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Abstract

We extend some classical results on coprime
factorizations to proper transfer functions whose
values are allowed to be bounded operators
between Hilbert spaces of any dimensions. We
also present some new equivalences.

Any proper transfer function can be realized
as a well-posed linear system (aka. WPLS or
Salamon–Weiss system). We give sufficient
and/or necessary conditions for a proper trans-
fer function to have 1. a quasi–right coprime,
2. doubly coprime factorization, in terms of A.
quotients of stable transfer functions, B. (state-
feedback) stabilizability and/or detectability of
realizations, C. dynamic (or “internal”) stabil-
izability of realizations, D. the ranges of the
Hankel and Toeplitz operators of the transfer
function.

For example, we show that a proper transfer
function has a quasi-right-coprime factorization
iff it has an output-stabilizable realization, and
that it has a doubly coprime factorization if it
has a stabilizing controller. Part of the results
have already been known for the case of matrix-
valued transfer functions and most of the rest for
rational transfer functions.�

Corresponding author

In Section 1, we present part of “A.” & “C.”
& “D.”, our pure frequency domain results. In
Section 2, we recall the definitions of WPLSs
and state feedback. In Sections 3 and 4, we
present “B.” and extend the others. The proofs
and details can be found in [M04b].

1 Frequency-domain results

By
�

(resp. � ) we denote the set of real (resp.
complex) numbers; i

�
denotes the imaginary

axis,
���

: ��� t 	 ��

 t � 0  , ��� : ��� t 	 ��

 t �
0  . By U � H � Y we denote Hilbert spaces of
arbitrary dimension and by B � U � Y � bounded
linear operators U � Y ; B � U � : � B � U � U � ,� �ω : ��� s 	�� 

 Re s � ω  . Given ω 	 � , by
H∞ ��� �ω ;B � U � Y ��� (or H∞

ω � U � Y � ) we denote the
set of bounded holomorphic functions � �ω �
B � U � Y � . The elements of H∞

∞ : ��� ω ��� H∞
ω are

called (well-posed or) proper transfer functions,
and those of H∞

0 stable. (We do not study im-
proper plants, though improper controllers will
be presented in Section 4.) We identify any
holomorphic function on � �ω with its restrictions
to � �α � α � ω � .

We first extend a classical result; the termino-
logy will be explained below:
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Figure 1: Controller C for the plant P

Theorem 1.1 (D.c.f.) Any dynamically stabiliz-
able proper transfer function has a d.c.f. If the
input and output dimensions are finite, then also
the converse holds (and the controller can be
taken stable).

We shall extend this to a long chain of related
implications in Theorem 4.1.

A proper transfer function P (“the plant”) is
called dynamically stabilizable (aka. “internally
stabilizable”) if there is a proper transfer func-
tion C (“the controller”) such that $ I % P% C I & � 1 ex-
ists (at some point) and is stable (it follows that
the inverse exists on any � �ω on which P and C
exist (for ω � 0)).

This is the case iff the maps $ uLyL &('� $ u
y &

in Figure 1 are (proper and) stable (i.e., L2

is mapped into L2), since, obviously, )+*u*y , �- $ I % P% C I & � 1 .0/ I 0
0 I 132 /54uL4yL 1 , where 6 denotes the

Laplace transform (see (3)).
We say that P has a d.c.f. (doubly coprime

factorization) if there are f � g �87f � 7g � F � G � 7F �97G 	
H∞

0 s.t. g
�

1 	 H∞
∞, P � f g

�
1 and) g F

f G , );:G � :F� :f :g , � ) IU 0
0 IY , � );:G � :F� :f :g , ) g F

f G ,
on � �0 . (It follows that 7g � 1 	 H∞

∞ and
P � 7g � 1 7f . Note that f 	 H∞ ��� �0 ;B � U � Y ���
and g 	 H∞ ��� �0 ;B � U ��� .)

If P and C are as above, then we can choose
f � g �<7f � 7g � F � G � 7F �97G so that they, in addition, sat-
isfy G

�
1 �97G � 1 	 H∞

∞, C � FG
�

1 �=7G � 1 7F .
For matrix-valued transfer functions, (i.e.,

for dimU � dimY > ∞), the first claim of The-
orem 1.1 is due to [S89] and the converse
due to [Q04] (they cover also some improper
transfer functions). The first author extended
the result for infinite-dimensional U and Y in
[M04b] using the integral Riccati equation the-
ory of [M04a] (the extensibility of the converse
is open).

By H2 ��� �ω ;U � (or H2
ω � U � ) we denote Hilbert

space of holomorphic functions h : � �ω � U for

which?
h

?
2
H2 : � sup

r @ ω A ∞�
∞

?
h � r B it � ? 2U dt > ∞ C

Functions f 	 H∞ �D� �0 ;B � U � Y ��� and g 	
H∞ ��� �0 ;B � U ��� are called q.r.c. (quasi–right
coprime) if / f

g 1 h 	 H2
0 E h 	 H2

0 for all h 	
H2

∞ � U � : �F� ωH2
ω � U � .

(A sufficient but not necessary condition for
this is that f � g are r.c. (right-coprime), i.e., that/ 7F . 7G 1 / f

g 1HG I (on � �0 ) for some / 7F . 7G 1 	
H∞

0 . Another one is the Corona condition (The-
orem 4.1(C)).)

Any transfer function having a “(stable) right
factorization” P � f g

�
1 has a “q.r.c. factoriza-

tion” (i.e., f � g can be taken q.r.c.):

Theorem 1.2 (Quasi–right-coprime factorization)
Given any f 	 H∞ ��� �0 ;B � U � Y ���3� g 	
H∞ ��� �0 ;B � U ��� such that g

�
1 exists and is

bounded on some right half-plane, there
are f2 � g2 that satisfy the same conditions,
f g
�

1 � f2g
�

1
2 , and, in addition, f2 and g2 are

q.r.c. and / f2
g2 1 is inner.

Thus, we can “cancel any common zeros of
f and g on � �0 ”. Indeed, when f � g are q.r.c.,
then f � s � u � 0 E g � s � u I� 0 for any u 	 U .
We call / f

g 1 inner if (the boundary function)
? / f

g 1 u

?
U J Y � ?

u

?
U a.e. on i

�
for any u 	 U ,

equivalently, / f
g 1 is an isometry on H2

0.
We note that a right factorization f g

�
1 is

q.r.c. iff any properly-invertible common right
factor of f and g is a unit (in H∞). However, if
dimU � ∞, then any two maps have common
right factors that do not have even proper in-
verses, hence the property “weakly coprime” of
[S89] is not interesting in this generality.

Next we reformulate Theorem 1.2 and add a
third condition:

Theorem 1.3 Let ω 	 �
, P 	

H∞ ��� �ω ;B � U � Y ��� . Then the following are
equivalent:

(i) P has a right factorization;

(ii) P has a q.r.c. factorization;

(iii) Ran � HPK α �ML Ran � TPK 0 �NB H2
0 for some α �

ω.
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By Corollary 3.3, a fourth equivalent condi-
tion is that P has an output-stabilizable realiza-
tion.

Here Ran � TPK 0 � : �O� Ph


 h 	 H2 ��� �0 ;U �� is

the range of the Toeplitz operator of P (re-
stricted to H2

0) and Ran � HPK α � : �P� ΠPh


 h 	

H2 �D� �α ;U �Q that of the Hankel operator of
P (projected to H2 ��� �α ;U � ; here � �α : �R� s 	� 

 Re s > α  and H2 ��� �α ;U � is the set of
holomorphic functions h : � �α � U for which
?
h

?
2
H2 SUT %α ;U V : � supr W α X ∞�

∞

?
h � r B it � ? 2U dt > ∞).

Sometimes the Hankel operator is defined
by adding a reflection: “HPK α : � ΠPˇ” (on
H2 �D� � � α;U � ), where ȟ � s � : � h � . s � , but this
does not affect the range. The alternative defin-
ition � I . Π � PΠ is not compatible with The-
orem 1.3.

For h 	 H2 ��� �α ;U � , Ph is an element of
L2 � α B i

�
;Y � , and hence ΠPh 	 H2 ��� �α ;U � ,

where Π is the orthogonal projection L2 � α B
i
�

;Y �Y� H2 �D� �α ;U � . An equivalent way to in-
terpret (iii) is that for any h 	 H2 �D� �α ;U � , there
is 7h 	 H2 ��� �0 ;U � s.t. Ph . P7h is the restriction
of a H2

0 function to the domain of Ph . P 7h (i.e.,
to � s 	Z� 

 max � 0 � ω [> Res > α  ).
2 Well-Posed Linear Systems

It is well-known that any rational transfer func-
tion has a d.c.f. and a jointly exponentially sta-
bilizable realization. The proper transfer func-
tion P � s �\�]� s . 1 � � 1 ^ 2 has neither, and in gen-
eral, a proper transfer function has a d.c.f. iff it
has a jointly stabilizable and detectable realiz-
ation [S98a]. To be able to formulate this and
further necessary and sufficient conditions on
factorizability in terms of realizations, we must
define the realizations of transfer functions.

For this purpose, we use WPLSs (well-posed
linear systems), since their transfer functions are
proper transfer functions, and conversely, any
proper transfer function is the transfer function
of a WPLS. The WPLSs are equivalent to Lax–
Phillips scattering systems and to the operator-
based models of Béla Sz.-Nagy and Ciprian
Foiaş [S04].

A LTI system is typically governed by

ẋ � t �_� Ax � t �8B Bu � t �`� y � t �a� Cx � t �bB Du � t � (1)

(for t � 0), x � 0 �;� x0, where the generators/ A B
C D 1 	 B � H c U � H c Y � are matrices, or more

generally, linear operators on Hilbert spaces
(U � H � Y ) of arbitrary dimensions.

Given x0 and u, the state x and output y equal

x � t �d�fe tx0 B�g tu � y �fh x0 Bji u � (2)e t � eAt � g tu � A t

0
e t
�

sBu � s � ds ��Dh x0 ��� t �k� C e tx0 �M�li u ��� t �m� C g tu B Du � t �`C
We study Well-Posed Linear Systems

(WPLSs) (“Salamon–Weiss class”), i.e.,
time-invariant systems of form (2), withe t �ng t ��ho�pi linear, bounded, compatible with
each other and continuous on H c L2

loc. It
follows that e is a strongly continuous semig-
roup and A � B � C exist to satisfy ẋ � Ax B Bu
(and y � Cx when u � 0), but A � B � C may be
unbounded. [M04a]

By L2
ω � � ;U �q� e

�
ω r L2 � � ;U � we denote

the Hilbert space of (equivalence classes of
Bochner-)measurable functions u : � � � U for
which

?
u

?
2
L2

ω
: � X � e

�
ωt

?
u � t � ? 2U dt > ∞. We set

L2 : � L2
0, � τtu ��� s � : � u � t B s � and π s u : � χ�ut u,

where χE � t � : �wv 1 x t y E;

0 x t zy E
. We also consider π

�
as the projection L2 � � ;U �{� L2 � ��� ;U � or as
its adjoint.

We now recall the exact definition of WPLSs:

Definition 2.1 (WPLS and stability) Let ω 	�
. An ω-stable well-posed linear system on� U � H � Y � is a quadruple Σ � /l| }~ � 1 , wheree t , g , h , and i are bounded linear operat-

ors of the following type:

1. e r : H � H is a strongly continuous
semigroup of bounded linear operators
on H satisfying supt � 0

?
e
�

ωt e t

?
H > ∞;

2. g : L2
ω � � ;U ��� H satisfies e t g u �g τtπ
�

u for all u 	 L2
ω � � ;U � and t 	 ��� ;

3. h : H � L2
ω � � ;Y � satisfies h�e tx �

π
�

τt h x for all x 	 H and t 	 �(� ;
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4. i : L2
ω � � ;U ��� L2

ω � � ;Y � satisfies τt i u �i τtu, π
� i π

�
u � 0, and π

� i π
�

u ��h�g u
for all u 	 L2

ω � � ;U � and t 	 � .

We say that e (resp. g , h , i ) is α-stable
if 1. (resp. 2., 3., 4.) holds for ω � α. Stable
means 0-stable; exponentially stable means ω-
stable for some ω > 0. The system is output
stable (resp. SOS-stable) if h (resp. h and i )
is stable.

Given any x0 � u, we define x � y by (2), whereg t : �fg τtπ
�

.

By 6u we denote the Laplace transform of u:6u � s � : � A � e
�

stu � t � dt � s 	Z� �ω �3C (3)

The Laplace transform is an isometric (modulo� 2π � 1 ^ 2) isomorphism of L2
ω onto H2

ω. This
corresponds to an isometric isomorphism of H ∞

ω
[on]to the [time-invariant and causal] maps on
L2

ω; similarly, every proper transfer function has
a realization:

Theorem 2.2 Let ω 	 � . For any ω-stable
WPLS $D� �� � & , there is a unique transfer function6i 	 H∞

ω s.t. �i u � 6iq6u on � �ω for any u 	
L2

ω � ��� ;U � .
Conversely, any 6i 	 H∞ ��� �ω ;B � U � Y ��� is

the transfer function of some ω-stable WPLSs
(which is called the realization of 6i ).

For systems having bounded generators, we
have 6i�� s �H� D B C � s . A � � 1B (actually this is
valid for rather unbounded generators, once we
use the Yosida extension of C). For such sys-
tems, state feedback means using u � t �Y� Kx � t �
as the input (for some K 	 B � H � U � ). Substitu-
tion of this into (1) leads to the closed-loop sys-
tem ẋ � t ����� A B BK � x � t � , y � t �Y��� C B DK � x � t � ,
or, if we allow for the external input u � , i.e.,
u � t �m� Kx � t �NB u ��� t � , to ẋ � t �m�]� A B BK � x � t �uB
Bu �(� t � , y � t ����� C B DK � x � t �uB Du �(� t � .

To generalize this to arbitrary WPLSs, one
adds an additional output v : ��� x0 B�� u and
uses u � v B u � as the input (i.e, � I . ��� u �� x0 B u � ), as in Figure 2. Such state feedback
is called admissible if the map � I . ��� : u �
u � has a well-posed inverse (bounded on L2

ω

e g τh i� � Σext
Σ � x0! x! y! � x0 B�� u�  ��� "u � "u � S I �u� V % 1u � � S I �N� V % 1 � x0� #

Figure 2: State-feedback connection u � t ���
Kx � t �uB Fu � t �
for some ω 	 � ; this is always the case if the
feedback is generated by some K 	 B � H � U � ),
equivalently, if � I . ���� � 1 	 H∞

∞:

Definition 2.3 (Σ ��� K �+$ � � & ) A pair/ � � 1 is called an admissible state-
feedback pair for $ � �� � & if the extended system

Σext : � �� e g τh i� �
��

(4)

is a WPLS (on � U � H � Y c U � ) and � I . ���� � 1 	
H∞

∞ � U � .
We set   : �=� I . ��� � 1 �¢¡ : �£i�  and

denote the corresponding closed-loop system
(see Figure 2)

Σ �¤� �� e¥� g¦� τh{� i¢��§� ���
�� � �� e¨B�g τ  ©� g�  τhªBji� ©� i«  ©�   . I

��
(5)� Σext ¬ I 0. � I . �F � 1

(6)

� Σext ¬ I 0 ©�  ® : ¬ x0

u �\ '� �� x
y

u . u �
�� C

We call $ � � & stabilizing if Σ � is stable.
If there exists a stabilizing state-feedback pair
for Σ, then Σ is called stabilizable (similarly for
exponentially, SOS- or output-stabilizing etc.).

(To allow for formulas similar to (6), we often
denote the WPLS $ � �� � & by $ � � τ� � & .)
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3 Quasi-coprime factorizations

We start by noting that “optimizability” or the
state-FCC (“Finite Cost Condition”) is equival-
ent to exponential stabilizability:

Theorem 3.1 A WPLS $ � �� � & is exponentially
stabilizable iff for each initial state x0 	 H there
is a stable input (u 	 L2 � �{� ;U � ) such that the
state x : �¯e x0 B�g τu is stable (x 	 L2).

If B is bounded (B 	 B � U � H � ), then a third
equivalent condition is that there exists (a state
feedback operator) K 	 B � H � U � such that the
semigroup generated by A B BK is exponen-
tially stable, and a fourth one that some P �
0 solves the Riccati equation (RE) P BB

�
P �

A
�
P B P A B I (in which case we can have K �. B
�
P ); this case has been well known.

The theorem was proved first in M04c], by
using resolvent REs (built on reciprocal RE
theory), and later, more directly, in [M04a],
by using integral REs in place of the above
algebraic RE. In both proofs, it was shown that
the control minimizing the cost

?
x

?
2
2 B ? u ? 22

corresponds to an admissible state-feedback pair
(note that the state-FCC says that the above cost
can be made finite).

The corresponding equivalence also holds
for (and similar comments apply to) output-
stabilizability:

Theorem 3.2 Let $ � �� � & be a WPLS. Then the
following are equivalent:

(i) For each x0 	 H there is u 	 L2 � �{� ;U � such
that y 	 L2.

(ii) There is an output-stabilizing state-
feedback pair $ � � & for Σ.

(iii) There is a SOS-stabilizing state-feedback
pair $ � � & for Σ such that ¡ �n  are
q.r.c. and ¡ � ¡ B�  �   � I.

(iv) The corresponding integral RE has a non-
negative solution.

Note from Definition 2.3 that iR��¡°  �
1

(equivalently, 6i � �¡ �  �
1) and that /n±² 1

maps u � '� $ yu & (when x0 � 0). By (iii), actu-
ally, h����5i¢�����j�{�l��� are all stable.

The pair in (iii) is the one that (strictly) min-
imizes the cost X ∞

0 � ? y � t � ? 2Y B ? u � t � ? 2U � dt for
each x0 (in Figure 2, for u �F� 0; note that
the output-FCC (i) above says that this cost
can be made finite). This minimizing pair is
unique modulo an invertible operator E 	 B � U � ;
and all q.r.c. factorizations of i are given by�D¡ E ���D  E � � 1; the operator E must be unitary
to satisfy (iii).

From Theorem 3.2 one can derive an exten-
sion of Theorem 1.3 (set 6i : � P� f : � �¡ � g : ��  ):

Corollary 3.3 (q.r.c.f.) Let P 	 H∞
ω � U � Y � , ω 	�

, and let i denote the (I/O) map for which6i³� P. Then following are equivalent:

(i) P � f g
�

1, where f � g 	 H∞
0 , g

�
1 	 H∞

∞ � U � .
(ii) P � f g

�
1, where f � g 	 H∞

0 are q.r.c., g
�

1 	
H∞

∞ � U � , and / f
g 1 is inner.

(iii) For some α � ω and any v 	 L2
α � �(� ;U �

there exists u 	 L2 � �{� ;U � s.t. π
� i�� v B

u ��	 L2 (equivalently, i�� v B u �Y	 L2).

(iv) There is an output-stabilizable realization
of P.

(v) There is a stabilizable realization of P.

Condition (iii) says that Ranα � π � i π
� �´L

L2 B Ran � π � i π
� � , which is the state-space

formulation of Theorem 1.3(iii).

4 Coprime factorizations

In Theorem 4.1 we list several conditions for
a proper transfer function and known and new
implications for them. We suspect that actually
all these implications may be equivalent (except
(C)); at least this is the case for rational transfer
functions. The terminology will be explained
below the theorem (see [M02] for further de-
tails).

The implications (SC) E (dcf), and
(IL) E ( / � 0

0 I 1 ) E (FCC&FCCd) E (ext.s&d) are
new, from [M04b]. As explained above, under
dimU � dimY > ∞ (SC) E (dcf) is due to [S89],
the converse due to [Q04]; (cf) µ (dcf) is due
to the Tolokonnikov’s Lemma and (cf) µ (C)
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is the Corona Theorem. The implications
(dcf) µ (j.s&d) µ (j.ext.s&d) E (ext.s&d) are es-
sentially due to [S98a], and (cf) µ (CC) E (IL)
due to [CWW01]. Implications
(dcf) E (cf) E (C) and (FCC&FCCd) ¶ (ext.s&d)
are obvious and the Youla parameterization is
well known.

Theorem 4.1 (D.c.f. µ ...) For any P 	
H∞

∞ � U � Y � , the implications below hold for
the following properties:

(SC) P has a stabilizing (dynamic) controller.

(dcf) P has a d.c.f.

(cf) P has a r.c.f. or a l.c.f.

(CC) P has a stabilizing canonical controller.

(IL) P has a stabilizing controller with internal
loop.

( $ � 0
0 I & ) / P 0

0 I 1 has a d.c.f.

(FCC&FCCd) P has a realization Σ s.t. the
output-FCC holds for Σ and for its dual.

(ext.s&d) P has an externally stabilizable and
externally detectable realization.

(j.ext.s&d) P has a jointly externally stabiliz-
able and externally detectable realization.

(j.s&d) P has a jointly stabilizable and detect-
able realization.

Stab.Contr.
__

��
d.c.f.

__

��

ks +3 jointly stab.&det.
KS

��

c.f.KS

��

jointly ext.stab.&det.

��
Can.Contr.

��

ext.stab.&det.KS

��

Int.Loop

��/ � 0
0 I 1 d.c.f. +3 FCC&FCCd

Condition (IL) is equivalent to the following:

(ILreal) P has a realization that is stabilizable
by controller (system) with internal loop.

Analogous claims hold for (SC) and (CC) too.
If dimU � dimY > ∞, then also the converse

implications hold for the arrows starting with
“ · � ”, and (cf) is equivalent also to the following
Corona condition:

(C) P � FG
�

1 with F � G 	 H∞, F
�
F B G

�
G � εI

on � � for some ε � 0, and detG IG 0.

Given a d.c.f. ) g F
f G , �¸) :G � :F� :f :g , � 1 	 H∞ � U c

Y � of P, all stabilizing controllers with internal
loop for P are obtained from the standard Youla
parameterization � F B gQ ��� G B f Q � � 1, where
Q 	 H∞ � Y � U � is arbitrary (the controller is
proper iff � G B f Q � � 1 	 H∞

∞ � U � ).
We call P � 7g � 1 7f a l.c.f. (left-coprime fac-

torization) of P iff 7g � 1 	 H∞
∞ � Y � and 7f � 7g 	 H∞

are l.c. (i.e., $ :f :g & 	 H∞ is right-invertible on
H∞; equivalently, $ :f :g & / F�

G 1 � I for some F � G 	
H∞).

We say that ¹ is a stabilizing controller with
internal loop for i (or 6i ) if ¹R	 TIC∞ � Y c
Ξ � U c Ξ � for some Hilbert space Ξ and � I .i o � � 1 	 TIC, where i o � ) 0 º 11 º 12�

0 0
0 º 21 º 22 , . Note

from Figure 3 that i o
I : �³� I . i o � � 1 . I maps) uLyL

ξL , '� ) uy
ξ , . Thus, ¹ is stabilizing iff the maps) uLyL

ξL , '� ) uy
ξ , are well-posed and stable (equival-

ently, iff the corresponding transfer functions
are in H∞). An equivalent condition is that/ I % C0% P0 I 1 � 1 	 H∞, where C0 : � 6¹ and P0 : �/ P 0

0 I 1 .
The equivalent condition (ILreal) is formally

stronger: it means (the existence of Σ and 7Σ for
this fixed i such) that all 25 maps from initial
states and external inputs to states and outputs
in Figure 3 are stable (i.e., that the combined
closed-loop system Σo

I is stable, where Σo is
given by (7.21) of [M02]). See Section 7.2 of
[M02] for further details.

If » 	 TIC � Y � U � and ¼ 	 TIC � U � are r.c.,
then ¹ : � / 0 ½

I I
�d¾ 1 is called a (right) canonical

controller (see [CWW01] or [M02]); in [M02],
the term controller with a coprime internal loop
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Figure 3: DF-controller 7Σ with internal loop for
Σ 	 WPLS � U � H � Y �
was used. Sometimes we denote it by »�¼ �

1,
as in the Youla parameterization above. Simil-
arly, $ 0 IÁÂ

I % ÁÃ & is called a (left) canonical control-
ler if

À» and
À¼ are l.c.

A (dynamic feedback) controller ¹ (resp. 7Σ)
with internal loop is proper or well-posed (i.e.,
“with internal loop” can be dropped) iff I .¹ 22 	 GTIC∞. In that case we can redefine ¹
(resp. 7Σ) so as to have ¹ 12 �`¹ 21 �`¹ 22 � 0 (resp.¹ 12 �`¹ 21 ��¹ 22 � 7g 2 � 7h 2 � 0), as in the classical
definition of a controller.

The Youla parameterization covers all sta-
bilizing controllers with internal loop in the
sense that any other controller with internal loop
defines the same closed-loop map $ uL

yL &_'� $ u
y & as

exactly one of these (modulo / ½;Ä¾ Ä 1 � / ½¾ 1NÅ for
some Å 	 GTIC), although the maps from ξL

and to ξ (the internal loops) may differ. In par-
ticular, this parameterization contains all well-
posed stabilizing controllers.

The dual of � A B
C D � is � A Æ C Æ

B Æ D Æ � ; and this relation
can be extended to general WPLSs. As noted in
Theorem 3.2, condition (FCC&FCCd) implies
that we can add a new output to Σ and feed it
back to the original input so that the closed-loop
system becomes SOS-stable. The dual obvi-
ously implies that by feeding the original output
back to a suitable new input, the dual of SOS-
stability is achieved. It actually follows that not
merely the output and I/O maps but also the in-
put maps become stable, i.e., that the closed-
loop systems become externally stable (only the
semigroup may be unstable), so this leads to
the condition (ext.s&d). The stronger condi-
tion (j.ext.s&d) says that, in addition, the new

output row and the new input column fit simul-
taneously to the same system with the original

one (namely ΣTotal : � -
A B T
C D 0
K 0 0 2 , if, e.g., B and C

are not too unbounded so that the optimal state-
feedback operators K and T

�
exist for Σ and

its dual, respectively), and that both feedbacks
(i.e., operators A B BK and A B TC in place of A)
mentioned above make the whole ΣTotal extern-
ally stable (including the bottom-right element,
whose closed-loop transfer function under K be-
comes K � s . A . BK � � 1T )).

Since external stability does not imply sta-
bility, the implication from (j.ext.s&d) E (j.s&d)
may require one to change the realization.

Finally, we note that if (ext.s&d) implies
(SC), then actually all conditions in The-
orem 4.1 are equivalent (except (C), which
is strictly weaker if dimU � ∞ � dimY ).
The weaker implication from (ext.s&d) to
(j.ext.s&d) would have the same result except
for (SC). At present the validity of neither im-
plication is known without some additional as-
sumptions. on the realization.

Theorem 4.1 leads to its “exponential vari-
ant”, where stabilization is replaced by expo-
nential stabilization etc. (cf. Definition 2.1).
In this case, the exponential version of
(ext.s&d) E (j.ext.s&d) only requires one to
show that the bottom-right transfer function
mentioned above is proper (this is always the
case if B and C are not too unbounded). Some
sufficient conditions to this and the above two
implications are given in [S98b] and [M02], and
further ones are to be expected from Ruth Cur-
tain and Mark Opmeer.

In Theorem 4.1 (resp. Corollary 3.3), we lis-
ted several sufficient and/or necessary condi-
tions for a proper transfer function to have a r.c.f.
(resp. q.r.c.f.). If P has a r.c.f., then any q.r.c.f.
of P is a r.c.f., but not all maps having a q.r.c.f.
have a r.c.f. (let f � g 	 H∞ �D� � ; �M� be Blaschke
products with zeros att n

�
2 and � n2 B 1 � � 1 for

n � 2 � 3 ��CÇCÈC ). Moreover, not all proper transfer
functions have a q.r.c.f. (e.g., P ��� s . 1 � � 1 ^ 2
is not meromorphic on � � , hence not of form
f É g).

Sometimes one wants to stabilize a sys-
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tem dynamically through partial feedback
(measurement-feedback), where the controller
can measure only to a part of the input and affect
only a part of the output. If the implication from
(ext.s&d) to (j.ext.s&d) in Theorem 4.1 holds,
then the numerous classical sufficient and ne-
cessary factorization conditions for partial feed-
back stabilizability of a rational transfer func-
tion are in fact necessary for any proper transfer
function (they are known to be sufficient; see,
e.g., [M02], Section 7.3, where also the neces-
sity is given in the case that dimU � dimY > ∞).

Similarly, if a system is exponentially stabil-
izable with internal loop through partial feed-
back, then so is the subsystem that is at the reach
of the feedback controller. Also the converse
holds if (ext.s&d) implies (j.ext.s&d).

All these results are well-known for finite-
dimensional systems (or rational transfer func-
tions), and an extension for smoothing e (i.e.,e B1u0 �ne � C �2y0 locally integrable for all u0 	
U � y0 	 Y ) with constructive formulas this was
shown in Theorem 7.3.12(c) of [M02]. Since
the result reduces the problem to the dynamic
feedback stabilization of Σ21, one more often
only treats dynamic stabilization, and for that
problem similar though stronger sufficient con-
ditions have been given in, e.g., [WC97], which
also provides further historical remarks (see also
[M02]).

5 Generalizations and notes

Naturally, all above results have analogies
for exponential stabilization (and exponential
coprime factorizations: maps belong to H∞

ω for
some ω > 0). The factorizations (and control-
lers) can be found by solving corresponding al-
gebraic or integral Riccati equations. All results
and proofs are given in [M04a], but [M02] con-
tains some further details and historical notes.

Section 2 is well known (see, e.g., [M04a]
or [M02] for historical remarks). Theorem 3.1
and “(i) µ (ii) µ (iv)” of Theorem 3.2 have been
known for bounded B (an extension was given in
Section 9.2 of [M02], and the parabolic case can
be found in, e.g., [LT00]). Also Corollary 3.3 is

new.
Quasi-coprimeness was presented in [M02],

motivated by the fact that q.r.c. output-
stabilization is the weakest form of stabiliza-
tion that allows the reduction of optimal con-
trol problems to the output-stable case. By The-
orem 3.2, this reduction is available for any solv-
able problems. However, the theory in [M04a]
also allows for direct solutions.

The sources of the implications in The-
orem 4.1 were listed above the theorem. The
non-r.c.f. and non-q.r.c.f. examples are due to
Sergei Treil and Olof Staffans. See [M04a] and
Sections 7.1–7.2 of [M02] for further details and
results on coprime factorizations and dynamic
stabilization.
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