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Krĕın Spaces

A Krĕın space K is a vector space with a complete indefinite inner product [·, ·]K.
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A Krĕın space K is a vector space with a complete indefinite inner product [·, ·]K.

More precisely, there exist a Hilbert space inner product (·, ·)K in K and an
operator J ∈ B(K), J = J∗ = J−1 (i.e., J is both self-adjoint and unitary), such
that

[k1, k2]K = (k1, Jk2)K, k1, k2 ∈ K.

(The inner product (·, ·)K and the operator J are not unique.)
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Krĕın Spaces

A Krĕın space K is a vector space with a complete indefinite inner product [·, ·]K.

More precisely, there exist a Hilbert space inner product (·, ·)K in K and an
operator J ∈ B(K), J = J∗ = J−1 (i.e., J is both self-adjoint and unitary), such
that

[k1, k2]K = (k1, Jk2)K, k1, k2 ∈ K.

(The inner product (·, ·)K and the operator J are not unique.)

The orthogonal companion Z [⊥] to a subspace Z ⊂ K is given by

Z [⊥] = {k ∈ K | [k, z]K = 0 ∀z ∈ Z}.
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Nonnegative, Nonpositive, Neutral Subspaces
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Nonnegative, Nonpositive, Neutral Subspaces

A subspace Z of K is nonnegative [or nonpositive] if

[z, z]K ≥ 0 [or ≤ 0] for all z ∈ Z.
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Nonnegative, Nonpositive, Neutral Subspaces

A subspace Z of K is nonnegative [or nonpositive] if

[z, z]K ≥ 0 [or ≤ 0] for all z ∈ Z.

Z is maximal nonnegative [or maximal nonpositive] if it is not a proper subspace
of any other nonnegative [or nonpositive] subspace of K.

Fact: Z is maximal nonnegative ⇔ Z [⊥] is maximal nonpositive.

A subspace Z of K is neutral if [z, z]K = 0 for all z ∈ Z (i.e., both nonnegative
and nonpositive).

Let Z be maximal nonnegative. The maximal neutral subspace Z0 of Z is given
by Z0 = Z ∩Z [⊥]. This is the largest neutral subspace in Z, and also the largest
neutral subspace in Z [⊥].
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Quotient Spaces

Let Z be a closed subspace of K. By the quotient K/Z we mean the vector
space consisting of all equivalence classes

[k] := k + Z := {k + z | z ∈ Z}.
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space consisting of all equivalence classes

[k] := k + Z := {k + z | z ∈ Z}.

If K is a Hilbert space (i.e., if J = 1K), then the quotient K/Z can be identified
in a natural way with the Hilbert space Z [⊥](= Z⊥). In particular, there is a
canonical inner product in K/Z. This is not true for a general Krĕın space K.
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Quotient Spaces

Let Z be a closed subspace of K. By the quotient K/Z we mean the vector
space consisting of all equivalence classes

[k] := k + Z := {k + z | z ∈ Z}.

If K is a Hilbert space (i.e., if J = 1K), then the quotient K/Z can be identified
in a natural way with the Hilbert space Z [⊥](= Z⊥). In particular, there is a
canonical inner product in K/Z. This is not true for a general Krĕın space K.

Special case: we take Z to be either maximal nonnegative or maximal nonpositive.
Such a subspace is automatically closed (with respect to the standard quotient
topology).
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〈z1, z2〉Z := [z1, z2]K, z1, z2 ∈ Z,

is a semi-inner product on Z (nonnegative, possibly degenerate inner product).
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Inherited Nonnegative Inner Products

Let Z be a maximal nonnegative subspace of K. Then

〈z1, z2〉Z := [z1, z2]K, z1, z2 ∈ Z,

is a semi-inner product on Z (nonnegative, possibly degenerate inner product).

We observe that
〈z, z〉Z = 0 ⇔ z ∈ Z0 := Z ∩ Z [⊥].

This implies that 〈·, ·〉Z induces a positive (nondegenerate) inner product on the
quotient space Z/Z0. We denote this inner product by (·, ·)Z/Z0

. Thus,

([z1], [z2])Z/Z0
:= 〈z1, z2〉Z = [z1, z2]K,

where [z1] and [z2] stand for the equivalence classes [zi] := zi+Z0, i = 1, 2. With
this inner product Z/Z0 becomes a pre-Hilbert space (not necessary complete).

What does the completion of Z/Z0 look like?
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The Completion of Z/Z0

Theorem 1. Let Z be a maximal nonnegative subspace of a Krĕın space K, and
let Z0 = Z ∩ Z [⊥] be the maximal neutral subspace of Z. Then

(i) the completion of the pre-Hilbert space Z/Z0 can be identified in a natural
way with a certain subspace H(Z [⊥]) of K/Z [⊥], and

(ii) the completion of the pre-Hilbert space Z [⊥]/Z0 with the inner product
inherited from −K can be identified in a natural way with a certain subspace
H(Z) of −K/Z.

Here part (ii) follows from part (i) by interchanging Z ↔ Z [⊥] and K ↔ −K.

The construction of the Hilbert spaces H(Z) and H(Z [⊥]) is an abstract version
of the functional construction by Louis de Branges and James Rovnyak in
[dBR66b].
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Definition of H(Z)

X [Z] =
{

k + Z ∈ K/Z
∣

∣ ‖k + Z‖X [Z] < ∞
}

, (1)

where the (Hilbert space) norm ‖k+Z‖X [Z] of the equivalence class k+Z ∈ K/Z
is the squre root of

∥

∥k + Z
∥

∥

2

X [Z]
= − inf

z∈Z
[k + z, k + z]K. (2)
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Definition of H(Z)

X [Z] =
{

k + Z ∈ K/Z
∣

∣ ‖k + Z‖X [Z] < ∞
}

, (1)

where the (Hilbert space) norm ‖k+Z‖X [Z] of the equivalence class k+Z ∈ K/Z
is the squre root of

∥

∥k + Z
∥

∥

2

X [Z]
= − inf

z∈Z
[k + z, k + z]K. (2)

Compare this to the Hilbert space case: If instead Z is a closed subspace of a
Hilbert space X , then the quotient norm of x + Z in X/Z is the square root of

∥

∥x + Z
∥

∥

2

X/Z
= inf

z∈Z
‖x + z‖2

K = inf
z∈Z

[x + z, x + z]K. (3)

Thus, the norm in X [Z] is simply the ‘Krĕın space version’ of the quotient norm
in K/Z when Z is maximal nonnegative!
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Summary

If Z is a maximal nonnegative subspace of the Krĕın space K, then

• H(Z) consists of those vectors x ∈ K/Z whose norm is finite. The norm in
H(Z) is the Krĕın space analogue of the quotient norm in K/Z.

• The pre-Hilbert space Z [⊥]/Z0 with the norm inherited from −K is a dense
subspace of H(Z) with the same norm.

• Answer to the original question: The completion of Z [⊥]/Z0 is the subspace
of those vectors in the quotient K/Z whose ‘natural quotient norm’ is finite.

• All our proofs are direct and elementary, and require no knowledge of repro-
ducing kernel Hilbert spaces or de Branges–Rovnyak spaces.
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The de Branges–Rovnyak Complementary Space

Let S be a contraction U → Y, where U and Y are Hilbert spaces.
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The de Branges–Rovnyak Complementary Space

Let S be a contraction U → Y, where U and Y are Hilbert spaces.

The range space M(S) of S is the range of S endowed with the range norm
‖y‖M(S) = inf{‖u‖U | y = Su}.

De Branges complementary space H(S) to M(S) is given by

H(S) = {y ∈ Y | ‖y‖2
H(S) < ∞}, (4)

where
‖y‖2

H(S) = sup
u∈U

(

‖y − Su‖2 − ‖u‖2
U

)

. (5)

Alternatively, H(S) = M((1 − SS∗)1/2).
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K = −Y [∔] U be a fundamental decomposition of K.
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The Connection

Let Z be a maximal nonnegative subspace of the Krĕın space K, and let
K = −Y [∔] U be a fundamental decomposition of K.

Then Z has a unique graph representation Z =
{

[ Su
u ]

∣

∣ u ∈ U
}

. This gives us
the contraction S.

Moreover, K = −Y∔Z, i.e., −Y is a direct complement to Z in W. This implies
that to each equivalence class x ∈ K/Z there corresponds a unique y ∈ Y such
that x = y + Z.

The mapping T : x → y, where y ∈ Y and y + Z = x, is a continuous bijection
K/Z → Y, and

the restriction of T to H(Z) is a unitary map of H(Z) onto H(S).

Under this mapping the image of the dense subspace Z [⊥]/Z0 of H(Z) is mapped
onto R(1 − SS∗) (recall that H(S) is the range space of (1 − SS∗)1/2).
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Input/State/Output System

The i/s/o (input/state/output) system

x(n + 1) = Ax(n) + Bu(n)

y(n) = Cx(n) + Du(n), n ∈ Z
+; x(0) = x0,

(6)

is called a passive realization of the Schur function D if [ A B
C D ] : [XU ] →

[

X
Y

]

is
contractive and D(z) = zC(1 − zA)−1B + D, z ∈ D.
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Input/State/Output System

The i/s/o (input/state/output) system

x(n + 1) = Ax(n) + Bu(n)

y(n) = Cx(n) + Du(n), n ∈ Z
+; x(0) = x0,

(6)

is called a passive realization of the Schur function D if [ A B
C D ] : [XU ] →

[

X
Y

]

is
contractive and D(z) = zC(1 − zA)−1B + D, z ∈ D.

If u ∈ ℓ2+(U), then the Z-transforms of x, u, and y satisfy

[

x̂(z)−x0
z

ŷ(z)

]

=

[

A B
C D

] [

x̂(z)
û(z)

]

, z ∈ D. (7)

From this equation we can solve x̂(z) and ŷ(z) in terms of x0 and û(z) (over):

Berlin 2008 14



Input/State/Output System (continues)

[

x̂(z)
ŷ(z)

]

=

[

A(z) B(z)
C(z) D(z)

] [

x0

û(z)

]

, z ∈ D, (8)

where

[

A(z) B(z)
C(z) D(z)

]

=

[

z(1 − zA)−1 z(1 − zA)−1B
C(1 − zA)−1 zC(1 − A)−1B + D

]

, z ∈ D. (9)
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Input/State/Output System (continues)

[

x̂(z)
ŷ(z)

]

=

[

A(z) B(z)
C(z) D(z)

] [

x0

û(z)

]

, z ∈ D, (8)

where

[

A(z) B(z)
C(z) D(z)

]

=

[

z(1 − zA)−1 z(1 − zA)−1B
C(1 − zA)−1 zC(1 − A)−1B + D

]

, z ∈ D. (9)

The 2× 2 block operator in (9) is the input-state/state-output transfer function,
and the bottom right corner (the input/output transfer function) is required to
be equal to the given Schur function.
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Co-Isometric Observable I/S/O Realization

In the co-isometric observable passive realization we interpret D as a contractive
multiplication operator S : H2(U) → H2(Y), and the state space is X = H(S) ⊂
H2(Y).
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Co-Isometric Observable I/S/O Realization

In the co-isometric observable passive realization we interpret D as a contractive
multiplication operator S : H2(U) → H2(Y), and the state space is X = H(S) ⊂
H2(Y).

The coefficient matrix is given by

[

A B
C D

] [

x̂(z)
u0

]

=

[

x̂(z)−x̂(0)
z

D(z)−D(0)
z u0

x̂(0) D(0)u0

]

, [ x̂
u0 ] ∈ [XU ] , z ∈ D.

This realization was discovered by de Branges and Rovnyak [dBR66a, dBR66b].
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State/Signal Systems

We get the corresponding s/s (state/signal) system by replacing [ A B
C D ] by its

graph:
[

x(n+1)
x(n)
w(n)

]

∈ V, n ∈ Z
+, x(0) = x0, (10)

where w(n) =
[

y(n)
u(n)

]

and

V =

{[

Ax0+Bu0
x0

Cx0+Du0
u0

]

∈

[

X
X
Y
U

]
∣

∣

∣

∣

[ x0
w0 ] ∈ [XU ]

}

, W =
[

Y
U

]

.
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[
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]
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Ax0+Bu0
x0

Cx0+Du0
u0

]

∈

[

X
X
Y
U

]
∣

∣

∣

∣

[ x0
w0 ] ∈ [XU ]

}

, W =
[

Y
U

]

.

The corresponding graph representation of (7) is given by

[ 1
z(x̂(z)−x0)

x̂(z)
ŵ(z)

]

∈ V, z ∈ D. (11)

The graph Z :=
{

[ Dû
û ]

∣

∣ û ∈ H2(U)
}

of D is equal to the set of all ŵ ∈ H2(W)
for which there exists some x̂ such that (11) holds with x0 = 0.
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Co-Isometric Observable S/S Realization

In [AS08a, AS08b] we present a co-isometric observable passive s/s realization
of the graph of D. It is unitarily similar to the s/s realization that one gets by
interpreting the de Branges–Rovnyak i/s/o realization as a s/s system.
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space W = −Y [∔] U .

The maximal nonnegative subspace Z in K is the graph of the Schur function D.

The state space is the Hilbert space X = H(Z) ⊂ K/Z.

19



Co-Isometric Observable S/S Realization

In [AS08a, AS08b] we present a co-isometric observable passive s/s realization
of the graph of D. It is unitarily similar to the s/s realization that one gets by
interpreting the de Branges–Rovnyak i/s/o realization as a s/s system.

The underlying Krĕın space is K = K2(W), which is the Hardy space over D

with values in W and with the indefinite inner product inherited from the Krĕın
space W = −Y [∔] U .

The maximal nonnegative subspace Z in K is the graph of the Schur function D.

The state space is the Hilbert space X = H(Z) ⊂ K/Z.

The generating subspace has the image representation

V =

{

[

ŵ(z)−ŵ(0)
z +Z

ŵ(z)+Z

ŵ(0)

]

∣

∣

∣

∣

ŵ(·) ∈ K2(W), ŵ(·) + Z ∈ X

}

.
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Isometric and Conservative S/S Realizations

In [AS08b] we also present an isometric controllable passive s/s realization of
the graph of D. It is unitarily similar to the s/s realization that one gets by
interpreting the isometric controllable de Branges–Rovnyak i/s/o realization as a
s/s system.
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Isometric and Conservative S/S Realizations

In [AS08b] we also present an isometric controllable passive s/s realization of
the graph of D. It is unitarily similar to the s/s realization that one gets by
interpreting the isometric controllable de Branges–Rovnyak i/s/o realization as a
s/s system.

There also exists a simple unitary s/s realization. This one is unitarily similar to
the s/s realization that one gets by interpreting the simple unitary de Branges–
Rovnyak i/s/o realization as a s/s system.

Open problem: Do there exist s/s versions of the Sz.-Nagy–Foias and Pavlov
models?
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Nevanlinna and Potapov Functions

The above construction is based entirely on the maximal nonnegative subspace
Z of K2(W). The graph representation Z =

{

[ Dû
û ]

∣

∣ û ∈ H2(U)
}

of Z is
irrelevant.
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Nevanlinna and Potapov Functions

The above construction is based entirely on the maximal nonnegative subspace
Z of K2(W). The graph representation Z =

{

[ Dû
û ]

∣

∣ û ∈ H2(U)
}

of Z is
irrelevant.

The same construction can be used to give a passive s/s realization of an arbitrary
maximal nonnegative shift-invariant subspace of K2(W).

Thus, instead of realizing the graph of a Schur function we can use the same
method to realize the graph of a Nevanlinna function (or relation) or of a Potapov
function (or relation).

All the corresponding i/s/o realizations can be regarded as i/s/o representations
of the s/s realization of Z that one obtains by decomposing the signal space W
in different ways:
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Nevanlinna and Potapov Functions

- If the decomposition W = Y ∔ U is fudamental (i.e., U is uniformly positive
and Y = U [⊥]), then we get a scattering passive i/s/o system.
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- By taking U to be a Krĕın subspace of W and Y = U [⊥] we get a transmission
passive i/s/o system.

This gives us

- scattering passive i/s/o realizations of given Schur function,

22



Nevanlinna and Potapov Functions

- If the decomposition W = Y ∔ U is fudamental (i.e., U is uniformly positive
and Y = U [⊥]), then we get a scattering passive i/s/o system.

- By taking both U and Y to be neutral we get an impedance passive i/s/o
system.
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and Y = U [⊥]), then we get a scattering passive i/s/o system.

- By taking both U and Y to be neutral we get an impedance passive i/s/o
system.

- By taking U to be a Krĕın subspace of W and Y = U [⊥] we get a transmission
passive i/s/o system.

This gives us

- scattering passive i/s/o realizations of given Schur function,

- impedance passive i/s/o realizations of a given Nevanlinna function,

- transmission passive i/s/o realizations of a given Potapov function.
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