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Åbo Akademi

Department of Mathematics
FIN-20500 bo, Finland
Olof.Staffans@abo.fi

http://www.abo.fi/˜staffans/

We develop the theory of reciprocal linear infinite-dimensional time-in-
variant scattering, impedance and transmission systems in discrete and con-
tinuous time. The transfer function F of such a system has the reciprocity
property F (z∗)∗ = JF (z)J , where J is a given signature operator, i.e, J is
both self-adjoint and unitary. (An alternative formulation involving involu-
tions is also avaliable.) In the case of a scattering or impedance system the
operator J can be taken to be the identity, but in the transmission case we
have neither J = I nor J = −I. It has been known for a long time that in the
finite-dimensional case such an ”external” reciprocity symmetry is equivalent
to the existence of a realization which has an analogous ”internal” symmetry.
Here we extend that result to passive systems with infinite-dimensional state
spaces.

In the scattering case we have the following result. Let F (z) be a scatter-
ing matrix of the Schur class S(U), i.e., F is an operator-valued contractive
holomorphic function, mapping U into itself, defined on Ω+ (which is either
the open unit disk D or the open right half-plane C+ depending on whether
we work in discrete or continuous time). In addition, suppose that F has
the reciprocity property F (z∗)∗ = F (z) for all z ∈ Ω+. Then it is possible to
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construct two special types of realizations of this scattering matrix, namely
simple conservative scattering and minimal balanced passive scattering real-
izations, that are similar to their adjoints with similarity operators that are
signature operators. In particular, the main operators of these two types of
internally reciprocal realizations are similar to their adjoints with signature
similarity operators. Both types of realizations are unique up to unitary sim-
ilarity. We get the balanced realization by interpolating half-way between a
minimal optimal and a minimal ∗-optimal realization.

Let us next discuss the discrete time impedance case the situation (as
an example of a typical non-scattering result). Let F be a function of the
Caratheodory-Herglotz class C(U) on the open unit disk D, i.e., F is an
operator-valued function defined on D with the property that F (z)+F (z)∗ ≥
0 on D. We realize this function as the transfer function of the discrete time
system

x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n),
(1)

i.e., F (z) = zC(I − zA)−1B + D for all z ∈ D. Here x takes its values in the
separable Hilbert space X (the state space), and u and y take their values
in U (the input/output space). We recall that the system (1) is (impedance)
conservative iff the operator A is unitary (i.e., A∗A = AA∗ = 1), C = B∗A,
and B∗B = D+D∗. It is simple iff it has no nontrivial subspace which is both
unobservable and unreachable. It is well-known that a simple conservative
realization of the function F always exists, ant that it is unique up to a
unitary similarity transformation in X.

We say that the system (1) is internally reciprocal if the system (1) is
similar to its adjoint and the similarity operator is a signature operator. In
other words, there exists a signature operator JX such that A∗ = JXAJX

and C∗ = JXB. It is easy to see that if the realization (1) is simple and
conservative, then it is internally reciprocal if it is externally reciprocal, i.e.,
F has the external reciprocity property F (z∗)∗ = F (z) for all z ∈ D.

At the next step we show that among all reciprocal simple impedance
conservative system (1) which realize a given reciprocal transfer function F
of the Caratheodory-Herglotz class C(U) there always exists a subclass which
has a particularly nice structure. In this subclass of realizations it is possible
to decompose X into X = Z ×X0 × Z in such a way that the operators A,
B, and JX have the following structural decomposition with respect to this
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splitting:

A =

A1 0 0
0 J0 0
0 0 A∗

1

 , B =

 B1

B0

A∗
1B1

 , JX =

0 0 I
0 J0 0
I 0 0

 ,

C =
[
B∗

1A1 B∗
0J0 B∗

1

]
.

Here A1 is a unitary operator in Z whose spectrum is contained in the closed
upper half-circle {z = eiϕ | 0 ≤ ϕ ≤ π} and which does not have ±1 as an
eigenvalue, J0 is a signature operator in X0, and

D + D∗ = 2B∗
1B1 + B∗

0B0.

This means that Σ can be written as a parallell connection of three inde-

pendent subsystems Σ+ =
[

A1 B1
B∗

1A1 D1

]
, Σ0 =

[
J0 B0
B∗

0 D0

]
, and Σ− =

[
A∗

1 A∗
1B1

B∗
1 D1

]
,

with state spaces Z, X0, and Z, respectively (and with D1 = 1
2
B∗

1B1 and
D0 = 1

2
(D − D∗ + B∗

0B0)). All of these three subsystems are minimal and
impedance conservative (but the full system need not be minimal).

Analogous results are obtained for other simple conservative sysstems in
discrete or continuous time (scattering, impedance, or transmission), and also
for minimal balanced passive systems. In particular, in the continuous time
scattering case we recover a class of system which has recently been studied
by Tucsnak and Weiss. In some of the cases the transfer functions are not
defined in the standard affine sense, but rather as formal quotients of pairs
of functions. In this way we can even treat transfer functions which are not
locally bounded or otherwise not well-defined in large parts of the complex
plane (including zero in the discrete time case and infinity in the continuous
time case). One particular case of such a transfer function is the constant
transfer function F (z) ≡ D, where D is a positive unbounded operator on
U .

Our proofs use the new notion of a state/signal node described in the pre-
sentation “Passive and conservative infinite-dimensional linear state/signal
systems” by O. Staffans.
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