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We develop the theory of linear infinite-dimensional passive and conserva-
tive time-invariant systems in discrete and continuous time. The model that
we use is built around a state/signal node, which differs from a standard in-
put/state/output node in the sense that we do not distinguish between input
singnals and output signals, only between the ”interior” state space and the
”exterior” signal space. Our state/signal model is an infinite-dimensional
version of Willem’s behavioral model with latent variables interpreted as the
state.

In this short abstract we limit ourselves to the discrete time case.

Definition 0.1. By a state/signal node we mean a triple Σ = (V,X ,W),
where the state space X and the signal space (exterior space) W are Hilbert

spaces, and V is a subspace of the product space K :=
[
X
X
W

]
with the following

properties:1

1Later when we introduce passive nodes we shall require X to be a Hilbert space, W
to be a Krĕın space, and equip K with a particular Krĕın space structure rather than the
Hilbert space structure that it inherits from X and W.
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(i) V is closed in K;

(ii) For every x ∈ X there is some [ z
w ] ∈ [ X

W ] such that
[

z
x
w

]
∈ V ;

(iii) If
[

z
x
w

]
∈ V and [ x

w ] = [ 0
0 ], then z = 0;

(iv) The set
{

[ x
w ] ∈ [ XW ]

∣∣ [
z
x
w

]
∈ V for some z ∈ X

}
is closed in [ XW ].

All of these conditions have a clear meaning, related to the role played
by V in our definition of a trajectory. By a trajectory (x(·), w(·)) along V
on Z+ = 0, 1, 2, . . . we mean a pair of sequences {x(n)}n∈Z+ and {w(n)}n∈Z+

satisfying [
x(n+1)

x(n)
w(n)

]
∈ V, n ∈ Z+. (1)

We explain what standard notions, such as existence and uniqueness of so-
lutions, continuous dependence on initial data, observability, controllability,
stabilizability, detectability, and stability mean in this setting. Out of these
especially our notion of (approximate) controllability seems to be new in a
behavioral context. We show that each state/signal system has three types of
representations (none of which is unique): a latent variable representation,
a kernel representation, and a input/state/output representation. We also
define the notion of transfer function for each of the three types of represen-
tations.

We next replace the signal space W by a Krĕın space, and look more
closely at systems that are simple and conservative or minimal and passive.
In particular, at this stage we also define the dual of a state/signal system.
We equip the space K with the Krĕın space inner product[[

z1
x1
w1

]
,
[

z2
x2
w2

]]
K

= −〈z1, z2〉X + 〈x1, x2〉X + [w1, w2]W , (2)

For the dual state/signal system we use a sligtly different Krĕın space inner
product, namely[[

z1
x1
w1

]
,
[

z2
x2
w2

]]
K∗

= −〈z1, z2〉X + 〈x1, x2〉X − [w1, w2]W . (3)

We identify the dual of K with K∗ by using the duality pairing[[
z
x
w

]
,
[

z∗
x∗
w∗

]]
[K,K∗]

= −〈z, x∗〉X + 〈x, z∗〉X − [w, w∗]W , (4)
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and we always compute orthoghonal complements with respect to this duality
pairing. Thus, in particular, the orthogonal complement V [⊥] of V ⊂ K is
a subspace of K∗. The dual state/signal system is Σ∗ = (V∗,X ,W∗), where
V∗ = V [⊥] and W∗ = −W . A system Σ = (V,X ,W) is passive if V is a
maximal positive subspace of K, it is energy preserving if V is an isotropic,
maximal positive subspace of K, and it is conservative if V is a Lagrangean
subspace of K. All of these notions can be characterized in a number of other
equivalent ways. As usual, Σ is passive or conservative if and only if the dual
system Σ∗ = (V∗,X ,W∗) is passive or conservative, respectively.

By looking at a conservative or passive state/signal system from different
points of view (i.e., by splitting the signal space W into the direct sum W =
U+̇Y of an input space U and an output space Y in different ways) we recover
the well-know scattering, impedance, and transmission input/state/output
settings. The family of different scattering (or impedance or transmission)
systems that we obtain in this way is the orbit of one fixed scattering system
under linear fractional transformations whose coefficient matrices are (J1, J2)-
unitary, where the choice of J1 depends on the setting (equal to

[
I 0
0 −I

]
in the

scattering case) and J2 =
[

I 0
0 −I

]
is the signature operator corresponding to

the fixed scattering system. A similar statement is also true for the transfer
functions of these systems (which in the scattering case are known under the
name scattering matrices).

We construct concervative, minimal optimal, minimal ∗-optimal, and bal-
anced passive realization of a given passive transfer function. All of these
realizations are unique up to unitary similarity. The balanced realization
is obtained by interpolating half-way between the minimal optimal and the
minimal ∗-optimal realization.

We pay special attention to the case where the transfer function is lossless
from one or two sides, connecting this property to the strong one-sided or two-
sided stability of the main semigroup of the simple conservative scattering
representation, and to the one-sided or two-sided strong conditional stability
of the simple conservative state/signal realization.

The presentation by D. Arov entitled “Reciprocal passive linear time-
invariant systems” is based on the technique developed here.

3


