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Abstract

We generalize the standard theory on algebraic
Riccati equations and optimization to infinite-
dimensional well-posed linear systems, thus
completing the work of George Weiss, Olof
Staffans and others. We show that the optimal
control is given by the stabilizing solution of an
integral Riccati equation. If, e.g., the input op-
erator is not maximally unbounded, then this in-
tegral Riccati equation is equivalent to an algeb-
raic Riccati equation.

Our theory covers all quadratic (possibly in-
definite) cost functions, but the optimal state
feedback need not be well-posed unless the cost
function is uniformly positive or the system is
sufficiently regular. If one allows controls that
do not stabilize the state, just the output, then
the definition of the stabilizing solution becomes
more complicated. We treat this and some
other phenomena that are met also in the finite-
dimensional setting but more important in the
infinite-dimensional one.

A linear time-invariant system is typically
governed by

ẋ
�
t ��� Ax

�
t ��� Bu

�
t ��� y

�
t �	� Cx

�
t ��� Du

�
t �
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(for t � 0), x
�
0 ��� x0, where the generat-

ors  A B
C D ��� B

�
H � U � H � Y � are matrices, or

more generally, linear operators between Hilbert
spaces (U � H � Y ) of arbitrary dimensions.

Given x0 and u, the state x and output y equal

x
�
t �	��� tx0 ��� tu � y ��� x0 ��� u � (1)� t � eAt � � tu ��� t

0
� t � sBu

�
s � ds �� � x0 � � t ��� C � tx0 � � � u � � t ��� C � tu � Du

�
t ���

We study Well-Posed Linear Systems
(WPLSs) (“Salamon–Weiss class”), i.e.,
time-invariant systems of form (1), with� t � � t �!�"�#� linear, bounded, compatible with
each other and continuous on H � L2

loc. It fol-
lows that � is a C0-semigroup and A � B � C exist
to satisfy ẋ � Ax � Bu (and y � Cx when u � 0),
but A � B � C may be unbounded. Such systems
are equivalent to Lax–Phillips scattering sys-
tems and to the operator-based models of Béla
Sz.-Nagy and Ciprian Foiaş [S04]. If also D
exists, then the WPLS is called regular. [M04a]

Theorem 1 If B is bounded (B � B
�
U � H � ), then

the following are equivalent:

(i) For each initial state x0 � H, there exists a
unique control u : $&%(' U that minimizes

J
�
x0 � u � : � � ∞

0 )+* x �
t � * 2

H � * u �
t � * 2

U , dt � (2)
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(ii) The algebraic Riccati equation (ARE)

P BB
�
P � A

�
P � P A � I (3)

has an exponentially stabilizing1solution.

(iii) For each x0 � H, there exists u � L2 such
that J

�
x0 � u �.- ∞.

Any solution P of (ii) is unique, and the (state-
feedback) control u

�
t �/� Kx

�
t � strictly minim-

izes the cost J
�
x0 �102� for any x0 � H. Moreover,

the minimal cost equals 3 x0 � P x0 4 H .

In fact, a solution of (3) is exponentially
stabilizing iff it is nonnegative.

As above, for any initial state x0 � H, we want
to minimize the cost J

�
x0 �102� over

Uexp
�
x0 � : �65 u � L2 � $7% ;U �	88 x � L2 � $7% ;H �:9;�

the set of exponentially stabilizing controls, as
in Theorem 1. To cover more general cost
functions, we allow for any J � J

� � B
�
Y � in

J
�
x0 � u � : � � ∞

0
3 y �

t ��� Jy
�
t � 4 Y dt � (4)

(Take C : �< I
0 � � D : �= 0

I � � J : �> I 0
0 I � get (2).)

Now we can generalize the above result for ar-
bitrary cost functions; for simplicity, we require
the indicator (or signature operator) S : � D

�
JD

to be uniformly positive:

Theorem 2 If D
�
JD � εI for some ε ? 0 and B

is bounded, then the following are equivalent:

(i) There is a unique minimizing control over
Uexp

�
x0 � for each initial state x0 � H.

(ii) The ARE@AB AC K
�
SK � A

�
P � P A � C

�
JC �

S � D
�
JD �

K �ED S � 1 �
B
�
P � D

�
JC ��� (5)

has an exponentially stabilizing solution.

Any solution P of (ii) is unique, and the state
feedback u

�
t �	� Kx

�
t � (a.e.) minimizes (4). The

minimal cost equals 3 x0 � P x0 4 H .

A B

C D
K 0

ẋ � Ax � Bu
y � Cx � Du

FxG ẋ HIG yG Kx J FK%% Lu M Lu � Kx � u MJ H
Figure 1: State feedback connection

(Here Kx1 : � lims N % ∞ Ks
�
s D A � � 1x1; we

have K � K if K is bounded (e.g., if C is).) The
equations are given on Dom

�
A � , U and Dom

�
A � .

Under an external disturbance u M : $O%P' U
(i.e., u � Kx � u M ), we get J

�
x0 � u �Q�R3 x0 � P x0 4 �3 u MO� Su M 4 .

Next we give up the boundedness of B but
require that the system is regular (i.e., that the
transfer function has a weak limit at � ∞):

Theorem 3 For any regular WPLS, the follow-
ing are equivalent:

(i) There is an optimal regular state-feedback
operator K � B

�
Dom

�
A ��� U � ;

(ii) The ARE@AAB AAC
K

�
SK � A

�
P � P A � C

�
JC �

S � D
�
JD � lim

s N % ∞
B
� P �

s D A � � 1B �
SK �SD �

B
� P � D

�
JC ���

(6)
has an exponentially stabilizing solution.

Any solution P of (ii) is unique, and the state
feedback u

�
t �O� Kx

�
t � (a.e.) is optimal. For

this control, the cost is given by J
�
x0 � u �T�3 x0 � P x0 4 H .

(Here B
�

: � lims N % ∞ B
�
s
�
s D A

� � � 1.) By u

being optimal we mean that dJ U x0 V u W
du � 0 (this is a

Fréchet derivative). The control u is minimizing
iff S � 0. (The indefinite case gives, e.g., the
maximin control of a H∞ problem.) The optimal
control is unique iff the indicator S is one-to-
one.

1P X P

ZY

B [ H \ s.t. (3) holds and x
Y

L2 for all
x0

Y
H (equivalently, ] et ^ A _ BK ` ]ba Me c εt for all t d 0

and some M e ε d 0) under the state feedback u [ t \fX Kx [ t \ ,
K : Xhg B



P .
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If, e.g., the input operator B is not maximally
unbounded ( * � s D A � � 1B *ji Ms � 1 k 2 � ε for all
s ? M), then S � D

�
JD and any optimal state-

feedback is regular.
However, in general a regular WPLS may

have an irregular optimal control, and not all
WPLSs are regular. Thus, to cover all WPLSs,
we must use the IRE instead of the ARE:

Theorem 4 There is an optimal state feedback
iff the following integral Riccati equation (IRE)
has an exponentially stabilizing solution:l t

�
S
l t ��� t

�
P � t D P ��� t

�
J � t � (7a)m t

�
S
m t �n� t

�
J � t ��� t

�
P � t � (7b)m t

�
S
l t �SD ) � t

�
J � t ��� t

�
P � t , � (7c)

(Here � t : � χ o 0 V t p ���q� t : � χ o 0 V t p � χ o 0 V t p etc.,
where χ o 0 V t p is the characteristic function ofr
0 � t s , equivalently, the natural projection L2

loc '
L2 �1r

0 � t s ;U � (or its adjoint, the embedding).)

If B is bounded, C � tfuC
0 v � D �w 0

I � � J � I 0
0 I � (hence J

�
x0 � u �	� * u * 2

2 � *yxCx * 2
2), then, by

(5), we get S � I � K �zD B
�
P , hence then the

ARE reduces to P BB
�
P � A

�
P � P A � xC � xC,

or equivalently (integrate it over
r
0 � t s ), to (7a),

which now becomes

P x0 ��� t
�
P � tx0 � � t

0
� s � � xC � xC D P BB

�
P �#� sx0 ds

(8)
(for all x0 � H), familiar from classical results.

The optimal control equals u � m � 1 l x0

(i.e., u � l
x0 � �

I D m � u r � u M{s ), with cost
J

�
x0 � u �	��3 x0 � P x0 4 r ��3 u M7� Su M 4 s .
However, the optimal state feedback may be

ill-posed (i.e.,
� m t � � 1 : u M|' u or

m t need not
be well-defined on L2

loc). Nevertheless, if there
is a unique optimal control ux0

opt for each initial
state x0 � H, then the map

l
opt : x0 }' ux0

opt and
P form the exponentially stabilizing solution of
the ~ t-IRE, where the left-hand-side of the IRE
is replaced by

l t
opt

� ~ t l t
opt � ~ t � ~ t l t

opt.
In fact, the ~ t-IRE (as well as the IRE) is ex-

actly the discrete-time ARE for the discretized
system �� t � t� t � t � ; this leads to alternative proofs.
We also give frequency-domain variants of the
IRE and the ~ t -IRE in [M04a].

The optimal state-feedback is well-posed iff a
certain stable spectral factorization problem has
a solution. If J

�
0 �10�� is uniformly positive (e.g.,

as in (2)) and Uexp
�
x0 �7�� /0 for all x0, then this is

the case. This led to the generalization to WPLS
of numerous classical results on minimization,
state-feedback and dynamic stabilization and
coprime factorizations in [M04a].

Similar results also hold for other domains of
optimization (admissible controls). E.g., for

Uout
�
x0 � : �65 u � L2 � $/% ;U ��88 y � L2 � $/% ;Y �:9;�

the set of output-stabilizing controls, we must
replace “exponentially stabilizing solution” by
the (unique) “solution satisfying u � y � L2 and3�� tu ��� t

optx0 � P � t
optx0 4 ' 0, as t '�� ∞”. For-

tunately, for the cost function J � * u * 2
2 � * y * 2

2
(or with  C0 � �; D

I � � I in place of C � D � J) that
solution is the smallest nonnegative solution.

Details, corresponding LQR and H∞ applica-
tions, discrete-time results, more detailed histor-
ical remarks etc. are given in [M04a] and [M02].
For bounded B � C, many of the above results
are well known; see, e.g., [CZ94]. If we neg-
lect the well-posedness of the state feedback and
the IRE, most of the results have been estab-
lished earlier under various assumptions. The
well-posedness of the state feedback has been
know for Pritchard–Salamon systems, and for
several parabolic systems it has been established
by, e.g., Irena Lasiecka, Roberto Triggiani and
others; see [LT00].

For stable problems, the necessity of the ARE
(6) was established by Olof Staffans [S97];
its first and third equations were independ-
ently found by Martin Weiss and George Weiss
[WW97].

Reciprocal AREs
To overcome the difficulties due to unboun-

ded generators, Ruth Curtain and Mark Opmeer
have developed the reciprocal RE theory for the
LQR problem assuming that 0 �� σ

�
A � [OC04]

[C03]. There the bounded operators A � : �
A � 1 � B � : � A � 1B � C � : ��D CA � 1 are used in
place of A � B � C — the surprising fact is that the
Riccati operator P remains the same. E.g., the

3



first equation in the ARE (6), when multiplied
by A

� � to the left and by A � the right, becomes

K
�� SK � � P A � � A

� � P � C
�� JC � � (9)

Here S � D
� � JD � � SK � ��D B

� � P D D
� � JC �

(and D � : � D � C
�
0 D A � � 1B � B

�
U � Y � or the

value of the characteristic function at zero).
This was generalized to arbitrary WPLSs and
cost functions in [M03] (with

�
A D α � � 1 in

place of A � and different formulas for S and
K � ), leading to the first generalization of The-
orem 1 and similar results to arbitrary WPLSs;
see [M04b]. However the results of [M03] and
[M04b] established the well-posedness of the
optimal state-feedback pair only for the LQR
cost function and similar ones, hence they were
later partially shadowed by the IRE methods of
[M04a], which provided well-posedness for any
uniformly positive cost function. Nevertheless,
for several purposes the reciprocal and resolvent
AREs provide technically much simpler tools,
which have been applied succesfully to the
generalization of several results from systems
with bounded B � C to general WPLSs; see, e.g.
[BMS04]. Moreover, the ARE (9) is sometimes
more applicable than the IRE or the ARE (6).
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