less the same results in
this frequency domain setting as in the standard time domain
well-posed setting.

So far we have encounterd only one major problem: We can
still compress every nonminimal system into a minimal one,
but we have not been able to prove that the compressed
generating operator is always single-valued whenever the
original generating operator S is single-valued.

This is the main resason why we started to look at
multi-valued generating operators S in the first place!
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Olof Staffans, Åbo Akademi University, Finland Aalto University, FinlandFrequency Domain Well-Posed Linear Systems



Frame 44 of 45

References

D. Z. Arov and O. J. Staffans. Passive Linear State/Signal
Systems. 2013–2016. In preparation.

Damir Z. Arov, Mikael Kurula, and Olof J. Staffans, Passive
state/signal systems and conservative boundary relations, Operator
Methods for Boundary Value Problems, Cambridge University
Press, 2012.

Ruth F. Curtain and Hans Zwart, An introduction to
infinite-dimensional linear systems theory, Springer-Verlag, New
York, 1995.

A. Dijksma and H. S. V. de Snoo. Symmetric and selfadjoint
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Birkhäuser, Basel, 1987.
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