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Abstract— Let Σ = (S;X ,U ,Y) be an i/s/o system in
continuous time. Here the state space X , the input space U ,
and the output space Y are Hilbert spaces, and the generator
S of Σ is a closed operator [ XU ] →

[X
Y
]
. A continuously

differentiable X -valued function x is a classical trajectory of Σ
on [0,∞) with input function u and output function y (both of
which are assumed to be continuous) if

[
x(t)
u(t)

]
∈ dom (S) and[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
for all t ≥ 0. For such a system Σ we define

the notions of the resolvent set ρ(Σ) and the i/s/o resolvent
matrix Ŝ. The i/s/o resolvent matrix Ŝ of Σ is an analytic 2×2
block operator matrix defined on ρ(Σ), and intuitively it maps
the initial state x0 at time zero and the restriction to ρ(Σ) of the
formal Laplace transform û of the input u into the restriction to
ρ(Σ) of the formal Laplace transforms x̂ and ŷ of the state x and
the output y. The i/s/o resolvent matrix is a fundamental tool in
the frequency domain analysis of Σ, and it makes it possible to
give natural extensions of many significant notions in the theory
of well-posed i/s/o systems to the class of possibly non-well-
posed i/s/o systems with a nonempty resolvent set. Examples
of such notions which can be extended are controllability, ob-
servability, minimality, restrictions, projections, compressions,
intertwinements, similarities, and pseudo-similarities.
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I. THE RESOLVENT SET AND THE RESOLVENT OF AN
OPERATOR

If A is a closed linear operator in a Hilbert (or Banach)
space X , then the resolvent set of A consists of those points
λ ∈ C for which (λ−A) has a bounded, everywhere defined
inverse, and this inverse (λ − A)−1 is called the resolvent
of A. One way to motivate this definition is the following:
Consider the linear stationary dynamical system

Σ:

{
x(t) ∈ dom (A) ,

ẋ(t) = Ax(t),
t ∈ R+, x(0) = x0, (1)

with no input and no output. We call x a classical trajectory
of Σ if x ∈ C1(R+;X ) and x satisfies (1). If x is Laplace
transformable, then by taking Laplace transforms in (1) we
get

λx̂(λ)− x0 = Ax̂(λ), (2)
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for all λ ∈ C for which the Laplace transform converges.
Clearly λ ∈ ρ(A) if and only if for every x0 ∈ X the
equation (2) has a unique solution x̂(λ) which depends
continuously on x(0), and if λ ∈ ρ(A), then x̂(λ) =
(λ−A)−1x0.

The same argument can be used to define the resolvent set
and the resolvent of a multi-valued closed linear operator A
in X (also called a relation in X ). In this case we rewrite
(1) into

Σ:

{
x(t) ∈ dom (A) ,

ẋ(t) ∈ Ax(t),
t ∈ R+, x(0) = x0, (3)

and (2) is replaced by

λx̂(λ)− x0 ∈ Ax̂(λ). (4)

Also in this case we say that λ belongs to the resolvent
set ρ(A) of A if for every x0 ∈ X the equation (4) has a
unique solution x̂(λ) which depends continuously on x0, and
we define the resolvent of A evaluated at λ ∈ ρ(A) to be
the bounded linear operator which maps x0 into x̂(λ). This
resolvent is still denoted by (λ−A)−1 also in the case where
A is multi-valued (but of course (λ−A)−1 is single-valued
and bounded).

II. THE I/S/O RESOLVENT SET AND THE I/S/O
RESOLVENT MATRIX OF AN I/S/O SYSTEM

The same argument can be extended to the case of a
linear stationary dynamical system with nontrivial inputs and
outputs. This time the time domain dynamics is described by
an equation of the type

Σ:


[
x(t)
u(t)

]
∈ dom (S) ,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

t ∈ R+, x(0) = x0. (5)

Here x is a continuously differentiable function on R+ with
values in the Hilbert space X (the state space), u and y are
continuous functions on R+ with values in the Hilbert spaces
U (the input space) and Y (the output space), respectively,
and S is assumed to be a closed operator [XU ]→

[X
Y
]

with
dense domain. We call such a system an i/s/o system, and
denote it by Σ = (S;X ,U ,Y). It is also possible to study
the multi-valued case, where the operator S in (5) is replaced
by a closed multi-valued operator S whose domain need not
be dense in [XU ], and the equation (5) is replaced by the



inclusion

Σ:


[
x(t)
u(t)

]
∈ dom (S) ,[

ẋ(t)
y(t)

]
∈ S

[
x(t)
u(t)

]
,

t ∈ R+, x(0) = x0. (6)

We call a system of the this type an i/s/o pseudo-system.
For the purpose of the following discussion there is

no significant difference between the i/s/o system (5) and
the i/s/o pseudo-system (6), so we may as well start by
discussing (6) instead of (5). By a classical trajectory of (6)
we mean a triple of functions

[ x
u
y

]
where x ∈ C1(R+;X ),

u ∈ C(R+;U), and y ∈ C(R+;Y) which satisfies (6). If x,
u, and y are Laplace transformable, then it follows from (6)
(since we assume S to be closed) that the Laplace transforms
x̂, û, and ŷ of x, u, and y satisfy[

λx̂(λ)− x0

ŷ(λ)

]
∈ S

[
x̂(λ)
û(λ)

]
. (7)

Definition 1. 1) A point λ ∈ C belongs to the i/s/o
resolvent set of S if for every x0 ∈ X and for every
û(λ) ∈ U there is a unique pair of vectors

[
x̂(λ)
ŷ(λ)

]
∈[X

Y
]

satisfying (6), and
[
x̂(λ)
ŷ(λ)

]
depends continuously

on
[ x0

û(λ)

]
. This set is alternatively called the resolvent

set of Σ (where Σ is the i/s/o system defined by (6))
and denoted by ρiso(S) or by ρ(Σ).

2) For each λ ∈ ρ(Σ) we define the i/s/o resolvent matrix
of Σ (or of S) at λ to be the bounded linear operator
which maps

[ x0

û(λ)

]
into

[
x̂(λ)
ŷ(λ)

]
.

The above definition is both natural and simple, and it
may be surprising that in the case where S is single-valued
and densely defined the above definition is equivalent to the
condition that S is a so called “operator node” in the sense
of [5].

Definition 2 ([5, Definition 4.7.2]). By an operator node
on a triple of Hilbert spaces (X ,U ,Y) we mean a linear
operator S : [XU ] →

[X
Y
]

with the following properties. We
let PX be the coordinate map which maps [ xy ] ∈

[X
Y
]

into
x, denote dom (A) =

{
x ∈ X

∣∣ [ x0 ] ∈ dom (S)
}

, define the
main operator A : dom (A) → X of S by Ax = PXS [ x0 ],
and require the following conditions to hold:

1) S is closed.
2) dom (A) is dense in X and ρ(A) 6= ∅.
3) PXS can be extended to a bounded linear operator[

A−1 B
]

: [XU ]→ X−1, where X−1 is the so called
extrapolation space induced by A (i.e., the completion
of X with respect to the norm ‖x‖X−1

= ‖(α −
A)−1x‖X where α is some fixed point in ρ(A)).

4) dom (S) =
{

[ xu ] ∈
[ U
Y
] ∣∣ A−1x+Bu ∈ X

}
.

Theorem 3. An operator S : [XU ] →
[X
Y
]

is an operator
node in the sense of Definition 2 if and only if dom (S) is
dense in [XU ] and ρiso(S) 6= ∅. Moreover, if ρiso(S) 6= ∅,
then ρiso(S) = ρ(A) where A is the main operator of S.

The proof of this theorem (and the proofs of all other
results that will be mentioned below) is found in [1].

Definition 4. 1) By a regular i/s/o system Σ =
(S;X ,U ,Y) we mean an i/s/o system of the type (5)
where the (single-valued) generating operator S has
dense domain in [XU ] and a nonempty i/s/o resolvent
set.

2) By a regular i/s/o pseudo-system Σ = (S;X ,U ,Y)
we mean an i/s/o pseudo-system of the type (6) where
the (possibly multi-valued) generating operator S has
a nonempty i/s/o resolvent set (but its domain need not
be dense in [XU ]).

For each λ ∈ ρiso(S) the i/s/o resolvent matrix Ŝ(λ) of S
is a bounded linear operator [XU ] →

[X
Y
]
, and hence Ŝ(λ)

has a block matrix representation Ŝ(λ) =
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
.

Definition 5. The components Â, B̂, Ĉ, and D̂ in the block
matrix representation Ŝ =

[
Â B̂
Ĉ D̂

]
of the i/s/o resolvent

matrix Ŝ of Σ (all of which are analytic operator-valued
functions defined on ρiso(S)) are called as follows:

1) Â is the s/s (state/state) resolvent function of Σ,
2) B̂ is the i/s (input/state) resolvent function of Σ,
3) Ĉ is the s/o (state/output) resolvent function of Σ,
4) D̂ is the i/o (input/output) resolvent function of Σ,

Out of these functions the s/s resolvent function Â is the
(standard) resolvent of the main operator A of S (both in the
single-valued case and the multi-valued case). In different
mathematical communities the i/o resolvent function D̂ is
know as the under different names, such as “transfer func-
tion”, or “characteristic function”, or “Weyl function”, and
in operator theory the i/s resolvent function B̂ is sometimes
called the Γ-field.

The s/s resolvent function Â can be used to check if a
regular i/s/o pseudo-system Σ = (S;X ,U ,Y) is actually a
regular i/s/o system.

Lemma 6. Let Σ = (S;X ,U ,Y) be a regular i/s/o pseudo-
system with main operator A and s/s resolvent function Â.
Then

1) The following conditions are equivalent:
a) S is single-valued;
b) A is single-valued;
c) Â(λ) is injective for some λ ∈ ρiso(S) (or

equivalently, for all λ ∈ ρiso(S)).
2) Also the following conditions are equivalent:

a) dom (S) is dense in
[ U
Y
]
;

b) dom (A) is dense in X ;
c) Â(λ) has dense range for some λ ∈ ρiso(S) (or

equivalently, for all λ ∈ ρiso(S)).
In particular, Σ is a regular i/s/o system if and only if A
is single-valued and has dense domain, or equivalently, if
and only if Â(λ) is injective and has dense range for some
λ ∈ ρiso(S) (or equivalently, for all λ ∈ ρiso(S)).



III. INPUT/STATE/OUTPUT PSEUDO-RESOLVENTS

Lemma 7. The i/s/o resolvent matrix Ŝ =
[
Â B̂
Ĉ D̂

]
of a

regular i/s/o pseudo-system Σ = (S;X ,U ,Y) satisfies the
i/s/o resolvent identity

Ŝ(λ)− Ŝ(µ) = (µ− λ)

[
Â(µ)

Ĉ(µ)

] [
Â(λ) B̂(λ)

]
(8)

for all µ, λ ∈ ρiso(S).

Motivated by Lemma 7 we make the following definition.

Definition 8. Let Ω be an open subset of the complex
plane C. An analytic L(

[ U
Y
]

;
[X
Y
]
)-valued function Ŝ =[

Â B̂
Ĉ D̂

]
defined in Ω is called an i/s/o pseudo-resolvent in

(X ,U ,Y; Ω) if it satisfies the identity (8) for all µ, λ ∈ Ω.

Thus, the i/s/o resolvent matrix Ŝ =
[
Â B̂
Ĉ D̂

]
of a regular

i/s/o pseudo-system Σ = (S;X ,U ,Y) is an i/s/o pseudo-
resolvent in ρ(Σ).

In [3] Mark Opmeer makes systematic use of the notion
of an i/s/o pseudo-resolvent, but instead of calling Ŝ an
i/s/o pseudo-resolvent he calls Ŝ a “resolvent linear system”,
and calls Â the “pseudo-resolvent”, B̂ the “incoming wave
function”, Ĉ the “outgoing wave function”, and D the “char-
acteristic function” of the resolvent linear system Ŝ. In the
same article he also investigates what can be said about time
domain trajectories (in the distribution sense) of resolvent
linear systems satisfying some additional conditions. One of
these additional set of conditions is that Ω should contain
some right-half plane and that Ŝ should satisfy a polynomial
growth bound in this right-half plane.

The converse of Lemma 7 is also true in the following
form.

Theorem 9. Let Ω be an open subset of the complex plane
C. Then every i/s/o pseudo-resolvent Ŝ in (X ,U ,Y; Ω) is the
restriction to Ω of the i/s/o resolvent of some i/s/o pseudo-
system Σ = (S;X ,U ,Y) satisfying ρ(Σ) ⊃ Ω. The i/s/o
pseudo-system Σ is determined uniquely by Ŝ, and Ŝ has a
unique extension to ρ(Σ). This extension is maximal in the
sense that Ŝ cannot be extended to an i/s/o pseudo-resolvent
on any larger open subset of C.

This result is well-known in the case where the system
has no input and no output (so that S is equal to its main
operator A), and where Â(λ) is injective and has dense range
for some λ ∈ Ω; see, e.g., [4, Theorem 9.3, p. 36]. A multi-
valued version of this theorem, still with no input and output,
is found in [2, Remark, pp. 148–149].

Theorem 9 can be used in the following way: If we start
from some i/s/o system or pseudo-system Σ, and modify
the i/s/o resolvent matrix Ŝ of Σ by, e.g., restricting it to
some subspace or projecting it onto some other subspace,
then as long as the resulting block matrix function remains
an i/s/o pseudo-resolvent it follows from Theorem 9 that
this new i/s/o pseudo-resolvent is the i/s/o resolvent matrix
of some new i/s/o pseudo-system (possibly with different
state, input, or output spaces). This can be used, e.g.,

in the study of frequency domain restrictions, projections,
compressions, dilations, and intertwinements of regular i/s/o
pseudo-systems, as will be explained in more detail below.

IV. FREQUENCY DOMAIN TRAJECTORIES OF I/S/O
PSEUDO-SYSTEMS

Equations (5) and (6) describe the time domain evolution
of an i/s/o system or pseudo-system Σ. From the time domain
inclusion (6) we get the frequency domain inclusion (7) by
taking (formal) Laplace transforms as explained above. It
is possible to introduce the notion of a frequency domain
trajectory by replacing (6) by (7), and at the same time
replacing the time domain interval R+ by some open subset
Ω of the complex (frequency domain) plane C.

Definition 10. Let Σ = (S;X ,U ,Y) be an i/s/o pseudo-
system, and let Ω be an open subset of C. By a (frequency
domain) Ω-trajectory of Σ with initial state x0 ∈ X we mean
a triple of analytic functions

[
x̂
û
ŷ

]
defined in Ω with values

in
[X
U
Y

]
which satisfy (7) for all λ ∈ Ω.

It follows immediately from the above definition that if
Ω′ ⊂ Ω, then the restriction to Ω′ of an Ω-trajectory of Σ
with initial state x0 is an Ω′-trajectory of Σ with the same
initial state.

For a regular i/s/o pseudo-system the question of existence
of Ω-trajectories has a natural answer: If Ω is an arbitrary
open subset of ρ(Σ), then for every x0 ∈ X and for every
analytic function û in Ω the i/s/o pseudo-system Σ has
a unique Ω-trajectory

[
x̂
û
ŷ

]
with initial state x0 and input

function û, and this trajectory is given by[
x̂(λ)
ŷ(λ)

]
= Ŝ(λ)

[
x0

û(λ)

]
=

[
Â(λ)x0 + B̂(λ)û(λ)

Ĉ(λ)x0 + D̂(λ)û(λ)

]
(9)

for all λ ∈ Ω. If ρ(Σ) is connected, then it turns out that the
notion of an Ω-trajectory of Σ is independent of the choice
of Ω ⊂ ρ(Σ) in the sense that if Ω1, Ω2 ⊂ ρ(Σ), and if

[
x̂
û
ŷ

]
is analytic in Ω1 ∪ Ω2, then the restriction of

[
x̂
û
ŷ

]
to Ω1 is

an Ω1-trajectory of Σ with initial state x0 if and only if the
restriction of

[
x̂
û
ŷ

]
to Ω2 is an Ω2-trajectory of Σ with the

same initial state.

V. FREQUENCY DOMAIN RESTRICTIONS, PROJECTIONS,
AND COMPRESSIONS OF I/S/O PSEUDO-SYSTEMS

There is a rich theory about restrictions, projections,
compressions, and dilations for discrete time i/s/o systems
of the form

Σ:

{
x(n+ 1) = Ax(n) +Bu(n),

y(n) = Cx(n) +Du(n),
n ∈ Z+, (10)

where x(n) ∈ X , u(n) ∈ U , and y(n) ∈ Y , and A, B, C,
and D are bounded linear operators. Analogous (but more
technical) results also exist for linear stationary well-posed
i/s/o systems in continuous time in the sense of [5]; see,
e.g., [5] and [1] for details. However, the non-well-posed



continuous time theory is significantly more difficult, and
not many results are available for that case. In the non-
well-posed case it is even far from obvious to what extent
the notions mentioned above can be described in terms of
either classical or generalised time domain trajectories of the
system. One solution to this problem is to replace the time
domain by the frequency domain, and to study restrictions,
projections, compressions, and dilations in the frequency
domain. There all these notions have natural interpretations
in terms of frequency domain trajectories of the system.

Definition 11. Let Σ1 = (S1,X1;U ,Y) and Σ2 =
(S2,X2,U ,Y) be two regular i/s/o pseudo-systems (with the
same input and output spaces), and suppose that X1 is a
closed subspace of X2 with a complement Z1 in X2, so that
X2 = X1 uZ1. Let Ω be an open subset of ρ(Σ1) ∩ ρ(Σ2).

1) Σ1 is the Ω-restriction of Σ2 to X1 if every Ω-
trajectory of Σ1 with initial state x0 ∈ X1 is also an
Ω-trajectory of Σ2 with the same initial state. In this
case we also call Σ2 an extension of Σ1.

2) Σ1 is the Ω-projection of Σ2 onto X1 along Z1 if[
P
Z1
X1
x̂

û
ŷ

]
is an Ω-trajectory of Σ1 with initial state

PZ1

X1
x0 whenever

[
x̂
û
ŷ

]
is an Ω-trajectory of Σ2 with

initial state x0 ∈ X2.
3) Σ1 is the Ω-compression of Σ2 onto X1 along Z1 if the

following condition holds: If
[
x̂
û
ŷ

]
is an Ω-trajectory of

Σ2 with initial state x0 ∈ X1, then
[
P
Z1
X1
x̂

û
ŷ

]
is an Ω-

trajectory of Σ1 with the same initial state. In this case
we also call Σ2 a dilation of Σ1 along Z1.

Clearly, every Ω-restriction and every Ω-projection is also
an Ω-compression.

The notions that we have defined above can be expressed
by means of formulas involving the i/s/o resolvent matrices
of Σ1 and Σ2. For example, Ω-compressions can be charac-
terised as follows:

Lemma 12. Let Σi = (Si;Xi,U ,Y) be two regular i/s/o
pseudo-systems with i/s/o resolvent matrices

[
Âi B̂i

Ĉi D̂i

]
of Σi,

i = 1, 2, and with X2 = X1uZ1, and let Ω be an open subset
of ρ(Σ1)∩ρ(Σ2). Then Σ1 is the Ω-compression of Σ2 onto
X1 along Z1 if and only if the following four conditions hold
for all λ ∈ Ω:

Â1(λ) = PZ1

X1
Â2(λ)|X1

, B̂1(λ) = PZ1

X1
B̂2(λ),

Ĉ1(λ) = Ĉ2(λ)|X1
, D̂1(λ) = D̂2(λ).

(11)

If Ω is connected, then the same statement remains true if
“for all λ ∈ Ω” is replaced by “for some λ ∈ Ω”.

Analogous results are also true for Ω-restrictions and Ω-
projections.

Definition 13. Let Σi = (Si;Xi,U ,Y) be two regular i/s/o
pseudo-systems with i/o resolvent functions D̂i, and let Ω be
an open subset of ρ(Σ1)∩ρ(Σ2). We say that Σ1 and Σ2 are
externally Ω-equivalent if D̂1(λ) = D̂2(λ) for all λ ∈ Ω.

This condition can be reformulated in terms of Ω-
trajectories of Σ1 and Σ2 as follows: Σ1 and Σ2 are exter-
nally Ω-equivalent if and only if they satisfy the following

condition: If
[
x̂i

ûi

ŷi

]
is an Ω-trajectory of Σi, i = 1, 2, with

initial state zero, and if û1(λ) = û2(λ) for all λ ∈ Ω, then
ŷ1(λ) = ŷ2(λ) for all λ ∈ Ω.

Lemma 14. If the i/s/o pseudo-system Σ1 is a Ω-compression
of the i/s/o pseudo-system Σ2, then Σ1 and Σ2 are externally
Ω-equivalent.

Definition 15. Let Σ = (S;X ,U ,Y) be a regular i/s/o
pseudo-system with i/s/o resolvent matrix Ŝ =

[
Â B̂
Ĉ D̂

]
, and

let Ω be an open subset of ρ(Σ).

1) The subspace RΩ
Σ :=

∨
λ∈Ω im(B̂(λ)) is called the

Ω-reachable subspace of Σ.
2) The subspace UΩ

Σ :=
⋂
λ∈Ω ker Ĉ(λ) is called the Ω-

unobservable subspace of Σ.
3) Σ is Ω-controllable if RΩ

Σ = X , and Σ is Ω-observable
if UΩ

Σ = {0}.

Definition 16. A regular i/s/o pseudo-system Σ is Ω-
minimal, where Ω is some open subset of ρ(Σ), if Σ does
not have any non-trivial Ω-compression (i.e., Σ is not a non-
trivial dilation of any other i/s/o pseudo-system).

Theorem 17. Every regular i/s/o pseudo-system Σ has
a minimal Ω-compression, where Ω is an arbitrary open
subset of ρ(Σ), i.e., there exists a minimal regular i/s/o
pseudo-system Σ1 which is an Ω-compression of Σ. (This
compression is not unique in general.)

Note that we do not claim that every i/s/o system Σ has
a minimal Ω-compression that is also an i/s/o system. But it
follows from the above result that Σ does have a minimal
Ω-compression in the form of an i/s/o pseudo-system, i.e.,
an Ω-compression were the generating operator S of the Ω-
compression is allowed to be multi-valued and to have a
non-dense domain. (It is also possible to give additional con-
ditions under which the minimal Ω-compression is, indeed,
an i/s/o system.)

Theorem 18. An i/s/o pseudo-system Σ is Ω-minimal if and
only if Σ is both Ω-controllable and Ω-observable, where Ω
is an arbitrary open subset of ρ(Σ).

VI. FREQUENCY DOMAIN INTERTWINEMENTS OF I/S/O
PSEUDO-SYSTEMS

All the notions that we discussed in the preceding section,
i.e., restrictions, projections, compressions, and dilations, are
special cases of the more general notion of intertwinements
of two i/s/o pseudo-system. This notion is defined as follows.

Definition 19. Let Σi = (Si,Xi,U ,Y), i = 1, 2, be two
regular i/s/o pseudo-systems (with the same input and output
spaces), and let Ω be an open subset of ρ(Σ1) ∩ ρ(Σ2). We
say that Σ1 and Σ2 are Ω-intertwined by the multi-valued
operator R : X1 → X2 if the following condition holds: If



[
x̂i

ûi

ŷi

]
are Ω trajectories of Σi with initial states xi0 ∈ Xi,

i = 1, 2, and if x2
0 ∈ Rx1

0 and û1(λ) = û2(λ) for all λ ∈ Ω,
then x̂2(λ) ∈ Rx1(λ) and ŷ1(λ) = ŷ2(λ) for all λ ∈ Ω.

(Above we have used the convention that the conditions
x2

0 ∈ Rx1
0 and x̂2(λ) ∈ Rx1(λ) imply that x1

0 ∈ dom (R)
and x1(λ) ∈ dom (R).)

Lemma 20. Let Σi = (Si;Xi,U ,Y) be two regular i/s/o
pseudo-systems with i/s/o resolvent matrices Ŝi =

[
Âi B̂i

Ĉi D̂i

]
,

i = 1, 2, and let Ω be an open subset of ρ(Σ1)∩ρ(Σ2). Then
Σ1 and Σ2 are Ω-intertwined by the multi-valued operator
R : X1 → X2 if and only if the following four conditions
hold for all λ ∈ Ω:

1) Â2(λ)x2 ∈ RÂ1(λ)x1 for all x2 ∈ Rx1.
2) B̂2(λ)u0 ∈ RB̂1(λ)u0 for all u0 ∈ U .
3) Ĉ2(λ)x2 = Ĉ1(λ)x1 for all x2 ∈ Rx1.
4) D̂2(λ) = D̂1(λ).

If Ω is connected, then the same statement remains true if
“for all λ ∈ Ω” is replaced by “for some λ ∈ Ω”.

Lemma 21. Let Σ1 = (S1,X1;U ,Y) and Σ2 =
(S2,X2,U ,Y) be two regular i/s/o pseudo-systems (with the
same input and output spaces), and suppose that X1 is a
closed subspace of X2 with a complement Z1 in X2, so that
X2 = X1 u Z1. Let Ω be an open subset of ρ(Σ1) ∩ ρ(Σ2).

1) Σ1 is the Ω-restriction of Σ2 to X1 if and only if Σ1 and
Σ2 are intertwined by the embedding operator X1 ↪→
X2.

2) Σ1 is the Ω-projection of Σ2 onto X1 along Z1 if and
only if Σ2 and Σ1 are intertwined by the projection
operator PZ1

X1
.

The corresponding result for Ω-compressions and Ω-
dilations is more complicated to explain (see [1] for details).
A particular consequence of that result is the following:

Lemma 22. All Ω-restrictions, Ω-projections, Ω-
compressions, and Ω-dilations can be interpreted as
Ω-intertwinements, where the intertwining operator R is
closed and single-valued and has closed domain and closed
range.

Theorem 23. Let Σi = (Si;Xi,U ,Y), i = 1, 2, be two
regular i/s/o pseudo-systems (with the same input and output
spaces) with i/s/o resolvent matrices Ŝi =

[
Âi B̂i

Ĉi D̂i

]
, i = 1, 2,

and let Ω be an open subset of ρ(Σ1) ∩ ρ(Σ2).

1) Σ1 and Σ2 are Ω-intertwined by some multi-valued
operator R : X1 → X2 if and only if Σ1 and Σ2 are
externally Ω-equivalent.

2) If Σ1 and Σ2 are Ω-intertwined by some multi-valued
operator R : X1 → X2, then Σ1 and Σ2 are also Ω-
intertwined by the closure of R.

Definition 24. Two regular i/s/o pseudo-systems Σi =
(Si,Xi,U ,Y), i = 1, 2, are Ω-pseudo-similar if they are Ω-
intertwined by some (single-valued) injective linear operator
with dense domain and dense range.

Lemma 25. Let Σi = (Si;Xi,U ,Y), i = 1, 2, be two min-
imal regular i/s/o pseudo-systems (with the same input and
output spaces) with i/s/o resolvent matrices Ŝi =

[
Âi B̂i

Ĉi D̂i

]
,

i = 1, 2, and let Ω be an open subset of ρ(Σ1)∩ρ(Σ2). Then
Σ1 and Σ2 are Ω-pseudo-similar if and only if Σ1 and Σ2

are externally Ω-equivalent.

VII. THE WELL-POSED CASE

Analogous results to those presented above are valid for
restrictions, projections, compressions, dilations, intertwine-
ments, and pseudo-similarities for linear stationary well-
posed i/s/o systems. In this setting the components of the i/s/o
resolvent matrix Ŝ =

[
Â B̂
Ĉ D̂

]
is replaced by the evolution

semigroup A, the input map B, the output map C, and
the input/output map D of the well-posed i/s/o system, and
frequency domain Ω-trajectories are replaced by time domain
generalised trajectories of Σ on R+. By a generalised
trajectory of Σ on R+ we mean a triple of functions

[ x
u
y

]
,

where x is continuous and u and y belong locally to L2,
which is the limit of a sequence of classical trajectories[ xn
un
yn

]
of Σ on R+ in the sense that xn → x in C(R+;X ),

un → u in L2
loc(R+;U), and yn → y in L2

loc(R+;Y)
as n → ∞. In the well-posed case there is a one-to-one
correspondence between the time domain versions of the
notions mentioned above and the corresponding frequency
domain versions if one chooses the set Ω to be the right
half-plane {λ ∈ C | <λ > ω(Σ)}, where ω(Σ) is the growth
bound of Σ. See [1] for details.
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