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A PHYSICALLY MOTIVATED CLASS OF SCATTERING PASSIVE
LINEAR SYSTEMS∗

OLOF J. STAFFANS† AND GEORGE WEISS‡

Abstract. We introduce a class of scattering passive linear systems motivated by examples from
mathematical physics. The state space of the system is X = H ⊕ E, where H and E are Hilbert
spaces. We also have a Hilbert space E0 which is dense in E, with continuous embedding, and E′

0 is
the dual of E0 with respect to the pivot space E. The input space is the same as the output space,

and it is denoted by U . The semigroup generator has the structure A =
[ 0 −L

L∗ G− 1
2
K∗K

]
, where

L ∈ L(E0,H) and K ∈ L(E0, U) are such that
[
L
K

]
, with domain E0, is closed as an unbounded

operator from E to H ⊕ U . The operator G ∈ L(E0, E′
0) is such that Re 〈Gw0 , w0〉 ≤ 0 for all

w0 ∈ E0. The observation operator is C =
[
0 −K

]
, the control operator is B = −C∗, and the

output equation is y = Cx + u = −Kw + u, where u is the input function, x =
[
z
w

]
is the state

trajectory, and y is the corresponding output function. We show that this system is scattering
passive (hence, well-posed) and that classical solutions of the system equation ẋ = Ax+ Bu satisfy
d
d t

‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2 + 2Re 〈Gw,w〉. Moreover, the dual system satisfies a similar power
balance equation. Hence, this system is scattering conservative if and only if Re 〈Gw0 , w0〉 = 0 for
all w0 ∈ E0. We give two examples involving the beam equation and one with Maxwell’s equations.
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transform, beam equation, Maxwell’s equations

AMS subject classifications. 93C20, 93A30, 47A40, 35Q61

DOI. 10.1137/110846403

1. The main results. Given four operators A,B,C,D on appropriate Hilbert
spaces, a natural question is whether they determine a scattering passive or con-
servative (in particular, well-posed) linear system via the equations ẋ = Ax + Bu,
y = Cx +Du. This was studied for the first time in Arov and Nudelman [4], using
earlier results about discrete-time scattering passive systems and translating those
results using the internal Cayley transform. More results about scattering passive
systems were derived in Staffans and Weiss [35] (where they were called dissipative
systems), and relatively simple necessary and sufficient conditions for a system node
to be scattering conservative were provided in Malinen, Staffans, and Weiss [24]. A
good overview of these results can be found in the book by Staffans [34], and the
connection with impedance passive and conservative systems is studied in Staffans
[31, 32, 33].

It is of interest to identify large classes of systems where the operators A,B,C,D
have a special structure observed in models of mathematical physics, which implies
that the system is scattering passive or conservative. Indeed, if we then find a system
with this special structure, we do not have to take the trouble of checking the condi-
tions for scattering passivity or conservativity given in the papers listed earlier. (This
kind of checking need not be straightforward.) Such a special class of conservative
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systems (“from thin air”) has been introduced in Weiss and Tucsnak [46] and further
studied in Tucsnak and Weiss [38] and in Staffans [33]. In this paper we give a larger
special class, which includes the systems introduced in [46] and also others. We were
led to introduce this class by our failure to fit Maxwell’s equations into the framework
of [46]. We illustrate the new theory with two short examples based on the beam
equation (only one of which falls within the class of systems treated in [46] and [38]),
and we also outline an application to Maxwell’s equations. To keep the length of
this paper within reasonable limits we have postponed a more complete treatment of
Maxwell’s equations to the follow-up paper [44].

In this paper we consider a linear system Σ whose state space X can be decom-
posed as X = H⊕E, where H and E are Hilbert spaces. The Hilbert space U is both
the input space and the output space of Σ. We identify H , E, and U with their duals
H ′, E′, and U ′. The Hilbert space E0 is a dense subspace of E and the embedding
E0 ↪→ E is continuous. We denote by E′

0 the dual of E0 with respect to the pivot
space E so that

E0 ⊂ E ⊂ E′
0

densely and with continuous embeddings. Such triples of Hilbert spaces are often
encountered in the abstract treatment of partial differential equations. We denote
X0 = H ⊕ E0 so that X ′

0 = H ⊕ E′
0. We decompose the state of Σ as follows:

x
0
=

[
z
0

w
0

]
, z

0
∈ H , w

0
∈ E .

We assume that we have three bounded operators

(1.1) L ∈ L(E0, H) , K ∈ L(E0, U) , G ∈ L(E0, E
′
0)

such that

(1.2) Re 〈Gw
0
, w

0
〉E′

0,E0
≤ 0 ∀ w

0
∈ E0 ,

and we define A ∈ L(X0, X
′
0), B ∈ L(U,X ′

0), and C ∈ L(X0, U) by

(1.3) A =

[
0 −L
L∗ G− 1

2K
∗K

]
, B =

[
0
K∗

]
, C =

[
0 −K

]
.

The equations of the system are

(1.4) ẋ(t) = Ax(t) +Bu(t) , y(t) = Cx(t) + u(t) ,

where x is the state trajectory, u is the input function, and y is the output function.
Note that the differential equation above is an equation in X ′

0.
We define the domain D(A) by

(1.5) D(A) = {x
0
∈ X0 | Ax

0
∈ X}

and we denote by A and C the restrictions of A and C to D(A). More explicitly,

(1.6) D(A) =

{[
z
0

w0

]
∈ X0

∣∣∣∣ L∗z0 +
(
G− 1

2K
∗K
)
w0 ∈ E

}
.
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Under the assumptions made so far, A is not necessarily closed. But for (1.4) to define
a scattering passive system, we need A to be the generator of a strongly continuous
semigroup of operators on X . One way to overcome this problem would be to assume
that L is closed. This would indeed work, but it would be too restrictive: it would
eliminate Maxwell’s equations, which we would like to fit into this abstract framework.
A better alternative is to assume the following weaker condition:

(1.7)

[
L
K

]
(with domain E0) is closed as an unbounded operator E → H ⊕ U .

As we shall see later (in Theorem 1.4), this assumption implies that A is m-dissipative
(i.e., A is dissipative and I + A has a bounded inverse) and hence it generates a
semigroup of contractions.

Informal statement of the main result. Under the assumptions (1.1)–(1.3)
and (1.7), the equations of (1.4) determine a scattering passive system with state space
X. This system is scattering conservative if and only if we have equality in (1.2).

Scattering passive systems and scattering conservative systems will be formally
defined in section 3. The above statement sounds simple and it contains the essence
of what we are proving in this paper. However, a precise and formal statement is
much more complicated. One reason for this is that we have to make it clear what
we mean by the claim that certain equations determine a system. Another reason is
that we want to give a precise description of the system in terms of its system node,
semigroup generator, control and observation operators, and transfer function.

Before stating a more precise version of the above informal result, let us explain
how systems of the above type arise in the modeling of physical systems. To do this
we introduce K0 = 1√

2
K and remark that (1.7) holds if and only if it holds with K0

in place of K. The formal dynamical system

(1.8)

[
ż(t)
ẇ(t)

]
=

[
0 −L
L∗ G

] [
z(t)
w(t)

]
+

[
0
K∗

0

]
e(t), t ≥ 0,

f(t) =
[
0 K0

] [z(t)
w(t)

]
, t ≥ 0,

often arises in physical modeling in the so-called impedance setting, where e stands
for an effort variable and f stands for a flow variable. In Proposition 6.2 below we
prove that if (1.1), (1.2), and (1.7) hold, then the above system is impedance passive
in a weak sense, i.e., the operator

(1.9) T =

⎡
⎣ 0 −L 0
L∗ G K∗

0

0 −K0 0

⎤
⎦

(with the appropriate domain) is m-dissipative. This implies that

(1.10)
d

dt
‖x(t)‖2 ≤ 2Re 〈e(t), f(t)〉

for all classical solutions x(·) =
[

z(·)
w(·)

]
of (1.8). The physical interpretation of this

inequality is that 1
2‖x(t)‖2 is the energy in the system, while Re 〈e(t), f(t)〉 is the

power entering the system. For an impedance conservative system the inequality in
(1.10) holds as an equality. For closed

[
L
K0

]
the system will be impedance conservative
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if and only if we have equality in (1.2). We refer to [2, 3, 5, 23, 31, 32, 33] for details
on impedance passive and conservative systems.

Unfortunately, the system (1.8) is usually not well-posed. Well-posedness means
for some (hence, for every) t > 0, the state x(t) and the flow f (restricted to [0, t])
depend continuously on the initial state x(0) and the effort e (restricted to [0, t]), and
this does not follow from the above assumptions. In general, we do not even have
a strongly continuous semigroup describing the evolution of the state x(t) if e = 0.
However, it is possible to reformulate the above problem into a scattering setting by
choosing suitable combinations of e and f as input and output signals. If we define

(1.11) u = 1√
2
(e+ f) , y = 1√

2
(e− f) ,

then (1.8) becomes[
ż(t)
ẇ(t)

]
=

[
0 −L
L∗ G−K∗

0K0

] [
z(t)
w(t)

]
+

[
0√
2 K∗

0

]
u(t), t ≥ 0,

y(t) =
[
0

√
2 K0

] [z(t)
w(t)

]
+ u(t), t ≥ 0 ,

and instead of (1.10) we get the inequality that is characteristic of scattering passive
systems:

(1.12)
d

dt
‖x(t)‖2 ≤ ‖u(t)‖2 − ‖y(t)‖2 .

After substituting
√
2K0 = K we arrive at the system (1.3)–(1.4).

The transformation (1.11) is called the external Cayley transform. It can be
interpreted as a negative output feedback combined with a feed-forward term and a
rescaling, as will be explained in more detail in section 5 (see Figure 1). As we prove in
Theorem 5.2 and Remark 5.3, the system (1.3)–(1.4) is scattering passive if and only
if the operator T in (1.9) is m-dissipative. Scattering passivity implies well-posedness.
The system (1.3)–(1.4) is scattering conservative if the inequality in (1.2) holds as an
equality. (Scattering conservative systems will be defined in section 3, and for them
equality holds in (1.12).)

After this digression we now return to a more precise statement of our main
results. The following three theorems use terminology that will be recalled in section 3.

Theorem 1.1. Let H,E,U,E0, and X0 be as at the beginning of this section and
let the operators L,K, and G be as (1.1), (1.2), and (1.7). Define the operator Ssca

by

Ssca =

[
[A&B]sca
[C&D]sca

]
,

where

(1.13) [A&B]sca =

[
0 −L 0
L∗ G− 1

2K
∗K K∗

]
, [C&D]sca =

[
0 −K I

]
,

both have the domain

(1.14) D(Ssca) =

⎧⎨
⎩
⎡
⎣z0

w
0

u0

⎤
⎦ ∈ X0 × U

∣∣∣∣ L∗z
0
+
(
G− 1

2K
∗K
)
w

0
+K∗u

0
∈ E

⎫⎬
⎭ .
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Then Ssca is a scattering passive (hence, well-posed) system node with input space
U , state space X = H ⊕ E and output space U .

The following proposition is an easy consequence of the above theorem, using
known general properties of well-posed system nodes. It tells us that the equation as-
sociated with the system node Ssca (see (1.17) below) has plenty of classical solutions.
These coincide with the classical solutions of (1.4).

We denote by H1
loc((0,∞);U) the space of those functions on (0,∞) whose re-

striction to (0, n) is in H1((0, n);U) for every n ∈ N.
Proposition 1.2. We use the notation and the assumptions of Theorem 1.1.

The space D(Ssca) is dense in H ⊕ E ⊕ U . It is a Hilbert space with the norm∥∥∥∥∥∥
⎡
⎣z0

w
0

u
0

⎤
⎦
∥∥∥∥∥∥
2

D(Ssca)

= ‖z0‖2+‖w0‖2+‖u0‖2+‖Lw0‖2+
∥∥L∗z0 +

(
G− 1

2K
∗K
)
w0 +K∗u0

∥∥2 .
(On the right-hand side, we have used the norms of H,E, and U .)

If the input function u and the initial state
[

z(0)
w(0)

]
of Ssca satisfy

(1.15) u ∈ H1
loc((0,∞);U) ,

⎡
⎣z(0)w(0)
u(0)

⎤
⎦ ∈ D(Ssca) ,

then the corresponding state trajectory [ zw ] and output function y of Ssca satisfy
(1.16)[

z
w

]
∈ C1([0,∞);X) ,

⎡
⎣zw
u

⎤
⎦ ∈ C([0,∞);D(Ssca)) , y ∈ H1

loc((0,∞);Y ) ,

and

(1.17)

⎡
⎣ ż(t)ẇ(t)
y(t)

⎤
⎦ = Ssca

⎡
⎣z(t)w(t)
u(t)

⎤
⎦ ∀ t ≥ 0 .

Theorem 1.3. We use the notation and the assumptions of Theorem 1.1. If the
functions u, x = [ zw ], and y are as in (1.15)–(1.17), then they satisfy the following
power balance equation for every t ≥ 0:

(1.18)
d

dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2 + 2Re 〈Gw(t), w(t)〉 .

The dual system node S∗
sca has the same structure but with L,K, and G replaced

with −L,−K, and G∗. Hence, its classical solutions satisfy the same power balance
equation (1.18). Therefore, Ssca is scattering conservative if and only if

(1.19) Re 〈Gw
0
, w

0
〉 = 0 ∀ w

0
∈ E0 .

Theorem 1.4. We use the notation and the assumptions of Theorem 1.1. The
semigroup generator A of Ssca is A from (1.3) restricted to D(A) from (1.6).

Let X1 = D(A) with the norm ‖x‖1 = ‖(I −A)x‖, and let X−1 be the completion
of X with respect to the norm ‖x‖−1 = ‖(I −A)−1x‖. Then

(1.20) X1 ⊂ X0 ⊂ X ⊂ X ′
0 ⊂ X−1 ,
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where all the embeddings are continuous and dense. A has a unique extension to an
operator A−1 ∈ L(X,X−1), whose restriction to X0 is A from (1.3).

The control operator B of Ssca is as in (1.3) and the observation operator C of
Ssca is C from (1.3) restricted to D(A). The transfer function of Ssca is

G(s) = I −K

[
sI +

1

2
K∗K −G+

1

s
L∗L

]−1

K∗

for all s in the open right half-plane.
We mention that it follows immediately from the above theorem, combined with

Theorem 1.3, that

A∗ =

[
0 L

−L∗ G∗ − 1
2K

∗K

]
,

D(A∗) =
{[

z
0

w
0

]
∈ X0

∣∣∣∣ − L∗z
0
+
(
G∗ − 1

2K
∗K
)
w

0
∈ E

}
.

In section 2 we give several comments on the above results and we explain some
connections with other classes of systems and with second order differential equations
on Hilbert spaces. We give two examples based on the Euler–Bernoulli beam equation
and outline an application to Maxwell’s equations.

To understand the theorems stated earlier, the reader should know the concepts
of system node, well-posed system node, scattering passive system node, scattering
conservative system node, classical solution, and well-posed system. The definitions of
these concepts and some of their properties will be recalled in section 3. The concepts
of semigroup generator, control operator, observation operator, and transfer function
of a system node will also be recalled in section 3.

The internal and external Cayley transformations are discussed in sections 4 and
5. The proof of Theorem 1.1 is given in section 6. The proofs of Proposition 1.2 and
Theorem 1.3 are also in section 6.

In section 7 we give a more explicit formula for the resolvent (sI − A)−1 (as an
operator matrix) and we prove Theorem 1.4.

A preliminary version of our results was presented in the conference paper [43].

2. Comments on the main results and examples.
Remark 2.1. If Ssca is a system node of the above structure, and moreover L is

surjective, then for any [ zw ] , u, y that satisfy (1.16) and (1.17) it is possible to identify
a hidden variable q such that

z(t) = − Lq(t) , w(t) = q̇(t) .

Indeed, first we have to find an initial value for q such that z(0) = −Lq(0) (this q(0)

may be nonunique). Then, for every t ≥ 0 put q(t) = q(0) +
∫ t

0
w(σ)dσ. The hidden

variable q satisfies the differential equation

q̈(t) + (12 K
∗K −G)q̇(t) + L∗Lq(t) = K∗u(t) ,

where all the terms are in E′
0, q ∈ C1([0,∞);E0), and q ∈ C2([0,∞);E). The

difference between two different hidden variables associated to the same solution of
(1.17) is a constant in KerL. An alternative state for this system is (q, q̇), taking
values in the new state space E0 ⊕E (this is often used in the literature). Note that
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since L is not assumed to be closed, in general it is not possible to restrict L∗L to a
positive (in particular, self-adjoint) operator from D(L∗L) ⊂ E to E. If L is closed,
then this becomes possible; see Theorem 13.13 in Rudin [27].

Systems described by second order differential equations like the one above, with
similar assumptions but with L closed, have been studied in Jacob and Morris [15, 16].
They have examined various properties of the associated transfer functions. For more
material on second order linear differential equations with operator coefficients we
refer to section VI.3 in Engel and Nagel [12] and to Fattorini [13].

As already mentioned, the expression 1
2‖x(t)‖2 = 1

2 (‖z(t)‖2 + ‖w(t)‖2) is inter-
preted as the energy of the system at time t. After introducing q, the second term
1
2‖w(t)‖2 = 1

2‖q̇(t)‖2 can be interpreted as the kinetic energy, and the first term
1
2‖z(t)‖2 = 1

2‖Lq(t)‖2 can be interpreted as the potential energy stored in Σ.
Remark 2.2. An interesting generalization of the class of systems discussed

here arises if instead of the quadratic expression for the potential energy V (z(t)) =
1
2‖z(t)‖2, we allow it to be a more general nonlinear C1 function of z(t), denoted by
V . Here, we assume that all the Hilbert spaces are real, which is more realistic for
nonlinear systems. The energy in the system is defined by E(t) = V (z(t))+ 1

2‖w(t)‖2.
The equations of the system are postulated to be

d

dt

[
z(t)
w(t)

]
=

[
0 −L
L∗ G− 1

2K
∗K

] [
(∇V )(z(t))

w(t)

]
+

[
0
K∗

]
u(t)(2.1)

y(t) = −Kw(t) + u(t),

with the same assumptions on L,K,G as before. This is an instance of a scattering
version of a port-Hamiltonian system, studied by van der Schaft and collaborators
[7, 28], Villegas [40], and others. For every solution of the above equations we have
the power balance equation

2Ė(t) = ‖u(t)‖2 − ‖y(t)‖2 + 2〈Gw(t), w(t)〉 ∀ t ≥ 0 .

For most systems in this class, it is challenging to prove the existence and uniqueness
of suitable solutions of (2.1) for a dense set of initial states and input functions. We
refer to Yao and Weiss [47] for a nonlinear scattering passive Rayleigh type beam
equation that can be put into this framework.

Remark 2.3. The conservative systems “from thin air”considered in [38] and [46]
are a subclass of the systems discussed here. Indeed, if we assume that L has an
inverse L−1 ∈ L(H,E0), G = 0 and if we denote A0 = L∗L, C0 = K, then we obtain
the conservative systems from [38, 46]. From L−1 ∈ L(H,E0) we see that L is closed
(from E to H) so that the assumption (1.7) is satisfied. The operator A0 ∈ L(E0, E

′
0)

can be restricted to a positive operator on E with domain D(A0) (see also Remark 2.1)

and then E0 = D(A
1
2
0 ). The state vector used in [38, 46] is

[ q
q̇

]
= [ qw ], where q is the

hidden variable introduced in Remark 2.1 (q = −L−1z), and the corresponding state
space is E0 ⊕ E. Due to this choice of state vector, there is no need to ever mention
the space H or the operator L, the theory of systems “from thin air” uses only E,
U , A0, and C0. In this case, our spaces E and E0 correspond to what is denoted in
[46] by H and H 1

2
. The transformation from conservative systems “from thin air” to

systems of the type discussed here can be found also in Schnaubelt and Weiss [29]
(the proof of Theorem 5.1).

Example 2.4 (clamped Euler–Bernoulli beam). Consider E = H = L2[0, l], E0 =
H2

0(0, l), and let α ∈ L∞[0, l] be positive and bounded from below, i.e., α(ξ) ≥ ε > 0
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for almost every ξ ∈ [0, l]. Let κ ∈ H−2(0, l) so that κ may contain several “Dirac
pulses” and their derivatives placed in the interval (0, l). We define L ∈ L(E0, H) and
K ∈ L(E0,C) by

Lw = αw′′ , Kw = 〈w, κ〉H2
0,H−2 .

We consider G = 0. The operator L is the composition of a bounded and invertible
operator (multiplication by α) with a closed operator (second derivative). Therefore,
L is closed as an operator from E to H , so that (1.7) holds. Then according to
Theorems 1.1 and 1.3, Ssca as in (1.13)–(1.14) is a scattering conservative system node
with state space L2[0, l]⊕L2[0, l]. Since L is invertible, this system fits into the class
of conservative systems “from thin air” that were described in Remark 2.3. For every
solution of (1.16)–(1.17) we can introduce the hidden variable q = −L−1z, as explained
in Remark 2.1, and we obtain that q ∈ C1([0,∞);H2

0(0, l)), q ∈ C2([0,∞);L2[0, l])
and q satisfies the following Euler–Bernoulli beam equation with damping:

q̈(t) +
κ

2
〈q̇(t), κ〉H2

0,H−2 + (α2q(t)′′)′′ = κu(t)

with the (clamped) boundary conditions q(0) = q(l) = 0, q′(0) = q′(l) = 0. Here,
the second derivative of α2q′′ is considered in the sense of distributions on (0, l). The
corresponding output signal is of course given by y(t) = −〈q̇(t), κ〉+ u(t).

Example 2.5 (free Euler–Bernoulli beam). This is a variation of the previous
example, with noninvertible (but still closed) L. Consider again E = H = L2[0, l]
but we take away the boundary conditions from E0: E0 = H2(0, l). Let α be as in
Example 2.4. We denote by H2(0, l)′ the dual of H2(0, l) with respect to the pivot
space E. Let κ̃ ∈ H2(0, l)′; then κ̃ has a unique decomposition of the form

(2.2) 〈ϕ, κ̃〉H2,H2′ = a0ϕ(0) + b0ϕ
′(0) + a1ϕ(l) + b1ϕ

′(l) + 〈ϕ− ϕ0, κ〉H2
0,H−2

for all ϕ ∈ H2(0, l), where κ ∈ H−2(0, l). Here ϕ0 is the polynomial of order at most
three that satisfies the same (four) boundary conditions as ϕ so that ϕ−ϕ0 ∈ H2

0(0, l).
We define the operators L ∈ L(E0, H) and K ∈ L(E0,C) by

Lw = αw′′ , Kw = 〈w, κ̃〉H2,H2′ .

We consider G = 0. L is closed, for the same reason as in the previous example.
According to Theorems 1.1 and 1.3, Ssca as in (1.13)–(1.14) is a scattering conservative
system node with state space L2[0, l]⊕ L2[0, l]. Since L is not invertible, this system
does not fit into the class of conservative systems “from thin air.” Nevertheless, L
is surjective; hence for every classical solution of (1.17) we can introduce the hidden
variable q, as explained in Remark 2.1, and we obtain that q ∈ C1([0,∞);H2(0, l)),
q ∈ C2([0,∞);L2[0, l]) and q satisfies the following equation:

(2.3) q̈(t) +
κ̃

2
〈q̇(t), κ̃〉H2,H2′ + L∗(αq(t)′′) = κ̃u(t) .

The output signal is y(t) = −〈q̇(t), κ̃〉+ u(t).
In general, we cannot say more about the abstract equation (2.3). However, we

can get a better understanding of it by assuming a special structure for κ̃. In what
follows, we assume that κ from (2.2) is in L2[0, l]. Equivalently, κ̃ is given by

(2.4) 〈ϕ, κ̃〉H2,H2′ = c0ϕ(0) + d0ϕ
′(0) + c1ϕ(l) + d1ϕ

′(l) + 〈ϕ, κ〉 .
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It is not a difficult computation to express the numbers c0, d0, c1, d1 in terms of the
numbers a0, b0, a1, b1 and the function κ, but this is not needed here: we may take
(2.4) as the definition of κ̃ with κ ∈ L2[0, l]. To understand the meaning of (2.3) with
κ̃ given by (2.4), we rewrite (2.3) in weak form,

〈ϕ, q̈(t)〉+ 〈ϕ, κ̃〉H2,H2′

[
1

2
〈q̇(t), κ̃〉H2,H2′ − u(t)

]
+ 〈αϕ′′, αq(t)′′〉 = 0 ,

for every ϕ ∈ H2(0, l). Using (2.4) this becomes[
c0ϕ(0) + d0ϕ

′(0) + c1ϕ(l) + d1ϕ
′(l) + 〈ϕ, κ〉

]
·
[
1

2
〈q̇(t), κ̃〉H2,H2′ − u(t)

]
+〈ϕ, q̈(t)〉 + 〈ϕ′′, α2q(t)′′〉 = 0(2.5)

for every t ≥ 0 and every ϕ ∈ H2(0, l). In particular, for ϕ ∈ H2
0(0, l) we obtain

〈ϕ, κ〉 ·
[
1

2
〈q̇(t), κ̃〉H2,H2′ − u(t)

]
+ 〈ϕ, q̈(t)〉 + 〈ϕ′′, α2q(t)′′〉 = 0 .

This shows that (for each t ≥ 0) the last term (which depends on ϕ′′) can be extended
continuously to all ϕ ∈ L2[0, l]. Hence, α2q(t)′′ belongs to the domain of the adjoint
of the second derivative operator with domain H2

0(0, l), which is H2(0, l):

α2q(t)′′ ∈ H2(0, l) ∀ t ≥ 0 .

Armed with this knowledge, we return to (2.5) and perform integration by parts twice.
We obtain that for all t ≥ 0 and for all ϕ ∈ H2(0, l),[

c0ϕ(0) + d0ϕ
′(0) + c1ϕ(l) + d1ϕ

′(l) + 〈ϕ, κ〉
]

·
[
1

2
〈q̇(t), κ̃〉H2,H2′ − u(t)

]
+ 〈ϕ, q̈(t)〉(2.6)

+ ϕ′α2q(t)
′′∣∣∣l

0
− ϕ

(
α2q(t)

′′)′∣∣∣∣
l

0

+ 〈ϕ, (α2q(t)′′)′′〉 = 0 .

In particular, for ϕ ∈ H2
0(0, l) we obtain

〈ϕ, κ〉 ·
[
1

2
〈q̇(t), κ̃〉H2,H2′ − u(t)

]
+ 〈ϕ, q̈(t)〉+ 〈ϕ, (α2q(t)′′)′′〉 = 0 ,

which is equivalent to

q̈(t) +
κ

2
〈q̇(t), κ̃〉H2,H2′ + (α2q(t)′′)′′ = κu(t) .

The last equation is the (second order in time) partial differential equation that de-
scribes the behavior of our system in the open interval (0, l). We recognize this as
an Euler–Bernoulli beam equation with a nonlocal distributed damping term (which
may depend also on the boundary values of q̇). The physical interpretation of q(t) is
the vertical displacement and the input u(t) is acting on the beam as a distributed
vertical force with intensity proportional to κ.
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We want to understand the boundary conditions that q satisfies. For this we have
to go back to (2.6), where we take ϕ such that ϕ(0) = 1, ϕ(l) = 0, ϕ′(0) = 0, and
ϕ′(l) = 0 and ‖ϕ‖L2 is very small (it is an easy exercise to see that this is possible).
Then, in the limit as ‖ϕ‖L2 → 0, we obtain

c0

[
1

2
〈q̇(t), κ̃〉H2,H2′ − u(t)

]
+
(
α2q(t)

′′)′
(0) = 0 .

If it happens that c0 = 0, then this equation means that there is no force acting on
the beam at the left end (where ξ = 0). The system corresponding to a c0 �= 0 can
be interpreted as being obtained from the system with c0 = 0 by closing a boundary
force feedback loop and adding a boundary force input for the beam, because the last
term in the above equation is the force acting at ξ = 0.

Similarly, in (2.6) we now take ϕ such that ϕ(0) = 0, ϕ(l) = 0, ϕ′(0) = 1, and
ϕ′(l) = 0 and ‖ϕ‖L2 is very small. Then, in the limit as ‖ϕ‖L2 → 0, we obtain

d0

[
1

2
〈q̇(t), κ̃〉H2,H2′ − u(t)

]
−
(
α2q(t)

′′)
(0) = 0 .

For d0 = 0 this equation means that there is no torque acting on the beam at ξ = 0.
The system corresponding to a d0 �= 0 can be interpreted as being obtained from
the system with d0 = 0 by closing a boundary torque feedback loop and adding a
boundary torque input for the beam, because the last term in the above equation is
the torque acting at ξ = 0.

A similar analysis can be done for the other end of the beam.
We mention that if we assume that κ̃ = δx, where x ∈ (0, l) (a Dirac mass at

x), then we obtain a free beam with a local force feedback at x. If we assume that
κ̃ = δ′x, then we obtain a free beam with a local torque feedback at x.

Example 2.6 (Maxwell’s equations). In this example we consider Maxwell’s equa-
tions on a bounded domain Ω ⊂ R3 with Lipschitz boundary Γ. We denote the electric
and magnetic fields by E and H, respectively. We consider the system described by
the Maxwell equations on Ω, assuming that the materials in Ω are linear, homoge-
neous, and isotropic, they have no conductivity (hence, there are no currents), and
there are no charges and no external sources of electric field:

μ
∂H

∂t
= −rotE , ε

∂E

∂t
= rotH ,(2.7)

div(μH) = 0 , div(εE) = 0 .(2.8)

Here ε (the electric permittivity) and μ (the magnetic permeabillity) are positive
numbers. We denote by ν the unit normal outward vector field on Γ (this is defined
almost everywhere on Γ). We denote by γ0E and γ0H the traces of E and H on Γ
and denote the tangental component of γ0E by πτE so that

πτE = (ν × γ0E)× ν.

Note that ν × γ0E is the same as πτE rotated 90◦ around the normal direction to Γ.
We define the input function u and the output function y by (cf. [28])

(2.9)

u =
1√
2

(
ν × γ0H+ πτE

)
,

y =
1√
2

(
ν × γ0H− πτE

)
.
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In this brief example we consider only the case when μ = 1 and ε = 1, because
this case fits directly into the framework of Theorem 1.1. (The generalization to other
values of μ and ε is easy, and for nonconstant μ and ε it becomes more tricky; a much
more general and detailed treatment of Maxwell’s equations is in [44].)

All the spaces that we use to analyze the Maxwell equations are real Hilbert
spaces, consisting of real-valued functions. The input and output space consists of
tangential vector fields on Γ:

(2.10) U = {u ∈ L2(Γ,R3) | u · ν = 0} .
The state space is X = E ⊕ E, where E = L2(Ω;R3). Thus, for a state x = [HE ], the
expression ‖x‖2 = ‖H‖2 + ‖E‖2 is twice the physical energy. Systems described by
Maxwell’s equations were considered by many authors (see, for instance, [11, 20, 26,
28]), but we are not aware of works that define the input and output variables in a
similar way to (2.9).

For any E ∈ E, rotE is defined in the sense of distributions on Ω. We know from
Theorem 2 on p. 204 of Dautray and Lions [8] that if E ∈ E is such that rotE ∈ E,

then its tangential trace Eτ is well defined as an element of H− 1
2 (Γ;R3). Hence, it

makes sense to define a dense subspace of E as

E0 = {E ∈ E | rotE ∈ E , πτE ∈ U} ,

which is a Hilbert space with the norm

‖E‖2E0
= ‖E‖2E + ‖rotE‖2E + ‖πτE‖2U .

We define L ∈ L(E0, E) and K ∈ L(E0, U) by

LE = rotE , KE =
√
2πτE.

From the way the space E0 and the operators L and K are defined, it is easy to see
that [ LK ] is a closed operator, as required in (1.7). It is also not difficult to see that
L itself is not closed. We take G = 0. According to Theorems 1.1 and 1.3 (with
H = E), these operators determine via (1.13) a scattering conservative system node
Ssca. It can be shown (see [44]) that the equations of (1.17) that are satisfied by
sufficiently smooth trajectories of Ssca are equivalent to (2.7) and (2.9). (The proof
is not straightforward.) The equations (2.8) do not follow from (1.17), but it does
follow that divH and divE are constant in time. In particular, if they are zero at the
initial time t = 0, then they remain zero for all t ≥ 0.

For much more detail on this example we refer the reader to our article [44], which
can be regarded as a continuation of the present article. That article treats a more
general case, where a part of the boundary is superconductive and the remaining part
plays the same role as the full boundary Γ does above. In addition, in [44] the material
in Ω is allowed to have a nonzero conductivity and nonconstant coefficients ε and μ,
and the formulas (2.9) contain an additional coefficient function r.

3. System nodes, well-posed systems, scattering passive systems, and
conservative systems. First we recall some simple facts about strongly continuous
semigroups. Let T = (Tt)t≥0 be a strongly continuous semigroup of bounded linear
operators on the Hilbert space X with generator A. We define on X a new norm by

(3.1) ‖x‖−1 = ‖(βI −A)−1x‖ ,
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where β ∈ ρ(A) is fixed. The choice of β is not important, because different choices
lead to equivalent norms. The generator A determines two additional Hilbert spaces
as follows: X1 is D(A) with the norm ‖x‖1 = ‖(βI − A)x‖ (this norm is equivalent
to the graph norm), while X−1 is the completion of X with respect to the norm
‖ · ‖−1. It is possible to extend A to an operator A−1 ∈ L(X,X−1) which generates a
strongly continuous semigroup T−1 on X−1. For every t ≥ 0, T−1,t is an extension of
Tt. The extended semigroup is isomorphic to T via the unitary operator βI −A−1 ∈
L(X,X−1). Often we denote these extensions of A and of Tt by the same symbols A
and Tt. (We refer to our books [34, 39] for more details.)

The first aim of this section is to recall some facts about system nodes following
[34, 18, 17]. The idea of system nodes goes back to Smuljan in 1986, using a different
terminology. The concept was formalized in Staffans [30, 34].

Definition 3.1. Let U , X, and Y be Hilbert spaces. An operator

S : D(S)→X ⊕ Y with D(S) ⊂ X ⊕ U

is called a system node on (U,X, Y ) if it has the following properties:
1. S is closed (as an operator from X ⊕ U to X ⊕ Y ).
2. We partition S =

[
A&B
C&D

]
. The operator A : D(A) → X defined by

(3.2) Ax = A&B [ x0 ] , D(A) = {x ∈ X | [ x0 ] ∈ D(S)}
is the generator of a strongly continuous semigroup on X.

3. The operator A&B (with D (A&B) = D (S)) can be extended to an operator[
A−1 B

] ∈ L(X ⊕ U,X−1), where X−1 is defined as above.

4. D(S) =
{
[ xu ] ∈ X ⊕ U

∣∣ A−1x+Bu ∈ X
}
.

It is easy to see that if S is a system node on (U,X, Y ), then D(S) is dense in
X ⊕ U and A&B is closed (with domain D (S)). Hence, the graph norm on D (S) is
equivalent to the graph norm of the operator A&B on the same domain, defined by

(3.3) ‖[ xu ]‖2D(S) = ‖x‖2 + ‖u‖2 + ‖A−1x+Bu‖2 .
The operator A is called the semigroup generator of S and B is called the control
operator of S. The operator C ∈ L(X1, Y ) defined by

(3.4) Cx = C&D [ x0 ] ∀ x ∈ D(A)

is called the observation operator of S. In this paper we usually write A instead of
A−1. The transfer function of S is the L(U, Y )-valued analytic function defined by

(3.5) G(s) = C&D

[
(sI −A)−1B

I

]
∀ s ∈ ρ(A) .

It is easy to see that for all s, β ∈ ρ(A) we have

(3.6) G(s)−G(β) = C
[
(sI −A)−1 − (βI −A)−1

]
B.

Combining (3.4) with (3.5) we easily get the useful formula

(3.7) C&D

[
x
u

]
= C

[
x− (sI −A)−1Bu

]
+G(s)u,

valid for all [ xu ] ∈ D(S) and all s ∈ ρ(A). This, together with A&B [ xu ] = Ax + Bu,
shows that S is completely determined by A,B,C, and G(s) (for a single s).
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Define the space

(3.8) Z = D(A) + (βI −A)−1BU ,

which is a Hilbert space with the norm

(3.9) ‖z‖2Z = inf
{‖x‖21 + ‖v‖2 | x ∈ X1, v ∈ U , z = x+ (βI −A)−1Bv

}
.

Note that if [ xv ] ∈ D(S), then x ∈ Z and ‖x‖Z ≤ m‖ [ xv ] ‖D(S) for some m > 0
independent of x and v. The system node is called compatible if C has a continuous
extension to an operator C ∈ L(Z, Y ). In this case, we may define the operator
D ∈ L(U, Y ) by D = G(β) − C(βI − A)−1B and it follows from (3.6) that D is
independent of β ∈ ρ(A). Then C&D and S can be split to take their form, which is
familiar from finite-dimensional systems theory,

C&D [ xv ] = Cx+Dv, S =

[
A B
C D

]
,

and we have

G(s) = C(sI −A)−1B +D ∀ s ∈ ρ(A) .

A system node S is usually associated with the equation

(3.10)

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
∀ t ≥ 0 ,

or equivalently, using the notation A,B, and C&D from Definition 3.1,

(3.11) ẋ(t) = Ax(t) +Bu(t) , y(t) = C&D
[
x(t)
u(t)

]
∀ t ≥ 0 .

Definition 3.2. Let S be a closed linear operator from X ⊕ U to X ⊕ Y with
domain D(S) (but S need not be a system node).

A triple (x, u, y) is called a classical solution of (3.10) on [0,∞) if
(a) x ∈ C1([0,∞);X),
(b) u ∈ C([0,∞);U), y ∈ C([0,∞);Y ),

(c)
[
x(t)
u(t)

]
∈ D(S) for all t ≥ 0,

(d) equation (3.10) holds.
A triple (x, u, y) is called a generalized solution of (3.10) on [0,∞) if
(e) x ∈ C([0,∞);X),
(f) u ∈ L2

loc([0,∞);U), y ∈ L2
loc([0,∞);Y ),

(g) there exists a sequence (xk, uk, yk) of classical solutions of (3.10) such that
xn → x in C([0,∞);X), uk → u in L2

loc([0,∞);U), yk → y in L2
loc([0,∞);Y ).

We remark that it follows easily from conditions (a)–(d) above that every classical
solution of (3.10) on [0,∞) also satisfies

(h) [ xu ] ∈ C([0,∞);D(S)),
where the continuity is with respect to the graph norm of S on D (S).

The following proposition guarantees that for a system node, we have plenty of
classical solutions of the system equation (3.10).

Proposition 3.3. Let S be a system node on (U,X, Y ). If u ∈ C2([0,∞);U)
and

[ x0

u(0)

] ∈ D(S) , then (3.10) has a unique classical solution (x, u, y) satisfying
x(0) = x0. Moreover, this classical solution satisfies

x ∈ C2([0,∞);X−1) .
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For the proof we refer to Lemma 4.7.8 in [34] or Proposition 4.2.11 in [39]. (Various
versions of (parts of) this proposition can be found in the literature.)

For any τ ≥ 0 and u ∈ L2([0,∞);U), let us denote by Pτu the restriction of u to
[0, τ ]. Let us denote by D the space of all the pairs (x0, u) ∈ X ⊕L2([0,∞);U) which
satisfy the assumptions of Proposition 3.3. Notice thatD is dense inX⊕L2([0,∞);U).
Hence, the corresponding space Dτ of pairs (x0,Pτu) is dense in X ⊕ L2([0, τ ];U).
The last proposition allows us to define the operators Στ from Dτ to X⊕L2([0, τ ], Y )
such that for any solution of (3.10) and for any τ ≥ 0,

(3.12)

[
x(τ)
Pτy

]
= Στ

[
x0

Pτu

]
.

Definition 3.4. The system node S is called well-posed if for some (hence, for
every) τ > 0, the operator Στ from (3.12) has a continuous extension

Στ ∈ L(X ⊕ L2([0, τ ], U), X ⊕ L2([0, τ ], Y )) .

In this case, the family (Στ )τ≥0 is called a well-posed linear system.
For such systems we refer to [34] and the references therein. Every well-posed

system node is compatible; see Theorem 3.4 in [35]. For well-posed system nodes
Proposition 3.3 can be modified to obtain a stronger statement, as follows.

Proposition 3.5. Let S be a well-posed system node on (U,X, Y ). Assume that
u ∈ H1

loc((0,∞);U) and
[ x0

u(0)

] ∈ D(S) . Then (3.10) has a unique classical solution
(x, u, y) satisfying x(0) = x0. Moreover, we have

y ∈ H1
loc((0,∞);Y ) .

For the proof see Theorem 4.6.11 in [34] or Theorem 3.1 in [35].
Definition 3.6. The system node S is called scattering passive if all the classical

solutions of (3.10) satisfy

d

dt
‖x(t)‖2 ≤ ‖u(t)‖2 − ‖y(t)‖2 ∀ t ≥ 0 .

An equivalent condition is that all the generalized solutions of (3.10) satisfy

(3.13) ‖x(τ)‖2 +
∫ τ

0

‖y(t)‖2dt ≤ ‖x(0)‖2 +
∫ τ

0

‖u(t)‖2dt ∀ t ≥ 0 .

A third equivalent condition is that the operators Στ from (3.12) are contractions.
In this case, the well-posed linear system (Στ )τ≥0 is called a scattering passive linear
system. Such systems have been studied in [4, 24, 31, 32, 34, 35] and other references.
(In [24] and [35] such systems were called dissipative.)

The system node S is called scattering energy preserving if the power balance
equation

d

dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2 ∀ t ≥ 0

holds for all classical solutions of (3.10). Clearly, such systems nodes are scattering
passive. The corresponding scattering passive system (Στ )τ≥0 is then scattering en-
ergy preserving, which means that all its trajectories satisfy (3.13) with equality. In
other words, the operators Στ are isometric.
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The dual of a system node S on (U,X, Y ) is simply its adjoint S∗. It can be
verified that S∗ is a system node on (Y,X,U). The semigroup generator Ad, the
control operators Bd, the observation operator Cd, and transfer functions Gd of the
dual system node S∗ are related to the corresponding operators for S as follows:

(3.14) Ad = A∗ , Bd = C∗ , Cd = B∗ , Gd(s) = G(s)∗ .

The system node S∗ is well-posed (or scattering passive) if and only if S is well-posed
(or scattering passive). This follows from Theorems 3.4 and 3.5 in [36].

The system node S is called scattering conservative if both S and S∗ are scattering
energy preserving. The corresponding scattering-passive system (Στ )τ≥0 is then also
called scattering conservative. For such a system, the operators Στ are unitary. For
scattering conservative systems we refer to [4, 21, 24, 28, 31, 36, 38, 45, 46] and the
references therein. In particular, relatively simple necessary and sufficient conditions
for a system node to be scattering conservative have been established in [24].

4. The internal Cayley transformation. We denote by C+ the open right
half-plane in C.

Definition 4.1. The internal Cayley transform of a system node S with param-
eter α ∈ ρ(A) ∩ C+ is the following operator from X ⊕ U to X ⊕ Y :

(4.1)

[
A B
C D

]
=

[
(αI +A)(αI −A)−1

√
2Reα(αI −A)−1B√

2ReαC(αI −A)−1 G(α)

]
,

where A,B,C are as in Definition 3.1 and G is the transfer function of S.
The internal Cayley transformation has been used in [4, 24, 25, 31, 32, 33, 34, 35]

and other references. It should not be confused with the usual Cayley transform of
the operator S with parameter α ∈ ρ(S) ∩ C+, which is SC = (αI + S)(αI − S)−1.

The operator defined in (4.1) can be interpreted as a discrete-time system node
on (U,X, Y ), which determines a discrete-time system with input space U , state space
X , and output space Y via the equations

(4.2) xk+1 = Axk +Buk , yk = Cxk +Duk .

It is easy to check that if α > 0, then we have[
xk+1−xk

h
yk√
h

]
= S

[
xk+1+xk

2
uk√
h

]
, where h =

2

α
.

The transformation that leads from the system S to the discrete-time system described
in (4.2) (with α > 0) is called Tustin discretization with time step h in the engineering
literature. The transfer function of this discrete-time system is

C(zI −A)−1B+D = G
(αz − α

z + 1

)
for |z| > 1.

Proposition 4.2. Let S =
[
A&B
C&D

]
be a system node with semigroup generator

A and let S = [A B
C D ] be its internal Cayley transform with parameter α ∈ ρ(A) ∩C+.

Then the operator A does not have −1 as an eigenvalue, and S can alternatively
be computed from S in the following way: The operator

E =

[ I√
2Reα

0

0 I

]([
αI 0
0 I

]
−
[
A&B
0 0

])
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maps D(S) one-to-one onto X ⊕ U and[
A B
C D

]
=

[−I 0
0 0

]
+

[√
2ReαI 0
0 I

] [
I 0
C&D

]
E−1 .

The inverse of E, denoted by E = E−1, is given by

(4.3) E =

[ I√
2Reα

0

0 I

] [
I +A B

0 I

]

and S can be recovered from S via the formula

(4.4)

[
A&B
C&D

]
=

[
αI 0
0 0

]
+

[√
2ReαI 0
0 I

] [−I 0
C D

]
E−1 .

Conversely, suppose that S = [A B
C D ] ∈ L(X ⊕ U ;X ⊕ Y ), that A does not have

−1 as an eigenvalue, and that for some α ∈ C+ the operator

(4.5) A = (αA − αI)(A+ I)−1 , D(A) = Ran (A+ I)

generates a strongly continuous semigroup on X. Then α ∈ ρ(A) and E from (4.3) is
injective and has dense range. Denote the range of E by D(S), and on this domain
define the operator S =

[
A&B
C&D

]
by (4.4).

Then S is a system node whose semigroup generator is A from (4.5). The internal
Cayley transform of S with parameter α is S.

For the proof we refer to Propositions 5.1 and 5.2 in [4] or Lemma 7.1 in [32]. Note
that according to the above proposition, the formulas (4.3)–(4.4) define the inverse
internal Cayley transformation.

Proposition 4.3. Let S be a scattering passive system node. Then for every
α ∈ C+, the internal Cayley transform of S is a contraction.

Conversely, suppose that S = [A B
C D ] is a contraction and that −1 is not an eigen-

value of A. Then for every α ∈ C+, the operator S defined by (4.3)–(4.4), with D(S)
being the range of E, is a scattering passive system node.

For the proof we refer to Theorem 7.1(ii) in [32]. (Various parts of this can also
be found in [4], [24], and [34].)

Proposition 4.4. If S is a scattering passive system node, then S is scattering
conservative if and only if its internal Cayley transform S is unitary.

For the proof we refer again to [4], [24], [32], or [34].

5. The external Cayley transformation. A concept that is closely related
to the concept of a scattering passive (or conservative) system node is the concept of
an impedance passive (or conservative) system node. Still following the terminology
of [31, 32], these are system nodes which have equal input and output spaces and for
which the trajectories (the solutions of (3.10)) satisfy

‖x(τ)‖2 − ‖x(0)‖2 ≤ 2

∫ τ

0

Re 〈e(t), f(t)〉dt ∀ τ ∈ [0, T )

(or the corresponding equality). Here, we have denoted the input signal by e (some-
times called the effort) and the output signal by f (sometimes called the flow), and
of course (3.10) should be written with these signals in place of u and y.

It is always possible to transform an impedance passive or conservative system
node Simp into a scattering passive or conservative system node Ssca by the external
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Fig. 1. The system node Ssca with input u and output y, as obtained from the system node
Simp (with input e and output f) via (1.11).

Cayley transformation (sometimes called the diagonal transformation) which redefines
the input and the output as in (1.11). The inverse transformation is given by the
same formulas, only with the places of u, y and e, f reversed, as is easy to see. The
external Cayley transformation has been employed in many works; see, for example,
Macchelli et al. [22], Staffans [31, 32, 33], and Weiss [42]. In the literature, often an
extra parameter β ∈ C+ is included in the definition, but here we have taken β = 1.
The external Cayley transformation can be understood also as an output feedback
transformation (combined with a feed-forward term and a rescaling), as Figure 1
(approximately reproduced from [42]) shows. It is easy to see from this figure that
the relationship between the transfer functions of Simp and Ssca is

Gsca = (I −Gimp)(I +Gimp)
−1 .

In the papers [31, 32] the precise relationship between the system nodes Simp and
Ssca has been determined, and this is conveyed in the following proposition.

Proposition 5.1. Suppose that Simp =
[
[A&B]imp

[C&D]imp

]
is an impedance passive

system node. Then the operator

(5.1) Eimp :=

[
I 0
0 I√

2

]([
I 0
0 I

]
+

[
0 0

[C&D]imp

])

with domain D(Simp) is injective. Denote the range of this operator by D(Ssca), and
define the operator Ssca (with domain D(Ssca) by

(5.2) Ssca =

[
[A&B]sca
[C&D]sca

]
:=

[
0 0
0 −I

]
+

([
0 0

0
√
2I

]
+

[
[A&B]imp

0 0

])
E−1

imp.

Then Ssca is a scattering passive system node. The inverse of Eimp is E−1
imp = Esca,

where

(5.3) Esca :=

[
I 0
0 I√

2

]([
I 0
0 I

]
+

[
0 0

[C&D]sca

])
,

and Simp can be recovered from Ssca via

(5.4) Simp =

[
0 0
0 −I

]
+

([
0 0

0
√
2I

]
+

[
[A&B]sca
0 0

])
E−1

sca .

Notice that Ssca is obtained from Simp by the same formulas by which Simp is
obtained from Ssca. However, there is a hidden asymmetry here: the external Cayley
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transformation will not yield every possible scattering passive system node. The
range of the external Cayley transformation (when applied to impedance conservative
system nodes) will be characterized in Remark 5.4. This range is contained in those
scattering passive system nodes for which the operator [A B

C D ] from (4.1) does not have
−1 as an eigenvalue. When the backward transformation (5.3)–(5.4) is applied to a
scattering passive system node that does not satisfy the above eigenvalue condition,
then it results in a “multivalued operator.” (It follows from (5.7) below that Esca is
injective if and only if [A B

C D ] does not have −1 as an eigenvalue.) Both the single-
valued case and the multivalued case can be analyzed with the methods described in
Arov, Kurula, and Staffans [1, 2], Behrndt, Hassi, and de Snoo [6], Derkach et al. [9],
Hassi, Malamud, and Mogilevskii [14], Kurula [17], Kurula and Staffans [18], Kurula
et al. [19], etc. Here we shall restrict ourselves to the single-valued case.

To prove Theorem 1.1, we need the following generalization of Proposition 5.1,
which can be applied to an operator Simp that is not necessarily a system node. The
proof of this theorem is based on the fact that if one applies to a system node S
both the internal Cayley transform with parameter α = 1 and the external Cayley
transform (in any order), then the resulting operator is

[
I 0
0 −I

]
(I+S)(I−S)−1. (Here

(I + S)(I − S)−1 is the usual Cayley transform of S with parameter α = 1.)

Theorem 5.2. Let Simp =
[
[A&B]imp

[C&D]imp

]
be an operator in X ⊕ U with domain

D(Simp) such that T :=
[

[A&B]imp

−[C&D]imp

]
(with the same domain) is m-dissipative. Then

the operator Eimp from (5.1) is injective on D(Simp). We denote its range by D(Ssca)
and we define Ssca (with domain D(Ssca)) by (5.2). Then Ssca is a scattering passive
system node and E−1

imp = Esca from (5.3).
We denote by Asca, Bsca, and Csca the semigroup generator, the control operator,

and the observation operator of Ssca, and we denote by Gsca its transfer function.
Then, for all s ∈ C+,
(5.5)[

(sI −Asca)
−1 1√

2
(sI −Asca)

−1Bsca
1√
2
Csca(sI −Asca)

−1 1
2 (I +Gsca(s))

]
=

([
sI 0
0 I

]
−
[

[A&B]imp

−[C&D]imp

])−1

.

The operator Simp can be recovered from Ssca via the formulas (5.3)–(5.4).
The system node Ssca is scattering conservative if and only if T is skew-adjoint.
Proof. Define S to be the Cayley transform of T with parameter 1, meaning that

S = (I + T )(I − T )−1, so that

(5.6)
1

2
(S+ I) =

1

2

([
A B
C D

]
+

[
I 0
0 I

])
=

([
I 0
0 I

]
−
[

[A&B]imp

−[C&D]imp

])−1

.

Then according to classical results about the Cayley transformation (see Theorem 3.4.9
in [34] or p. 167 in [37]), S is a contraction, and S is unitary if and only if T is skew-
adjoint. Moreover, −1 is not an eigenvalue of S and hence also not of A. Indeed, if
there would exist a nonzero x ∈ X such that Ax = −x, then from ‖S‖ ≤ 1 we see
that Cx = 0 and hence S [ x0 ] = − [ x0 ], a contradiction.

Since S is contractive and A does not have −1 as an eigenvalue, it follows from
the converse part of Proposition 4.3 that S has an inverse internal Cayley transform
with parameter α = 1, denoted Ssca, and this is a scattering passive system node.
According to the last part of Proposition 4.2, the semigroup generator of Ssca is

Asca = (A− I)(A+ I)−1 , D(Asca) = Ran (A+ I)

and the internal Cayley transform of Ssca is S.
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Denote the transfer function of Ssca by Gsca. If in formula (4.1) we take α = 1,
add the identity on X ⊕ U to both sides, and divide by 2, then we get

1

2

([
A B
C D

]
+

[
I 0
0 I

])
=

[
(I −Asca)

−1 1√
2
(I −Asca)

−1Bsca
1√
2
Csca(I −Asca)

−1 1
2 (I +Gsca(1))

]
.

This combined with (5.6) gives (5.5) with s = 1.
Now we show that Ssca (which in the proof we have defined differently from in

the theorem) is indeed given by (5.2). We factor the right-hand side above, obtaining

(5.7)
1

2

([
A B
C D

]
+

[
I 0
0 I

])
= Esca

[
(I −Asca)

−1 (I −Asca)
−1Bsca

0 I

] [
I 0
0 I√

2

]
,

where Esca is defined as in (5.3). This factorization is checked by direct computation,
using (3.4) and (3.5). The last factor on the right-hand side maps X ⊕ U one-to-one
onto itself, and the second factor maps X ⊕ U one-to-one onto D(Ssca), whereas,
according to (5.6), the left-hand side maps X ⊕ U one-to-one onto D(Simp). Con-
sequently, Esca maps D(Ssca) one-to-one onto D(Simp). Inverting both sides of (5.5)
with s = 1 we get the following identity, valid on D(Simp):

(5.8)

[
I 0

0
√
2I

]([
I 0
0 I

]
−
[
[A&B]sca
0 0

])
E−1

sca =

[
I 0
0 I

]
−
[

[A&B]imp

−[C&D]imp

]
.

The bottom row of this identity implies that the bottom row of E−1
sca is equal to

1√
2
(
[
0 I

]
+ [C&D]imp). Trivially,

[
I 0

]
Esca =

[
I 0

]
, and hence the top row

of E−1
sca is

[
I 0

]
. Thus, E−1

sca = Eimp, as defined in (5.1). In particular, Eimp is

injective and maps D(Simp) one-to-one onto D(Ssca). If we multipy (5.8) by E−1
imp

to the right and discard the bottom row, then we get the top row of (5.2) (since[
I 0

]
E−1

imp =
[
I 0

]
Esca =

[
I 0

]
). That the bottom row of (5.2) also holds follows

from the fact that E−1
imp = Esca. Thus, Ssca is indeed given by (5.2).

Now we show that Simp can be recovered from Ssca via (5.3)–(5.4). It is easy to
see that the top row of (5.4) follows from the top row of (5.2) (since Esca = E−1

imp).

The bottom row of (5.4) follows from E−1
sca = Eimp and (5.1).

Recall (from this proof) that T is skew-adjoint if and only if S is unitary. Ac-
cording to Proposition 4.4, S is unitary if and only if Ssca is scattering conservative.

It remains to prove (5.5) for general s ∈ C+. Let us denote by R(s) the left-hand
side of (5.5). Using (3.4), (3.5), and (5.3) we factor

R(s) = Esca

[
(sI −Asca)

−1 (sI −Asca)
−1Bsca

0 I

] [
I 0
0 I√

2

]

= Esca

([
sI 0
0 I

]
−
[
[A&B]sca
0 0

])−1 [I 0
0 I√

2

]
.

Using (5.4) we obtain

R(s) =

([
I 0

0
√
2I

]([
sI 0
0 I

]
−
[
[A&B]sca
0 0

])
E−1

sca

)−1

=

([
sI 0
0 I

]
−
[

[A&B]imp

−[C&D]imp

])−1

.
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Remark 5.3. By examining the proof of Theorem 5.2 we find that the converse of
this theorem is also true in the following form: If Ssca is a scattering passive system
node, and if its internal Cayley transform S with parameter α = 1 does not have −1
as an eigenvalue, then its external Cayley transform Simp given by (5.3)–(5.4) is well
defined, and it satisfies the assumption of Theorem 5.2.

Remark 5.4. It follows from Theorem 5.2 and Proposition 4.11 in Ball and
Staffans [5] that a scattering conservative system node Ssca with input and output
space U and state space X is the image of an impedance conservative system node
under the external Cayley transformation if and only if the operator Esca from (5.3)
is injective and the projection of the range of Esca onto U is all of U .

Proposition 5.5. We use the notation and the assumption of Theorem 5.2. The

triple (x, u, y) is a classical (or generalized) solution of
[
ẋ(t)
y(t

]
= Ssca

[
x(t)
u(t)

]
on [0,∞)

if and only if the triple (x, e, f), where e, f satisfy (1.11), is a classical (or generalized)

solution of
[
ẋ(t)
f(t)

]
= Simp

[
x(t)
e(t)

]
on [0,∞).

Proof. First we prove the claim about the classical solutions. Clearly the trans-
formation (1.11) preserves continuity, so that conditions (a) and (b) in Definition 3.2
are equivalent for the two systems. Thus, it suffices to prove that for any fixed t ≥ 0,[
x(t)
u(t)

]
∈ D(Ssca) if and only if

[
x(t)
e(t)

]
∈ D(Simp) and that

[
ẋ(t)
y(t)

]
= Ssca

[
x(t)
u(t)

]
if

and only if
[
ẋ(t)
f(t)

]
= Simp

[
x(t)
e(t)

]
.

Suppose that the vectors x(t), ẋ(t) ∈ X and u(t), y(t) ∈ U are such that
[
x(t)
u(t)

]
∈

D(Ssca) and
[
ẋ(t)
y(t)

]
= Ssca

[
x(t)
u(t)

]
. Then by (1.11),

[
x(t)
e(t)

]
=

[
I 0
0 I√

2

] [
x(t)

u(t) + y(t)

]
=

[
I 0
0 I√

2

]([
I 0
0 I

]
+

[
0 0

[C&D]sca

])[
x(t)
u(t)

]
.

We have obtained that
[
x(t)
e(t)

]
= Esca

[
x(t)
u(t)

]
, and hence

[
x(t)
e(t)

]
∈ D(Simp). Combining[

x(t)
u(t)

]
= E−1

sca

[
x(t)
e(t)

]
with (5.4) we obtain

Simp

[
x(t)
e(t)

]
=

[
0

−e(t)

]
+

[
ẋ(t)√
2u(t)

]
=

[
ẋ(t)
f(t)

]
,

as claimed in the proposition. The converse direction is proved similarly.
The claim about the generalized solutions of the two equations follows from the

corresponding relationship between the classical solutions of these equations.
The above proposition shows that the transformation described by (5.1) and (5.2)

is indeed the external Cayley transformation (defined earlier via (1.11)).
Proposition 5.6. We use the notation and the assumption of Theorem 5.2. The

adjoint operator S∗
imp has an external Cayley transform, denoted Sd

sca, and this is a
scattering passive system node. Moreover,

(5.9) Sd
sca =

[
I 0
0 −I

]
S∗
sca

[
I 0
0 −I

]
.

Thus, Sd
sca is scattering conservative if and only if T is skew-adjoint.

Proof. The operator

(5.10) T d =
[
I 0
0 −I

]
S∗
imp =

[
I 0
0 −I

]
T ∗ [ I 0

0 −I

]
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is m-dissipative since T is m-dissipative. Thus, by Theorem 5.2, the external Cayley
transform of S∗

imp, denoted by Sd
sca, is a scattering passive system node. To establish

the connection (5.9) between Sd
sca and S∗

sca we use (5.5). We denote by Ad
sca, B

d
sca,

and Cd
sca the semigroup generator, the control operator and the observation operator

of Sd
sca, and we denote by Gd

sca its transfer function. Then according to (5.5) we have[
(I −Ad

sca)
−1 1√

2
(I −Ad

sca)
−1Bd

sca

1√
2
Cd

sca(I −Ad
sca)

−1 1
2 (I +Gd

sca(1))

]
= (I − T d)−1 .

Using here (5.10) and again (5.5), we obtain[
(I −Ad

sca)
−1 1√

2
(I −Ad

sca)
−1Bd

sca

1√
2
Cd

sca(I −Ad
sca)

−1 1
2 (I +Gd

sca(1))

]

=

[
(I −A∗

sca)
−1 − 1√

2
(I −A∗

sca)
−1C∗

sca

− 1√
2
B∗

sca(I −A∗
sca)

−1 1
2 (I +G∗

sca(1))

]
.

This shows that

(5.11) Ad
sca = A∗

sca , Bd
sca = −C∗

sca , Cd
sca = −B∗

sca , Gd
sca(1) = G∗

sca(1) .

We introduce the system node S̃ by D(S̃) =
[
I 0
0 −I

]D(Ssca),

S̃ =
[
I 0
0 −I

]
Ssca

[
I 0
0 −I

]
.

It is easy to verify that the semigroup generator of S̃ is Ã = Asca, its control operator
is B̃ = −Bsca, its observation operator is C̃ = −Csca, and its transfer function is
G̃(s) = Gsca(s). As mentioned after (3.7), Sd

sca is completely determined by Ad
sca,

Bd
sca, C

d
sca, and Gd

sca(1). Comparing (5.11) with (3.14), we see that Sd
sca must be the

dual of S̃, i.e., Sd
sca = S̃∗. From here we get that (5.9) holds.

Finally, we know from Theorem 5.2 that Sd
sca is scattering conservative if and

only if T d is skew-adjoint. We see from (5.10) that T d is skew-adjoint if and only if
T is.

6. The proof of Theorem 1.1. We start with a lemma about computing the
adjoint of a certain type of matrix of operators, which then leads to a result about
matrices of operators that are m-dissipative. Much useful material about matrices of
operators can be found in the unpublished book of Engel [10] (but the specific results
that we need here do not seem to follow from those in [10]). For the concept of the
dual space with respect to a pivot space and related concepts we refer, for example,
to section 2.9 in [39]. As in [39], the pairing between a Hilbert space V and its dual
V ′ with respect to the pivot space H is considered to be linear in the first component
and antilinear in the second, so that if both elements in the pairing belong to H , then
the pairing coincides with their inner product in H .

Lemma 6.1. Let H1 and H2 be Hilbert spaces that are identified with their dual
spaces. Let D(Λ) be a dense subspace of H2 and let Λ : D(Λ)→H1 be closed. We
regard D(Λ) as a Hilbert space with the graph norm of Λ, and let D(Λ)′ be the dual of
D(Λ) with respect to the pivot space H2. Then Λ ∈ L(D(Λ), H1) and its adjoint (in
the sense of bounded operators) is Λ∗ ∈ L(H1,D(Λ)′). Let G ∈ L(D(Λ),D(Λ)′). We
define

T =

[
0 −Λ
Λ∗ G

]
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with domain

D(T ) = { [ zw ] ∈ H1 ×D(Λ)|Λ∗z +Gw ∈ H2} .

Then D(T ) is dense in H1 ⊕H2 and the adjoint of T (as an unbounded operator
on H1 ⊕H2) is

(6.1) T ∗ =

[
0 Λ

−Λ∗ G∗

]

with domain

(6.2) D(T ∗) =

{[
z0

w
0

]
∈ H1 ×D(Λ)

∣∣∣∣− Λ∗z
0
+G∗w

0
∈ H2

}
.

Proof. It is clear that Λ ∈ L(D(Λ), H1) and its adjoint Λ∗ (in the sense of bounded
operators) belongs to L(H1,D(Λ)′). When we regard Λ as an unbounded operator
from H2 to H1, then it has another adjoint (in the sense of unbounded operators)
which maps D(Λ∗) ⊂ H1 to H2. The adjoint in the sense of bounded operators is an
extension of the adjoint in the sense of unbounded operators, as is easy to check. For
this reason, we use the same notation Λ∗ for both of them. Since Λ is closed, we have
that D(Λ∗) is dense in H1.

Now we show that D(T ) is dense in H1 ⊕H2. Let [
z0
w0

] ∈ D(T )⊥. Since D(Λ∗)×
{0} ⊂ D(T ), we must have 〈z, z0〉 = 0 for all z ∈ D(Λ∗), and since D(Λ∗) is dense in
H1 we get that z

0
= 0. By the construction of the space D(Λ)′, the operator I +Λ∗Λ

is a continuous bijection of D(Λ) onto D(Λ)′, and consequently

[
I Λ∗] [I

Λ

]
(I + Λ∗Λ)−1 = I .

Thus,
[
I Λ∗] maps D(Λ) ×H1 onto D(Λ)′, and so for every w ∈ D(Λ) there exists

some w2 ∈ D(Λ) and z ∈ H1 such that Gw = w2 − Λ∗z. Hence, for every w ∈ D(Λ)
there is some z ∈ H1 such that Λ∗z+Gw ∈ H2, i.e., [

z
w ] ∈ D(T ). Thus, the condition

that
[

0
w0

]
is orthogonal to every [ zw ] ∈ D(T ) implies that w

0
is orthogonal to D(Λ),

and hence w
0
= 0. This proves that D(T ) is dense in H1 ⊕H2.

By the definition of the adjoint of an unbounded operator, an element x
0
= [ z0w0

]
from H1 ⊕H2 belongs to D(T ∗) if and only if the functional F (x) = 〈Tx, x0〉, which
is defined for x = [ zw ] ∈ D(T ), has a continuous extension to all H1 ⊕H2. We have

F

([
z
w

])
= − 〈Λw, z0〉H1 + 〈Λ∗z +Gw,w0 〉H2 .

Suppose that [ z0w0
] ∈ D(T ∗). Since for z ∈ D(Λ∗) and w = 0 we have

F

([
z
0

])
= 〈Λ∗z, w

0
〉

and this is a continuous function of z, it follows that w0 ∈ D(Λ∗∗) = D(Λ). It follows
that for any [ zw ] ∈ D(T ),

F

([
z
w

])
= −〈Λw, z0〉H1 + 〈Λ∗z +Gw,w0 〉D(Λ)′,D(Λ)

= 〈w,−Λ∗z
0
+G∗w

0
〉D(Λ),D(Λ)′ + 〈z,Λw

0
〉H1 .(6.3)
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Since F has a continuous extension to H1 ⊕H2, it follows that −Λ∗z
0
+G∗w

0
∈ H2.

Thus we have shown that

D(T ∗) ⊂
{[

z0

w
0

]
∈ H1 ×D(Λ)

∣∣∣∣− Λ∗z
0
+G∗w

0
∈ H2

}
.

Conversely, suppose that x
0
= [ z0w0 ] ∈ H1×D(Λ) is such that −Λ∗z

0
+G∗w

0
∈ H2.

Then the expression in (6.3) depends continuously on [ zw ] ∈ H1 ⊕ H2. Doing the
computations leading to (6.3) backward, we obtain that F (x) (defined for x ∈ D(T ))
has a continuous extension to H1 ⊕H2, so that x0 ∈ D(T ∗). Thus, we have proved
(6.2). Notice that the expression in (6.3) is in fact 〈x, T ∗x

0
〉 with T ∗ as in the lemma.

This confirms the formula for T ∗ given in the lemma.
Proposition 6.2. With the assumptions of Lemma 6.1, assume additionally that

(6.4) Re 〈Gw
0
, w

0
〉 ≤ 0 ∀ w

0
∈ D(Λ) .

Then T is m-dissipative (as an unbounded operator on H1 ⊕H2).
Moreover, T is skew-adjoint if and only if we always have equality in (6.4).
Proof. According to Lemma 6.1, T ∗ is an operator with a similar structure as T ,

so that we can apply the lemma to T ∗, obtaining that D(T ∗) is dense and T ∗∗ = T .
This implies that T is closed. (So far we have not used (6.4).) It is easy to check
that both T and T ∗ are dissipative (as unbounded operators on H1 ⊕H2). By, e.g.,
Proposition 3.1.11 in [39], T is m-dissipative.

To prove the last part of the proposition, first we note that if T is skew-adjoint,
then so is G, so that Re 〈Gw0 , w0〉 = 0 for all w0 ∈ D(Λ). Conversely, if G is such
that we always have equality in (6.4), then we have 〈Gw1, w2〉 = −〈w1, Gw2〉 for all
w1, w2 ∈ D(Λ). (See the proof of Proposition 3.2.2 in [39] for the easy argument.)
Since G is a bounded operator from D(Λ) to D(Λ)′, it follows that G∗ = −G. Now
we see from (6.1) that T ∗ = −T .

Proof of Theorem 1.1. We use the notation and the assumptions in the theorem.
Introduce

K0 =
1√
2
K , Λ =

[
L
K0

]
;

then Λ is a closed operator from E to H ⊕U with domain D(Λ) = E0. Notice that Λ
and G satisfy the assumptions of Proposition 6.2 with H ⊕ U and E in place of H1

and H2. According to Proposition 6.2, the operator

T̃ =

[
0 −Λ
Λ∗ G

]
=

⎡
⎣ 0 0 −L
0 0 −K0

L∗ K∗
0 G

⎤
⎦

with domain

D(T̃ ) =

⎧⎨
⎩
⎡
⎣z0

u0

w
0

⎤
⎦ ∈ H × U × E0

∣∣∣∣∣∣L∗z
0
+K∗

0u0
+Gw

0
∈ E

⎫⎬
⎭

is m-dissipative on H ⊕ U ⊕ E. Moreover, T̃ is skew-adjoint if and only if G is such
that we always have equality in (1.2). We interchange the places of U and E in the
space H ⊕ U ⊕ E; then the entries of T̃ get permutated accordingly (we interchange
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the last two rows and then the last two columns). This gives that the operator

T =

⎡
⎣ 0 −L 0
L∗ G K∗

0

0 −K0 0

⎤
⎦

is m-dissipative on H ⊕ E ⊕ U with domain

D(T ) =

⎧⎨
⎩
⎡
⎣z0

w
0

u
0

⎤
⎦ ∈ H × E0 × U

∣∣∣∣∣∣L∗z
0
+Gw

0
+K∗

0u0
∈ E

⎫⎬
⎭ .

T is skew-adjoint if and only if G is such that we always have equality in (1.2).
We want to use the above T as the m-dissipative operator appearing in Theo-

rem 5.2. For this, we partition T horizontally into the operators

(6.5) [A&B]imp =

[
0 −L 0
L∗ G K∗

0

]
, −[C&D]imp =

[
0 −K0 0

]
,

both with domain D(T ), and we define

(6.6) Simp =

[
[A&B]imp

[C&D]imp

]
, D(Simp) = D(T ) .

Then according to Theorem 5.2, the operator Ssca defined in (5.2) is a scattering
passive system node. We partition Ssca as in (5.2),

Ssca =

[
[A&B]sca
[C&D]sca

]

and we want to express these in terms of L,K, and G. For this, according to (5.2),
we have to compute the inverse (on its range) of Eimp from (5.1):

Eimp =

[
I 0
0 I√

2

]([
I 0
0 I

]
+

[
0 0

[C&D]imp

])

=

⎡
⎣I 0 0
0 I 0
0 0 I√

2

⎤
⎦
⎛
⎝
⎡
⎣I 0 0
0 I 0
0 0 I

⎤
⎦+

⎡
⎣0 0 0
0 0 0
0 K0 0

⎤
⎦
⎞
⎠ =

⎡
⎣I 0 0
0 I 0
0 K0√

2
I√
2

⎤
⎦ ,

which is defined on D(T ). It is easy to see that Eimp is indeed injective (as stated in
Theorem 5.2) and its range D(Ssca) = EimpD(T ) is given by (1.14). It is also easy to
check that

E−1
imp =

⎡
⎣I 0 0
0 I 0

0 −K0

√
2I

⎤
⎦ .

Substituting this and (6.5) into (5.2), we obtain that on D(Ssca),[
[A&B]sca
[C&D]sca

]
=

⎡
⎣0 0 0
0 0 0
0 0 −I

⎤
⎦+

⎡
⎣ 0 −L 0
L∗ G K∗

0

0 0
√
2I

⎤
⎦ ·
⎡
⎣I 0 0
0 I 0

0 −K0

√
2I

⎤
⎦

=

⎡
⎣ 0 −L 0

L∗ G−K∗
0K0

√
2K∗

0

0 −√
2K0 2I − I

⎤
⎦ =

⎡
⎣ 0 −L 0
L∗ G− 1

2K
∗K K∗

0 −K I

⎤
⎦ .

According to Theorem 5.2, Ssca is a scattering passive system node with state space
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H ⊕ E and with input and output space U . We also know from the same theorem
that Ssca is scattering conservative if and only if G is skew-adjoint.

Note that in the above proof, we have shown a bit more than what was required.
Indeed, we have also shown (without any extra effort) that Ssca is scattering conser-
vative if and only if G satisfies (1.2). This also follows from Theorem 1.3.

Remark 6.3. Our assumption (1.7) that the operator [ LK ] is closed is not far
from being a necessary condition for the conclusion of Theorem 1.1 to be valid, in the
following sense. Being a system node, the operator Ssca is closed. As can easily be
seen, this implies that also its external Cayley transform Simp is closed, which implies

in particular that the second column of Simp is closed. This second column is
[−L

G
K0

]
;

see (6.5) and (6.6). If, in addition, we assume that G ∈ L(E), then the domain of this
column is E0 and it follows that [ LK ] has to be closed (as a densely defined operator
from E to H ⊕ U), which is (1.7).

Proof of Proposition 1.2. All the claims in this proposition follow from standard
properties of a well-posed system node. See, in particular, (3.3), claim (h) after
Definition 3.2, and Proposition 3.5.

Proof of Theorem 1.3. We shall use the operator Simp =
[
[A&B]imp

[C&D]imp

]
, whose com-

ponents [A&B]imp and [C&D]imp are as introduced in the proof of Theorem 1.1 (see
(6.5)). According to the same proof, Ssca is obtained from Simp via the external Cayley

transformation (5.1)–(5.2). If ([ zw ] , u, y) is a classical solution of

[
ż(t)
ẇ(t)
y(t)

]
= Ssca

[
z(t)
w(t)
u(t)

]
and if we define the signals e, f by (1.11), then by Proposition 5.5, ([ zw ] , e, f) is a clas-

sical solution of

[
ż(t)
ẇ(t)
f(t)

]
= Simp

[
z(t)
w(t)
e(t)

]
. Thus,

⎡
⎣ ż(t)
ẇ(t)
−f(t)

⎤
⎦ =

⎡
⎣ 0 −L 0
L∗ G K∗

0

0 −K0 0

⎤
⎦
⎡
⎣z(t)w(t)
e(t)

⎤
⎦ ∀ t ≥ 0.

By taking the real part of the inner product of both sides in this equation with the
vector [z(t) w(t) f(t)]T and recalling that w(t) ∈ E0, we get that for all t ≥ 0,

d

dt
‖z(t)‖2 + d

dt
‖w(t)‖2 − 2Re 〈e(t), f(t)〉 = 2Re 〈Gw(t), w(t)〉 .

Here 2Re 〈e(t), f(t)〉 = ‖u(t)‖2 − ‖y(t)‖2, and (1.18) follows.
The formula for the adjoint system follows from Proposition 5.6. The operator

S∗
imp is of the same form as Simp, apart from the fact that L and G are replaced by

−L and G∗. When Sd
sca is multiplied by

[
I 0
0 −I

]
to the left and right this has the effect

of replacing K with −K.

7. The resolvent and the transfer function. In this section we continue to
investigate the special class of systems described in section 1, and we prove Theo-
rem 1.4. We begin with two preliminary propositions.

Proposition 7.1. Consider the spaces H,E,E0, E
′
0, X0, X

′
0 as introduced at the

beginning of section 1. If the operators L,K, and G are as in (1.1), (1.2), and (1.7),
then for every s ∈ C+ the operator P (s) ∈ L(E0, E

′
0) defined by

(7.1) P (s) = sI +
1

2
K∗K −G+

1

s
L∗L

has an inverse V (s) ∈ L(E′
0, E0).
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Proof. Because of condition (1.7), the space E0 is complete with the graph norm
of [ LK ], which is

‖w‖20 = ‖w‖2E + ‖Lw‖2H + ‖Kw‖2U ∀ w ∈ E0 .

Using the closed graph theorem, it follows that the original norm ‖ · ‖E0 on E0 is
equivalent to the above graph norm. In this proof, we may therefore replace ‖ · ‖E0

with ‖ · ‖0, but we still keep the old notation ‖ · ‖E0 for the norm on E0 and the
notation ‖ · ‖E′

0
for the corresponding dual norm on E′

0.
For every w ∈ E0 and s ∈ C+ we have

‖P (s)w‖E′
0
· ‖w‖E0 ≥ Re 〈P (s)w,w〉E′

0,E0

= (Re s)‖w‖2E + 1
2‖Kw‖2U +

(
Re

1

s

)
‖Lw‖2H − 〈Gw,w〉E′

0,E0

≥ (Re s)‖w‖2E + 1
2‖Kw‖2U +

(
Re

1

s

)
‖Lw‖2H ≥ c‖w‖2E0

,

where c = min{Re s, 1
2 ,Re

1
s}. This implies that P (s) is injective and has closed range.

The operator

P (s)∗ = sI +
1

2
K∗K −G∗ +

1

s
L∗L

has the same structure as P (s), so that by the same argument as in the first step, it
is also injective and has closed range. Since [RanP (s)]⊥ = KerP (s)∗ (the orthogonal
complement is with respect to the duality pairing; see, for instance, Theorem 4.12 in
Rudin [27]), this implies that RanP (s) is dense in E′

0. Hence, RanP (s) = E′
0, and

thus P (s) has a bounded inverse, which we denote by V (s).
Proposition 7.2. We use the notation and the assumptions of Proposition 7.1

and Ssca is the system node from Theorem 1.1. Let A be the semigroup generator of
Ssca, let B and C be the control and observation operators of Ssca, and let G be its
transfer function. Then for every s ∈ C+, we have

(7.2)

(sI −A)−1 =

[
1
sI − 1

s2LV (s)L∗ − 1
sLV (s)

1
sV (s)L∗ V (s)

]

(sI −A)−1B =

[ − 1
sLV (s)
V (s)

]
K∗,

C(sI −A)−1 = −K
[− 1

sV (s)L∗ V (s)
]

G(s) = I −KV (s)K∗ ,

where V (s) = P (s)−1 is the operator defined in Proposition 7.1.
Proof. Define Simp as in (6.5) and (6.6), so that Simp satisfies the assumption in

Theorem 5.2. It is easy to see that on D(Simp) we have

[
sI 0
0 I

]
−
[

[A&B]imp

−[C&D]imp

]
=

⎡
⎢⎣

sI L 0
−L∗ sI −G −K∗

0

0 K0 I

⎤
⎥⎦ ,

where K0 = 1√
2
K. The operator on the right-hand side above has a natural extension

to a bounded linear operator from X0 ⊕U to X ′
0 ⊕U . This extended operator can be
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factored as⎡
⎢⎣

sI L 0
−L∗ sI −G −K∗

0

0 K0 I

⎤
⎥⎦

=

⎡
⎢⎣

I 0 0
− 1

sL
∗ I −K∗

0

0 0 I

⎤
⎥⎦
⎡
⎢⎣

sI 0 0
0 P (s) 0

0 0 I

⎤
⎥⎦
⎡
⎢⎣

I 1
sL 0

0 I 0

0 K0 I

⎤
⎥⎦ ,

where the first factor is a boundedly invertible operator on X ′
0 ⊕U , the second factor

is a boundedly invertible operator from X0 ⊕ U to X ′
0 ⊕ U , and the last factor is a

boundedly invertible operator on X0⊕U (we have used Proposition 7.1). By inverting
the sides of the last formula, we get that([

sI 0
0 I

]
−
[

[A&B]imp

−[C&D]imp

])−1

=

⎡
⎢⎣

I − 1
sL 0

0 I 0

0 −K0 I

⎤
⎥⎦
⎡
⎢⎣

1
sI 0 0
0 V (s) 0

0 0 I

⎤
⎥⎦
⎡
⎢⎣

I 0 0
1
sL

∗ I K∗
0

0 0 I

⎤
⎥⎦ .

We have seen in the proof of Theorem 1.1 that Ssca is obtained from Simp via the
external Cayley transformation (5.1) and (5.2). Using (5.5) (where now Asca = A,
Bsca = B, Csca = C, and Gsca = G) we get (7.2).

Remark 7.3. It is well known that if A is the generator of a semigroup of con-
tractions, then ‖(sI − A)−1‖ ≤ 1

Re s for all s ∈ C+. Combining this fact with (7.2),
we obtain that

‖V (s)‖L(E) ≤ 1

Re s
∀ s ∈ C+ .

Remark 7.4. With the assumptions and the notation of Proposition 7.2, the
space Z from (3.8), (3.9) is a subspace of X0 with continuous embedding. Moreover,
the operator C from (1.3), when restricted to Z, is in L(Z,U). All this is easy to
prove using Proposition 7.1 and the expression of (I −A)−1B from (7.2).

Proof of Theorem 1.4. The given formulas for the operators A and C follow
directly from (1.13), (3.2), and (3.4).

Now we prove (1.20). The continuity and density of the embeddingsX0 ⊂ X ⊂ X ′
0

follow directly from the continuity and density of the embeddings E0 ⊂ X ⊂ E′
0.

By the definition of D(A) we have that X1 ⊂ X0. We claim that X1 is dense in
X0. To prove this assume that

[
z′
w′
] ∈ X ′

0 and
〈[

z′
w′
]
, (I − A)−1 [ zw ]

〉
X′

0,X0
= 0 for

all [ zw ] ∈ X . We have to show that this implies
[
z′
w′
]
= 0. By (7.2),〈[

z′

w′

]
, (I −A)−1

[
z
w

]〉
X′

0,X0

=

〈[
z′

w′

]
,

[
I − LV (1)L∗ −LV (1)

V (1)L∗ V (1)

] [
z
w

]〉
X′

0,X0

= 〈z′, z − LV (1)L∗z − LV (1)w〉H + 〈w′, V (1)L∗z + V (1)w〉E′
0,E0

= 〈z′ − LV (1)∗L∗z′ + LV (1)∗w′, z〉H + 〈−V (1)∗L∗z′ + V (1)∗w′, w〉E .
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Thus z′−LV (1)∗L∗z′+LV (1)∗w′ = 0 and −V (1)∗L∗z′+V (1)∗w′ = 0. The second of
these equations gives L∗z′ = w′, which substituted in the first equation gives z′ = 0.
Thus,

[
z′
w′
]
= 0 and this proves that X1 is dense in X0.

Since both X1 and X0 are continuously embedded in X , it follows that the em-
bedding from X1 to X0 is a closed operator from X1 to X0. By the closed graph
theorem, the embedding X1 ↪→ X0 is continuous.

Recall that A∗ has the same structure as A with L, K, and G replaced with −L,
−K, and G∗. Therefore, by the same argument as above, if we replace A by A∗ and
denote the domain of A∗ by Xd

1 , then Xd
1 is continuously and densely embedded in

X0. Recall from Proposition 2.10.2 in [39] that X−1 is the dual of Xd
1 with respect to

the pivot space X . Therefore, by duality X ′
0 is densely and continuously embedded

in X−1. This completes the proof of (1.20).
Let A−1 ∈ L(X,X−1) be the usual extension of the generator A, as explained at

the beginning of section 3. Since X0 is continuously embedded in X , the restriction of
A−1 to X0 is in L(X0, X−1). Since X

′
0 is continuously embedded in X−1, the operator

A may also be regarded as an operator in L(X0, X−1). Since the restrictions of these
two operators to X1 are equal and since X1 is dense in X0, it follows that these two
operators are in fact equal, as stated in the theorem.

The two remaining claims about B and G(s) follow from Proposition 7.2.
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