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INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

Introduction to Computational Fluid Dynamics introduces all the primary com-
ponents for learning and practicing computational fluid dynamics (CFD). The
book is written for final year undergraduates and/or graduate students in me-
chanical, chemical, and aeronautical engineering who have undergone basic
courses in thermodynamics, fluid mechanics, and heat and mass transfer. Chap-
ters cover discretisation of equations for transport of mass, momentum, and
energy on Cartesian, structured curvilinear, and unstructured meshes; solution
of discretised equations, numerical grid generation, and convergence enhance-
ment. The book follows a consistent philosophy of control-volume formulation
of the fundamental laws of fluid motion and energy transfer and introduces a
novel notion of “smoothing pressure correction” for solution of flow equa-
tions on collocated grids within the framework of the well-known SIMPLE
algorithm.

There are over 50 solved problems in the text and over 130 end-of-chapter
problems. Practicing industry professionals will also find this book useful for
continuing education and refresher courses.

Professor Anil W. Date obtained his bachelor’s degree in mechanical engineer-
ing from Bombay University; his master’s degree in thermo-fluids from UMIST
Manchester, UK; and his doctorate in heat transfer from Imperial College of
Science and Technology, London. He has been a member of the Thermo-
Fluids-Engineering group of the Mechanical Engineering Department at 11T
Bombay since 1973. Over the past thirty years, he has taught courses at both
undergraduate and postgraduate level in thermodynamics, energy conversion,
heat and mass transfer, and combustion. He has been engaged in research and
consulting in thermo-fluids engineering and is an active reviewer of research
proposals and papers for various national and international bodies and journals.
He has been Editor for India of the Journal of Enhanced Heat Transfer and
has contributed research papers to several international journals in the field.
He has been a visiting scientist at Cornell University and a visiting professor
at the University of Karlsruhe, Germany. He has delivered seminar lectures at
universities in Australia, Hong Kong, Sweden, Germany, UK, USA, and India.
Professor Date derives great satisfaction from applying thermo-fluid science
to rural-technology problems in India and has taught courses in science, tech-
nology, and society and in appropriate technology at IIT Bombay. Professor
Date is a Fellow of the Indian National Academy of Engineering (FNAE).
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Nomenclature

Only major symbols are given in the following lists.

AE, AW, AN,
AS, AP, Sp, A, Coefficients in Discretised Equations

B Body Force (N/kg) or Spalding Number
c, Constant-Pressure Specific Heat (J/kg-K)
C, Constant-Volume Specific Heat (J/kg-K)
D Mass Diffusivity (m?/s)
e Turbulent Kinetic Energy or Internal Energy (J/kg)
f Fanning Friction Factor Based on Hydraulic Diameter
Gr Grashof Number
h Enthalpy (J/kg) or Heat Transfer Coefficient (W/m?-K)
k Thermal Conductivity (W/m-K)
M Molecular Weight or Mach Number
Nu Nusselt Number
P Peclet Number
P, Cell Peclet Number
Pr Prandtl Number
p Pressure (N/m?)
q Heat Flux (W/m?)
q”, Q" Internal Heat Generation Rates (W/m?)
R Residual or Gas Constant (J/kg-mol-K)
Re Reynolds Number
S, Su Source Term
Sc Schmidt Number
St Stanton or Stefan Number
T Temperature (°C or K)
Time (s)
U, v, w x-, y-, z-Direction Velocities (m/s)

xiii
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NOMENCLATURE

Velocity in x;,i = 1, 2, 3 Direction
Volume (m?)

Greek Symbols

> L T T AT/ EN D>

> qQ >

T

Subscripts
PN,S,E, W
n,s,e,w
eff

f

1

m

S

sm

sup

T

Xi

Superscripts

/
0
u,v

Under relaxation Factor or Thermal Diffusivity (m?/s)
Under relaxation Factor for Pressure or

Coefficient of Volume Expansion (K1)

Boundary Layer Thickness (m)

Incremental Value

Turbulent Energy Dissipation Rate (m?/s?)

Stream Function or Weighting Factor

General Variable or Dimensionless Enthalpy
General Exchange Coefficient =, pD, ork/Cp
Constant in the Logarithmic Law of the Wall
Dynamic viscosity (N-s/m?)

Kinematic Viscosity (m?%/s)

Species Mass Fraction or Dimensionless Coordinate
Density (kg/m?)

Second Viscosity Coefficient or Latent Heat (J/kg)
Multiplier of p — p

Normal Stress (N/m?)

Dimensionless Temperature

Shear Stress (N/m?) or Dimensionless Time

Refers to Grid Nodes

Refers to Cell Faces

Refers to Effective Value

Refers to Cell Face

Liquid or Liquidus

Refers to Mass Conservation, Mixture, or Melting Point
Solid or Solidus

Refers to Smoothing

Superheated

Transferred Substance State
Refers to x;,i = 1, 2, 3 directions

Iteration Counter
Old Time
Refers to Momentum Equations



NOMENCLATURE XV

Acronyms

1D

2D

3D

ADI
CDS
CFD
CG
CONDIF
DNS
GMRES
GS

HDS
HRE
I0CV
LHS
LRE

LU
ODE
PDE
POWER
RHS
SIMPLE
TDMA
TSE
TVD
UDS

Multidimensional Average
Correction

One-Dimensional

Two-Dimensional

Three-Dimensional

Alternating Direction Implicit

Central Difference Scheme

Computational Fluid Dynamics

Conjugate Gradient Method

Controlled Numerical Diffusion with Internal Feedback
Direct Numerical Simulation

Generalised Minimal Residual Method
Gauss—Seidel Method

Hybrid Difference Scheme

High Reynolds Number Model

Integration over a Control Volume Method
Left-Hand Side

Low Reynolds Number Model
Lower-Upper Decomposition

Ordinary Differential Equation

Partial Differential Equation

Power-Law Scheme

Right-Hand Side

Semi-Implicit Method for Pressure Linked Equations
Tridiagonal Matrix Algorithm

Taylor Series Expansion Method

Total Variation Diminishing

Upwind Difference Scheme






Preface

During the last three decades, computational fluid dynamics (CFD) has emerged as
an important element in professional engineering practice, cutting across several
branches of engineering disciplines. This may be viewed as a logical outcome
of the recognition in the 1950s that undergraduate curricula in engineering must
increasingly be based on engineering science. Thus, in mechanical engineering
curricula, for example, the subjects of fluid mechanics, thermodynamics, and heat
transfer assumed prominence.

I began my teaching career in the early 1970s, having just completed a Ph.D. de-
gree that involved solution of partial differential equations governing fluid motion
and energy transfer in a particular situation (an activity not called CFD back then!).
After a few years of teaching undergraduate courses on heat transfer and postgrad-
uate courses on convective heat and mass transfer, I increasingly shared the feeling
with the students that, although the excellent textbooks in these subjects empha-
sised application of fundamental laws of motion and energy, the problem-solving
part required largely varied mathematical tricks that changed from one situation to
another. I felt that teachers and students needed a chance to study relatively more
real situations and an opportunity to concentrate on the physics of the subject. In
my reckoning, the subject of CFD embodies precisely this scope and more.

The introduction of a five-year dual degree (B.Tech. and M.Tech.) program at IIT
Bombay in 1996 provided an opportunity to bring new elements into the curriculum.
I took this opportunity to introduce a course on computational fluid dynamics and
heat transfer (CFDHT) in our department as a compulsory course in the fourth
year for students of the thermal and fluids engineering stream. The course, with an
associated CFDHT laboratory, has emphasised relearning fluid mechanics and heat
and mass transfer through obtaining numerical solutions. This, of course, contrasts
with the analytical solutions learnt in earlier years of the program. Through teaching
of this CFDHT course, I discovered that this relearning required attitudinal change
on the part of the student. Thus, for example, the idea that al/ 1D conduction
problems (steady or unsteady, in Cartesian, cylindrical, or spherical coordinates,
with constant or variable properties, with or without area change, with or without

Xvii
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internal heat generation, and with linear or nonlinear boundary conditions) in a
typical undergraduate textbook can be solved by a single computer program based
on a single method is found by the students to be new. Similarly, the idea that
a numerical instability in an unsteady conduction problem essentially represents
violation of the second law of thermodynamics is found to be new because no book
on numerical analysis treats it as such. Nothing encourages a teacher to write a book
more than the discomfort expressed by the students. At the same time, it must be
mentioned that when a student succeeds in writing a generalised computer program
for 1D conduction in the laboratory part of the course through struggles of where
and how do I begin, of debugging, of comparing numerical results with analytical
results, of studying effects of parametric variations, and of plotting of results, the
computational activity is found to be both enlightening and entertaining.

I specifically mention these observations because, although there are a number
of books bearing the words Computational Fluid Dynamics in their titles, most em-
phasise numerical analysis (a branch of applied mathematics). Also, most books, it
would appear, are written for researchers and cover a rather extended ground but are
usually devoid of exercises for student learning. In my reckoning, the most notable
exception to such a state of affairs is the pioneering book Numerical Heat Trans-
fer and Fluid Flow written by Professor Suhas V. Patankar. The book emphasises
control-volume discretisation (the main early step to obtaining numerical solutions)
based on physical principles and strives to help the reader to write his or her own
computer programs.

It is my pleasure and duty to acknowledge that writing of this book has been
influenced by the works of two individuals: Professor D. B. Spalding (FRS, formerly
at Imperial College of Science and Technology, London), who unified the fields of
heat, mass, and momentum transfer, and Professor S. V. Patankar (formerly at
University of Minnesota, USA), who, through his book, has made CFD so lucid
and SIMPLE.! If the readers of this book find that I have mimicked writings of these
two pioneers from which several individuals (teachers, academic researchers, and
consultants) and organisations have benefited, I would welcome the compliment.

I have titled this book as Introduction to Computational Fluid Dynamics for two
reasons. Firstly, the book is intended to serve as a textbook for a student uninitiated in
CFD but who has had exposure to the three courses mentioned in the first paragraph
of this preface at undergraduate and postgraduate levels. In this respect, the book
will also be found useful by teachers and practicing engineers who are increasingly
attracted to take refresher courses in CFD. Secondly, CFD, since its inception,
has remained an ever expanding field, expanding in its fundamental scope as well
as in ever new application areas. Thus, turbulent flows, which are treated in this
book through modelling, are already being investigated through direct numerical
simulation (DNS). Similarly, more appropriate constitutive relations for multiphase

! The reader will appreciate the significance of capital letters in the text.
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flow or for a reacting flow are being explored through CFD. Newer application areas
such as heat and mass transfer in biocells are also beginning to be explored through
CFD. Such areas are likely to remain more at the research level than to be part
of regular practice and, therefore, a student, over the next few years at least, may
encounter them in research at a Ph.D. level. It is my belief that the approach adopted
in this book will provide adequate grounding for such pursuits.

Although this is an introductory book, there are some departures and basic novel-
ties to which it is important to draw the reader’s attention. The first of these concerns
the manner in which the fundamental equations of motion (the Navier—Stokes equa-
tions) are written. Whereas most textbooks derive or write these equations for a
continuum fluid, it is shown in the first chapter of this book that since numerical
solutions are obtained in discretised space, the equations must be written in such a
way that they are applicable to both the continuum as well as the discretised space.
Attention is also drawn to use of special symbols that the reader may find not in
common with other books on CFD. Thus, a mass-conserving pressure correction is
given the symbol p/ to contrast with the two other pressure corrections, namely, the
total pressure correction p’ and the smoothing pressure correction p( . Similarly,
the velocities appearing at the control-volume faces are given the symbol us; to
contrast with those that appear at the nodal locations, which are referred to as u;.
Again, in a continuum, the two velocity fields must coincide but, in a discretised
space, distinction between them preserves clarity of the physics involved. Novelty
will also be found in the discussion of physical principles behind seemingly mathe-
matical activity governing the topics of numerical grid generation and convergence
enhancement. It is not my claim that the entire material of the book can be covered
in a single course on CFD. It is for this reason that 1D formulations are empha-
sised through dedicated chapters. These formulations convey most of the essential
ingredients required in CFD practice.

The ambience of academic freedom, the variety of facilities and the friendly
atmosphere on the campus of IIT Bombay has contributed in no small measure to
this solo effort at book writing. I am grateful to my colleagues for their coopera-
tion in many matters. I am particularly grateful for having had the association of
a senior colleague like Professor S. P. Sukhatme (FNA, FNAE, former Director,
IIT Bombay). It has been a learning experience for me to observe him carry out a
variety of roles (including as writer of two well-received textbooks on heat transfer
and solar energy) in our institute with meticulous care. Hopefully, some rub-off is
evident in this book. [ have also gained considerably from my Ph.D. and M. Tech. stu-
dents who through their dissertations have helped validate the computer programs
I wrote.

I would like to express my special gratitude to Mr. Peter Gordon, Senior Editor
(Aeronautical, Biomedical, Chemical, and Mechanical Engineering), Cambridge
University Press, New York, for his considerable advice and guidance during prepa-
ration of the manuscript for this book.
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Finally, I would like to record my appreciation of my wife Suranga, son
Kartikeya, and daughter Pankaja (Pinky) for bearing my absence on several week-
ends while writing this book.

Mumbai
June 2004 Anil W. Date



1 Introduction

1.1 CFD Activity

Computational fluid dynamics (CFD) is concerned with numerical solution of dif-
ferential equations governing transport of mass, momentum, and energy in moving
fluids. CFD activity emerged and gained prominence with availability of com-
puters in the early 1960s. Today, CFD finds extensive usage in basic and applied
research, in design of engineering equipment, and in calculation of environmental
and geophysical phenomena. Since the early 1970s, commercial software packages
(or computer codes) became available, making CFD an important component of
engineering practise in industrial, defence, and environmental organizations.

For a long time, design (as it relates to sizing, economic operation, and safety) of
engineering equipment such as heat exchangers, furnaces, cooling towers, internal
combustion engines, gas turbine engines, hydraulic pumps and turbines, aircraft
bodies, sea-going vessels, and rockets depended on painstakingly generated empir-
ical information. The same was the case with numerous industrial processes such
as casting, welding, alloying, mixing, drying, air-conditioning, spraying, environ-
mental discharging of pollutants, and so on. The empirical information is typically
displayed in the form of correlations or tables and nomograms among the main
influencing variables. Such information is extensively availed by designers and
consultants from handbooks [55].

The main difficulty with empirical information is that it is applicable only to
the limited range of scales of fluid velocity, temperature, time, or length for which
it is generated. Thus, to take advantage of economies of scale, for example, when
engineers were called upon to design a higher capacity power plant, boiler furnaces,
condensers, and turbines of ever higher dimensions had to be designed for which
new empirical information had to be generated all over again. The generation of
this new information was by no means an easy task. This was because the informa-
tion applicable to bigger scales had to be, after all, generated via laboratory-scale
models. This required establishment of scaling laws to ensure geometric, kinematic,
and dynamic similarities between models and the full-scale equipment. This activity
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required considerable experience as well as ingenuity, for it is not an easy matter
to simultaneously maintain the three aforementioned similarities. The activity had
to, therefore, be supported by flow-visualization studies and by simple (typically,
one-dimensional) analytical solutions to equations governing the phenomenon un-
der consideration. Ultimately, experience permitted judicious compromises. Being
very expensive to generate, such information is often of a proprietary kind. In more
recent times, of course, scaling difficulties are encountered in the opposite direction.
This is because electronic equipment is considerably miniaturised and, in mate-
rials processing, for example, the more relevant phenomena occur at microscales
(even molecular or atomic scales where the continuum assumption breaks down).
Similarly, small-scale processes occur in biocells.

Clearly, designers need a design tool that is scale neutral. The tool must be
scientific and must also be economical to use. An individual designer can rarely, if
atall, acquire or assimilate this scale neutrality. Fortunately, the fundamental laws of
mass, momentum, and energy, in fact, do embody such scale-neutral information.
The key is to solve the differential equations describing these laws and then to
interpret the solutions for practical design.

The potential of fundamental laws (in association with some further empiri-
cal laws) for generating widely applicable and scale-neutral information has been
known almost ever since they were invented nearly 200 years ago. The realisation
of this potential (meaning the ability to solve the relevant differential equations),
however, has been made possible only with the availability of computers. The past
five decades have witnessed almost exponential growth in the speed with which
arithmetic operations can be performed on a computer.

By way of reminder, we note that the three laws governing transport are the
following:

1. the law of conservation of mass (transport of mass),
2. Newton’s second law of motion (transport of momentum), and
3. the first law of thermodynamics. (transport of energy).

1.2 Transport Equations

The aforementioned laws are applied to an infinitesimally small control volume
located in a moving fluid. This application results in partial differential equations
(PDEs) of mass, momentum and energy transfer. The derivation of PDEs is given in
Appendix A.! Here, it will suffice to mention that the law of conservation of mass is
written for a single-component fluid or for a mixture of several species. When ap-
plied to a single species of the mixture, the law yields the equation of mass transfer
when an empirical law, namely, Fick’s law of mass diffusion (m = — p D dw/0x;),

' The reader is strongly advised to read Appendix A to grasp the main ideas and the process of
derivations.



1.2 TRANSPORT EQUATIONS

is invoked. Newton’s second law of motion, combined with Stokes’s stress laws,
yields three momentum equations for velocity in directions x; (j =1, 2, 3). Similarly,
the first law of thermodynamics in conjunction with Fourier’s law of heat conduction
(gi.cond = —K 0T /0x;) yields the so-called energy equation for the transport of tem-
perature T or enthalpy /4. Using tensor notation, we can state these laws as follows:

Conservation of Mass for the Mixture
00m  0(pmu;

—_— 0, 1.1
ot 8xj ( )
Equation of Mass Transfer for Species k
d d ; 0 0
(Pm @r) n (pmujor) 0 . Do 2% | 4 R, (12)
8t 8Xj an 8xj

Momentum Equations u; (i =1, 2, 3)

0(pmu;)  O(pmuju;) 0 |: 3“1} ap
+ = | et |~
8XJ' ax,-

ot axj ij

+omBi+ S, (13)

Energy Equation - Enthalpy Form

0pmh)  Hpmujh) 9 | ke O
at dx;  9x; | Cpm 0x;

} + Q/// , (1 4)
where enthalpy 7 = Cj,i, (T — Ter), and

Energy Equation — Temperature Form

0pmT) | Opmu; T) _ 9 [ﬁ £}+ 0" (1.5)

ot Bx_,- 8x_,- Cpm E)xj Cpm‘

In these equations, the suffix m refers to the fluid mixture. For a single-
component fluid, the suffix may be dropped and the equation of mass transfer
becomes irrelevant. Similarly, the suffix eff indicates effective values of mass dif-
fusivity D, viscosity u, and thermal conductivity k. In laminar flows, the values
of these transport properties are taken from property tables for the fluid under
consideration. In turbulent flows, however, the transport properties assume values
much in excess of the values ascribed to the fluid; moreover, the effective transport
properties turn out to be properties of the flow [39], rather than those of the fluid.

From the point of view of further discussion of numerical methods, it is indeed
a happy coincidence that the set of equations [(1.1)—(1.5)] can be cast as a single
equation for a general variable ®. Thus,

Nom®)  dpmu; @ d I
(P ®) | omit; O) _ [Feﬁa—i|+S<I>-

(1.6)

8t ax]' axj

Xj
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Table 1.1: Generalised representation of transport equations.

Equation P Tt (exch. coef.) Ss (net source)

1.1 1 0 0

1.2 on Om Der Ry

1.3 uj Meff —0dp/ox; + pm B; + Su,-
1.4 h kefi / Cpm Q"

1.5 T ket / Cpm 0"/ Cpm

The meanings of ['er and S¢ for each @ are listed in Table 1.1. Equation 1.6 is
called the transport equation for property ®. The rate of change (or time derivative)
term is to be invoked only when a transient phenomenon is under consideration.
The term p, @ denotes the amount of extensive property available in a unit volume.
The convection (second) term accounts for transport of ® due to bulk motion. This
first-order derivative term is relatively uncomplicated but assumes considerable
significance when stable and convergent numerical solutions are to be economically
obtained. This matter will become clear in Chapter 3. Both the transient and the
convection terms require no further modelling or empirical information.

The greatest impediment to obtaining physically accurate solutions is offered by
the diffusion and the net source (S') terms because both these terms require empirical
information. In laminar flows, the diffusion term represented by the second-order
derivative offers no difficulty because I', being a fluid property, can be accurately
determined (via experiments) in isolation of the flow under consideration. In tur-
bulent (or transitional) flows, however, determination of "¢+ requires considerable
empirical support. This is labelled as turbulence modelling. This extremely com-
plex phenomenon has attracted attention for over 150 years. Although turbulence
models of adequate generality (at least, for specific classes of flows) have been pro-
posed, they by no means satisfy the expectations of an equipment designer. These
models determine I".¢r from simple algebraic empirical laws. Sometimes, e is also
determined from other scalar quantities (such as turbulent kinetic energy and/or its
dissipation rate) for which differential equations are constituted. Fortunately, these
equations often have the form of Equation 1.6.

The term net source implies an algebraic sum of sources and sinks of ®. Thus,
in a chemically reacting flow (combustion, for example), a given species k£ may
be generated via some chemical reactions and destroyed (or consumed) via some
others and R; will comprise both positive and negative contributions. Also, some
chemical reactions may be exothermic, whereas others may be endothermic, making
positive and negative contributions to Q. Similarly, the term B; in the momentum
equations may represent a buoyancy force, a centrifugal and/or Coriolis force, an
electromagnetic force, etc. Sometimes, B; may also represent resistance forces.
Thus, in a mixture of gas and solid particles (as in pulverised fuel combustion), B;
will represent the drag offered by the particles on air, or, in a fluid flow through a
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densely filled medium (a porous body or a shell-and-tube geometry), the resistance
will be a function of the porosity of the medium. Such empirical resistance laws are
often determined from experiments. The S, terms represent viscous terms arising
from Stokes’s stress laws that are not accounted for in the BLx, [1eetr g%] term in
Equation 1.3.

1.3 Numerical Versus Analytical Solutions

Analytical solutions to our transport equations are rarely possible for the following
reasons:

1. The equations are three-dimensional.

2. The equations are strongly coupled and nonlinear.

3. In practical engineering problems, the solution domains are almost always
complex.

The equations, however, can be made amenable to analytical solutions when
simplified through assumptions. In a typical undergraduate program, students de-
velop extensive familiarity with such analytical solutions that can be represented
in closed form. Thus, in a fluid mechanics course, for example, when fully devel-
oped laminar flow in a pipe is considered, a student is readily able to integrate the
simplified (one-dimensional) momentum equation to obtain a closed-form solution
for the streamwise velocity u as a function of radius ». The assumptions made are
as follows: The flow is steady and laminar, it is fully developed, it is axisymmetric,
and fluid properties are uniform. The solution is then interpreted to yield the scale-
neutral result /' x Re = 16. The friction factor f'is a practically useful quantity
that enables calculation of pumping power required to force fluid through a pipe.
Similarly, in a heat transfer course, a student learns to calculate reduction of heat
transfer rate when insulation of a given thickness is applied to a pipe. In this case,
the energy equation is simplified and the assumptions are as follows: Heat transfer is
radial and axi symmetric, steady state prevails, and the insulation conductivity may
be constant and there is no generation or dissipation of energy within the insulation.

In both these examples, the equations are one dimensional. They are, there-
fore, ordinary differential equations (ODEs), although the original transport equa-
tions were PDEs. In many situations, in spite of the assumptions, the governing
equations cannot be rendered one dimensional. Thus, the equations of a steady,
two-dimensional velocity boundary layer or that of one-dimensional unsteady heat
conduction are partial differential equations. It is important to recognise, how-
ever, that there are no direct solutions to partial differential equations. To obtain
solutions, the PDEs are always first converted to ODEs (usually more in number
than the original PDEs) and the latter are solved by integration. Thus, in an un-
steady conduction problem, the ODEs are formed by the method of separation of
variables, whereas, for the two-dimensional velocity boundary layer, the ODE is
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formed by invoking a similarity variable. In such circumstances, often the solution
is in the form of a series. We assume, of course, that the reader is familiar with the
restrictive circumstances (often of significant practical consequence) under which
such analytical solutions are constructed.

Analytical solutions obtained in the manner described here are termed exact
solutions. They are applicable to every point of the time and/or space domain. The
solutions are also called continuous solutions. All the aforementioned solutions are
well covered in an undergraduate curriculum and in textbooks (see, for example,
[34, 80, 88]).

Unlike analytical solutions, numerical solutions are obtained at a few chosen
points within the domain. They are therefore called discrete solutions. Numerical
solutions are obtained by employing numerical methods. The latter are really an
intermediary between the physics embodied in the transport equations and the
computers that can unravel them by generating numerical solutions. The process
of arriving at numerical solutions is thus quite different from the process by which
analytical solutions are developed.

Before describing the essence of numerical methods, it is important to note
that these methods, in principle, can overcome all three aforementioned imped-
iments to obtaining analytical solutions. In fact, the history of CFD shows that
numerical methods have been evolved precisely to overcome the impediments in
the order of their mention. Thus, the earliest numerical methods dealt with one-
dimensional equations for which analytical solutions may or may not be possible.
Methods for two-dimensional transport equations, however, had to incorporate sub-
stantially new features. In spite of these new features, many methods applicable to
two-dimensional coupled equations could not be extended to three-dimensional
equations. Similarly, the earlier methods were derived for transport equations cast
in only orthogonal co-ordinates (Cartesian, cylindrical polar, or spherical). Later,
however, as computations over complex domains were attempted, the equations
were cast in completely arbitrary curvilinear (&1, &, &;) coordinates. This led to
development of an important branch of CFD, namely, numerical grid generation.
With this development, domains of arbitrary shape could be mapped such that
the coordinate lines followed the shape of the domain boundary. Today, complex
domains are mapped by yet another development called unstructured mesh gener-
ation. In this, the domain can be mapped by a completely arbitrary distribution of
points. When the points are connected by straight lines, one obtains polygons (in
two dimensions) and polyhedra (in three dimensions). Several methods (as well as
packages) for unstructured mesh generation are now available.

1.4 Main Task

It is now appropriate to list the main steps involved in arriving at numerical solutions
to the transport equation. To enhance understanding, an example of an idealised
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Figure 1.1. Typical two-dimensional domain.

combustion chamber of a gas-turbine engine will be considered.

1.

Given the flow situation of interest, define the physical (or space) domain of
interest. In unsteady problems, the time domain is imagined. Figure 1.1 shows
the domain of interest of the idealised chember. Fuel and air streams, separated
by a lip wall, enter the chamber at the inflow boundary. The cross section of the
chamber is taken to be a perfect circle so that a symmetry boundary coinciding
with the axis is readily identified. The enclosing wall is solid and the burnt
products of combustion leave through the exit boundary. Because the situation
is idealised as a two-dimensional axisymmetric domain that will involve fluid
recirculation, there are four boundaries of interest: inflow, wall, symmetry, and
exit.

Select transport equations with appropriate diffusion and source laws. Define
boundary conditions on segments of the domain boundary for each variable ®.
Also, define the fluid properties. The boundary segments have already been iden-
tified in Figure 1.1. Now, since air and fuel mix and react chemically, equations
for ® = u,, uy, us (swirl velocity), T or 4, and several mass fractions w; must be
solved. The choice of w; will of course depend on the reaction model postulated
by the analyst. Further, additional equations must be solved to capture effects
of turbulence via a turbulence model. This matter will become clear in later
chapters.

Select points (called nodes) within the domain so as to map the domain with a
grid. Construct control volumes around each node. In Figure 1.2, the domain of
interest is mapped by three types of grids: Cartesian, Curvilinear, and Unstruc-
tured. The hatched portions show the control volumes and the filled circles are
the nodes. Note that in the Cartesian grids, the control volumes near the slanted
wall are not rectangular as elsewhere. This type of difficulty is overcome in the
curvilinear grids where all control volumes are quadrilaterals and the grid lines
follow the contours of the domain boundary as required. The unstructured grid is
completely arbitrary. Although most control volumes are triangular, one can also
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Figure 1.2. Different types of grlds.

have polygons of any number of sides. This activity of specifying coordinates
of nodes and of specification of control volumes is called grid generation.

4. Integrate Equation 1.6 over a typical control volume so as to convert the partial
differential equation into an algebraic one. This is unlike the analytical solutions
in which the original PDEs are converted to ordinary ones. Thus, if there are
NV variables of interest and the number of nodes chosen is N P, one obtains
a set of NV x NP algebraic equations. The process of converting PDEs into
algebraic equations is called discretisation.

5. Devise a numerical method to solve the set of algebraic equations. This can be
done sequentially, so that N P equations are solved for each ® in succession. Al-
ternatively, one may solve the entire set of NV x N P equations simultaneously.
The construction of the overall calculation sequence is called an algorithm.

6. Devise a computer program to implement the numerical method on a computer.
Different numerical methods require different amounts of computer storage and
different amounts of computer time to arrive at a solution. Aspects such as
economy in terms of number of arithmetic operations, convergence rate, and
stability of the numerical method are thus important.
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7. “Interpret the solution:” The numerical solution results in values of each &
at each node. Such a @ field provides the distribution of ® over the domain.
The task now is to interpret the solution to retrieve quantities of engineering
interest such as the friction factor, a Nusselt number at the wall, or average
concentrations of CO, fuel, and NO, at the exit from a combustion chamber.
Sometimes the field may be curve-fitted to take the appearance of an analytical
solution. Similarly, the derived quantities may also be curve-fitted to take the
appearance of an experimentally derived correlation for ready use in further
design work.

8. “Display of results:” Since a numerical solution is obtained at discrete points,
the solution comprises numbers that can be printed in tabular forms. The in-
convenience of reading numbers can be circumvented by plotting results on a
graph or by displaying the @ fields by means of contour or vector plots. Fortu-
nately, such graphic displays can now be made using computers. This activity
is called postprocessing of results. The commercial success of computer codes
often depends on the quality and flexibility of their postprocessors.

The primary focus of this book is to explain procedures for executing these
steps. Computer code developers and researchers adopt a variety of practices to
implement the procedures depending on their background, familiarity, and notions
of convenience. Clearly biases are involved.

In this book, emphasis is laid on physical principles. In fact, the attitude is one
of relearning fluid mechanics and heat and mass transfer by obtaining numerical
(as opposed to restrictive analytical) solutions. The book is not intended to provide
a survey of all numerical methods; rather, the objective is to introduce the reader
to a few specific methods and procedures that have been found to be robust in a
wide variety of situations of a specific class. The emphasis is on skill development,
skills required for problem formulation, computer code writing, and interpretation
of results.

1.5 A Note on Navier-Stokes Equations

The law of conservation of mass for the bulk fluid together with Newton’s second
law of motion constitutes the main laws governing fluid motion. As shown in
Appendix A, the equations of motion are written in differential form and, therefore,
assume existence of a fluid continuum. In this section, attention is drawn to an
often overlooked requirement that assumes considerable importance in the context
of CFD in which numerical solutions are obtained at discrete points rather than at
every point in space as in a continuum.

Attention is focussed primarily on the normal stress expressions given in
Appendix A (see Equations A.15). As presented in Schlichting [65], the normal
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stresses are given by

u
0x=—p+o;=—p+q+rxx=—p+q+2u5, (1.7)
1 v
0y=—P+0y=—P+Q+Tyy=—p+q+2M5, (1.8)
l Jw
Uz:—P+Uz:—P+Q+Tzz=—p—i—q—i—ZME. (19)

In these normal stress expressions, o’ is called the deviotoric stress and the
significance of quantity ¢ in its definition requires elaboration. Schlichting [65]
and Warsi [86], for example, define a space-averaged pressure p as

1
ﬁ:—g(ax—i—ay—l—az). (1.10)

Now, an often overlooked requirement of the Stokes’s relations is that, in a
continuum, p must equal the point value of pressure p and the latter, in turn, must
equal the thermodynamic pressure py,. Thus,

_ 2
pzpzpmzp—q—guv-lﬂ (L.11)

In the context of this requirement, we now consider different flow cases to derive
the significance of ¢.

1. Case 1 (V = 0): In this hydrostatic case,

P=p—q. (1.12)

But in this case, p can only vary linearly with x, y, and z and, therefore, the point
value of p exactly equals its space-averaged value p in both continuum as well
as discretised space and hence ¢ = 0 exactly.

2. Case2(u =0orvy - V = 0): Clearly when p = 0 (inviscid flow) or 7. V = 0
(constant-density incompressible flow) Equation 1.12 again holds. But, in this
case, since fluid motion is considered, p can vary arbitrarily with x, y, and z
and, therefore, p may not equal p in a discrete space. To understand this matter,
consider a case in which pressure varies arbitrarily in the x direction, whereas
its variation in y and z directions is constant or linear (as in a hydrostatic case).
Such a variation is shown in Figure 1.3. Now consider a point P. According to
Stokes’s requirement pp must equal pp in a continuum. However, in a discretised
space, the values of pressure are available at points E and W only, and if these
points are equidistant from P then pp = 0.5 (pw + pgr). Now, this pp will not
equal pp, as seen from the figure, and therefore the requirement of the Stokes’s
relations is not met.

However, without violating the continuum requirement, we may set

g =nr(p—p), (1.13)
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Figure 1.3. One-dimensional variation of pressure and stokes’s requirement.

where A; is an arbitrary constant. In most textbooks, where a continuum is
assumed, A is trivially set to zero.

3. Case 3 (u £ 0 and v/ - V' £ 0): This case represents either compressible flow
where density is a function of both temperature and pressure or incompressible
flow with temperature-dependent density. Thus,

_ 2

p=p—<q+§uv-V)- (1.14)
In this case, Stokes’s requirement will be satisfied if we set

g=mp-p+rv-V, (1.15)

where A is the well-known second viscosity coefficient whose value is set
to — (2/3)u even in a continuum.

It is instructive to note the reason for setting A = —(2/3) . For, if this were not
done, it would amount to

(1= (p=P) v -V=(A+§u> (v Y. (1.16)

Clearly, therefore, the system will experience dissipation (or reversible work
done at finite rate since v/ - V' is associated with the rate of volume change) even
in an isothermal flow [65, 86]. This is, of course, highly improbable.?

Thus, the Stokes’s relations require modifications in a continuum when com-
pressible flow is considered, and a physical explanation for this modification can
be found from thermodynamics. Now, the same interpretation can be afforded to
the A; (p — p) part of ¢ in Equation 1.13 or 1.15. This term represents a necessary
modification in a discretised space. This is an important departure from the forms
of normal stress expressions given in standard textbooks on fluid mechanics. It will
be shown in Chapter 5 that recognition of the need to include this term is central to
prediction of smooth pressure distributions via CFD in discrete space [17].

2 Schlichting [65] shows this improbability by considering the case of an isolated sphere of a com-
pressible isothermal gas subjected to uniform normal stress. Now if X is not set to — (2 / 3) u, the
gas will undergo oscillations.
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Before leaving this section, it is important to note that since p must equal p
in a continuum (see Equation 1.11), the former must essentially be the hydrostatic
pressure, irrespective of the flow considered. Mathematically, therefore, we may
define p as

B 1 |
p=—§(0x+oy+oz)=g(px+py+pz), (1.17)

where P, is a solution to 3% p/dx2 = 0, D, 1s a solution to 02p/dy? =0, and p, is
a solution to 9% p/9z%> = 0.

In effect, therefore, the equations of motion (also called the Navier—Stokes
equations) valid for both continuum and discrete space must read as

% _ _a(p -q) + 0Txx + 8Tyx + 0Ty

_ , 118
Y ox ox | ay | oz (1.18)
Dv op—q) 0t 01, 0T
v , 1.19
Y o ax oy ez (1.19)
Dw 0 — afz 8'L'z 8":zz
o _ (p Q)+ vz oy Oz (1.20)

Dt 0z 0x ay 9z’

where ¢ is given by Equation 1.13 for incompressible (viscous or inviscid) flow and
by Equation 1.15 for compressible flow. In spite of this recognition, the equations
are further discussed (in conformity with standard textbooks) for a continuum only
with A; = 0, but the existence of finite 1| will be discovered in Chapter 5 where
solutions in discrete space are developed.

1.6 Outline of the Book

The book is divided into nine chapters. Chapter 2 deals with one-dimensional (1D)
conduction in steady and unsteady forms. In this chapter, the main ingredients of a
numerical procedure are elaborately introduced so that familiarity is gained through
very simple algebra. Chapter 3 deals with the 1D conduction—convection equation.
This somewhat artificial equation is considered to inform the reader about the nature
of difficulty introduced by convection terms. The cures for the difficulty developed
in this chapter are used in all subsequent chapters dealing with solution of transport
equations.

Chapter 4 deals with convective transport through boundary layers. This is an
important class of flows encountered in fluid dynamics and heat and mass transfer.
The early CFD activity relied heavily on solution of two-dimensional (2D) parabolic
equations (a subset of the complete transport equations) appropriate to boundary
layer flows. In this chapter, issues of grid adaptivity and turbulence modelling are
introduced for external wall boundary layers and free-shear layers and for internal
(ducted) boundary layer development.
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Chapter 5 deals with solution of complete transport equations on Cartesian grids.
Only 2D flow situations that may involve regions of fluid recirculation are consid-
ered. The transport equations now take the elliptic form. In essence, this chapter
introduces all ingredients required to understand CFD practice. In this sense, the
chapter provides a firm foundation for development of solution procedures employ-
ing curvilinear and unstructured grids. The latter developments are described in
Chapter 6.

Chapters 7-9 deal with special topics in CFD. In Chapter 7, the reader is in-
troduced to the topic of phase change. In engineering practice, heat and mass
transfer are often accompanied by solid-to-liquid, liquid-to-vapour, and/or solid-to-
vapour (and vice versa) transformations. This chapter, however, deals only with
solidification/melting phenomena in one dimension to develop understanding of
the main difficulties associated with obtaining numerical solutions. Chapter 8 deals
with the topic of numerical grid generation and methods for curvilinear and unstruc-
tured grid generation are introduced. Finally, in Chapter 9, methods for enhancing
the rate of convergence of iterative numerical procedures are introduced.

There are three appendices. Appendix A provides the derivation of the transport
equations. In Appendix B, a computer code for solving 1D conduction problems is
given. This code is based on material of Chapter 2. Appendix C provides a computer
code for 2D conduction—convection problems in Cartesian coordinates. This code
is based on material of Chapter 5. Familiarity with the use of these codes, it is
hoped, will provide readers with sufficient exposure to enable development of their
own codes for boundary layer flows (Chapter 4) , for employing curvilinear and
unstructured grids (Chapter 6), for phase change (Chapter 7), and for numerical
grid generation (Chapter 8).

At the end of each chapter, exercise problems are given to enhance learning.
Also, in each chapter, sample problems are solved and results are presented to aid
their interpretation.

EXERCISES

1. Express full forms of the S, terms in Equation 1.3 for i = 1, 2, and 3. Show
that if « and p are constant then, for an incompressible fluid, S,, = 0.

2. Consider Equations 1.1-1.5. Assuming SI units, verify that units of each term
in a given equation are identical.

3. Show that summing of each term in Equation 1.2 over all species of the mixture
results in the mass conservation equation (1.1) for the mixture.

4. Consider the plug-flow thermo-chemical reactor (PFTCR) shown in Figure 1.4.
To analyse such a reactor, the following assumptions are made: (a) All s vary
only along the length (say, x) of the reactor. (b) Axial diffusion and conduction

13
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Figure 1.4. Schematic of a plug-flow reactor.

are neglected. (c) Heat (q,, W/m?), mass (N, kg/m?-s), and work (Wey W/m?)
through the reactor walls may be present. (d) The cross-sectional area 4 and
perimeter P vary with x.

Following the practice adopted in Appendix A, apply the fundamental laws
to a control volume 4 Ax. Hence, show that

d an
4%Pm LI _ NP (Bulk Mass)
ot ax
d A d
y (Pm 1) N Oiu) _ 42 (Nyu—1,)P (Momentum),
dt dx dx
0 a(n
y (om @) . o) _ Red  (Species),
ot dx
a(,Om h) a(m h) " 1 bp u2
y — (0" — We) A+ A—— £+ Ny P =
o T @ o) A+ At NP

+(qw + Nwhyw) P (Energy),
where m = p, A u and hy, is the specific enthalpy of the injected fluid.

5. Consider the well-stirred thermo-chemical reactor (WSTCR) shown in Fig-
ure 1.5. A WSTCR may be likened to a stubby PFTCR having fixed volume
Vey = A Ax so that in all the PFTCR equations

oV AV W, — Yy

9ax  Ax  Ax
Further, in a WSTCR, it is assumed that all Ws take values of state 2 as soon
as the material and energy flow into the reactor. Assuming uniform pressure
(p1 = p2), show that

3

Ve, % — 1ity — 1ty + tity Vey  (Bulk Mass),

d(om u . .

Vo 20m _ Gy, — vy
at
+ (myu — Wshear) Vv (Momentum),
d w .

Vey Apmon) _ (M) — (M wp)z + (Ry + 1igw) Voo (Species),

ot
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where QW = qw P Ax/ V., is the wall heat transfer per unit volume, W hear =
7w P Ax/ Ve, is the work due to wall shear,and my, = Y myw = Ny P Ax/Vey
is the mass injection through the boundary per unit volume.

6. The well-known thermodynamic open system having fixed volume V;, is the
same as the WSTCR. To derive the familiar form, consider flow of a pure-
substance so that the species equation is redundant and p,, = p. Further, neglect
viscous dissipation, radiation, and chemical heats. Also, let my = 0. Hence,
show that

. d M,
M, = dt“ = 11y — s, (1.21)
dE . . ) )
ov = d;“ = Quw — Wext + (it h)| — (i1 )y, (1.22)
where M., = p Ve, Ecv = M,y e, and the symbol e stands for specific internal

energy.

7. Consider a constant-volume and constant-mass (i.e., n| = n| = n,, = 0)
WSCTR with QW = Wey = 0. Neglect heat generation due to viscous dis-
sipation and radiation so that Q" = Qchem + dp/dt. For such a reactor, show
that the species and energy equations are given by

d wy de .
P = Ry and pn T Ochem-

Typically, Ry is a function of temperature 7. How will you determine 7'?
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Consider a constant-pressure and constant-mass reactor so that volume change

is permitted. Assume Oy, = 0. Hence, show that

d Mcva)k d Hcv

——— =R, V., and

dt ke dt

where Ve, = Moy Ry T / (p Mnix), Ry 1s the universal gas constant, the mixture

molecular weight Mix = (Y., @/ M), T = Hey/(Mey C),,), and Hey =
Pm ch h.

= Qchem ch s

. Consider a 2D natural convection problem in which the direction of gravity is

aligned with the negative x, direction. Use the definition of the coefficient of
cubical expansion § = — ,or;fl dp/dT and express the B, term in Equation 1.3
in terms of 8. Now, examine whether it is possible to redefine pressure as,
say, p* = p + prer€ X2 in Equations 1.3 for i = 1 and 2. If so, recognise that

Pref & X2 1s nothing but a hydrostatic variation of pressure.

Consider a frictionless piston—cylinder assembly containing isothermal gas
as shown in Figure 1.6. The assembly is perfectly insulated. Now, consider
the unlikely circumstance in which the external pressure p is not equal to
internal pressure p. Discuss the consequences if the gas temperature is to remain
constant.



2 1D Heat Conduction

2.1 Introduction

A wide variety of practical and interesting phenomena are governed by the 1D heat
conduction equation. Heat transfer through a composite slab, radial heat transfer
through a cylinder, and heat loss from a long and thin fin are typical examples. By
1D, we mean that the temperature is a function of only one space coordinate (say x
or r). This indeed is the case in steady-state problems. However, in unsteady state,
the temperature is also a function of time. Thus, although there are two relevant
independent variables (or dimensions), by convention, we refer to such problems as
1D unsteady-state problems. The extension dimensional thus always refers to the
number of relevant space coordinates.

The 1D heat conduction equation derived in the next section is equally applicable
to some of the problems arising in convective heat transfer, in diffusion mass transfer,
and in fluid mechanics, if the dependent and independent variables of the equation
are appropriately interpreted. In the last section of this chapter, therefore, problems
from these neighbouring fields will be introduced. Our overall objective in this
chapter is to develop a single computer program that is applicable to a wide variety
of 1D problems.

2.2 1D Conduction Equation

Consider the 1D domain shown in Figure 2.1, in which the temperature varies only
in the x direction although cross-sectional area 4 may vary with x.

The temperature over the cross section is thus assumed to be uniform. We shall
now invoke the first law of thermodynamics and apply it to a typical control volume
of length Ax. The law states that (Rate of energy in) — (Rate of energy out) + (Rate
of generation of energy) = (Rate of change of Internal energy), or

ad
Qx_QerAx‘f’qWAAx:a [pAAXxCT] W, (2.1)
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Ax

Figure 2.1. Typical 1D domain.

"

where ¢’ (W/m?) is the volumetric heat generation rate, C denotes specific heat
(J/kg-K), and O (W) represents the rate at which energy is conducted. Further, it
is assumed that the control volume AV = A (x) x Ax does not change with time.
Similarly, the density p is also assumed constant with respect to time but may vary
with x. Therefore, dividing Equation 2.1 by AV, we get

Ox — Oxtax s aCT)
== =p—07. 2.2
AAx 1 TPy 22)
Now, letting Ax — 0, we obtain
190 aCT)
e — = . 2.3
Aax 71 =P 23)

This partial differential equation contains two dependent variables, O and 7.
The equation is rendered solvable by invoking Fourier’s law of heat conduction.
Thus,

aT
0=—kd . (2.4)

where £ is the thermal conductivity of the domain medium. Substituting Equation
2.4 in Equation 2.3 therefore yields

0 aT

— | kA — "A=pA
8x|: 8x]+q p

It will be instructive to make the following comments about Equation 2.5.

ACT)

. (2.5)

1. The equation is most general. It permits variation of medium properties p, k,
and C with respect to x and/or ¢.

2. The equation permits variation of cross-sectional area 4 with x. Thus, the equa-
tion is applicable to the case of a conical fin, for example. Similarly, the equation
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Figure 2.2. Grid layout practises.

is also applicable to the case of cylindrical radial conduction if it is recognised
that 4 = 2 x w x r, and if x is replaced by r.

3. The equation also permits variation of ¢”” with T or x. Thus, if an electric current
is passed through the medium, ¢”” will be a function of electrical resistance and
the latter will be a function of 7. Similarly, in case of a fin losing heat to the
surroundings due to convection, ¢’ will be negative and it will be a function of
the heat transfer coefficient /4 and perimeter P.

4. Equation 2.5 is to be solved for boundary conditions at x = 0 and x = L (say).
Thus, 0 < x < L specifies the domain of interest.!

2.3 Grid Layout

As mentioned in Chapter 1, numerical solutions are generated at a few discrete
points in the domain. Selection of coordinates of such points (also called nodes) is
called grid layout. Two practises are possible (see Figure 2.2).

Practise A

In this practise, the locations of nodes (shown by filled circles) are first chosen
and then numbered from 1 to N. Note that the chosen locations need not be
equispaced. Now the control volume faces (also called the cell faces) are placed
midway between the nodes. When this is done, a difficulty arises at the near-
boundary nodes 2 and N — 1. For these nodes, the cell face to the west of node 2

! Numerical solutions are always obtained for a domain of finite size. In many problems, the boundary
condition is specified at x = oo. In this case, L is assumed to be sufficiently large but finite.
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Figure 2.3. Typical node P — Practise A.

is assumed to coincide with node 1 and, similarly, the cell face to the east of node
N — 1 is assumed to coincide with node N. As such, there is no cell face between
nodes 1 and 2, nor between nodes N — 1 and N. The space between the adjacent
cell faces defines the control volume. In this practise therefore the nodes, in gen-
eral, will not be at the centre of their respective control volumes. Also note that
if N nodes are chosen, then there are N — 2 control volumes.

Practise B

In this practise, the location of cell faces is first chosen and then the grid nodes
are placed at the centre of the control volumes thus formed. Note again that the
chosen locations of the cell faces need not be equispaced. Both practises have their
advantages and disadvantages that become apparent only as one encounters multi-
dimensional situations. Yet, a choice must be made. In this chapter, much of the
discussion is carried out using practise A, but it will be shown that a generalised
code can be written to accommodate either practise.

2.4 Discretisation

Having chosen the grid layout, our next step is to convert the PDE (2.5) to an
algebraic one. This process of conversion is called discretisation. Here again, there
are two possible approaches:

1. a Taylor series expansion (TSE) method or
2. an integration over a control volume (IOCV) method.

In both methods, a typical node P is chosen along with nodes E and W to east
and west of P, respectively (see Figure 2.3). The cell face at e is midway between P
and E, likewise, the cell face at w is midway between P and W.

Before describing these methods, it is important to note an important aspect of
discretisation. Equation 2.5 is a partial differential equation. The time derivative
on the right-hand side (RHS), therefore, must be evaluated at a fixed x. We choose
this fixed location to be node P. The left-hand side (LHS) of Equation 2.5, however,
contains a partial second derivative with respect to x and, therefore, this derivative
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must be evaluated at a fixed time. The choice of this fixed time, however, is not so
straightforward because over a time step A¢, one may evaluate the LHS at time ¢,
or t + At, or at an intermediate time between ¢ and ¢ + At. In general, therefore,
we may write Equation 2.5 as

Y (LHS)p + (1 =) (LHS), = RHS|p (2.6)

where ¥ is a weighting factor, superscript n refers to the new time # + A¢, and
superscript o refers to the old time 7. If we choose ¥ = 1 then the discretisation is
called implicit, if v = O thenitis called explicit,and if 0 < ¥ < 1, itis called semi-
implicit or semi-explicit. Each choice has a bearing on economy and convenience
with which a numerical solution is obtained. The choice of i is therefore made by
the numerical analyst depending on the problem at hand. The main issues involved
will become apparent following further developments.

2.4.1 TSE Method

To employ this method, Equation 2.5 is first written in a nonconservative form.
Thus,

92T d(kA) dT

LHS|p = k4 — "4, 2.7

v 0x2 * ax Ox ta 2.7)
0(CT

RHS|p = pA (a—z) (2.8)

Equation 2.7 contains first and second derivatives of 7" with respect to x. To
represent these derivatives we employ a Taylor series expansion:

oo Tt an L] 4 2R ET) 2.9)
— Xo — - ce, .
E “ox|p 2 ax?p
oT Ax2 9T
Ty = Tp — Axy | 4+ 2w 02 (2.10)
ax |p 2 x|,

From these two expressions, it is easy to show that

AT |  Ax2Tg— Ax2Tw+ (Ax2 — Ax2) Tp @.11)

x |p h Axe Axy (Axe + Axy) ’ '
PT|  Axy T+ Axe Tw — (Axe + Axy) Tp (2.12)
9x? |p - Axe AXy (Axe + Axy)/2 '

Note that, in Equations 2.9 and 2.10, terms involving derivative orders greater
than 2 are ignored. Therefore, Equations 2.11 and 2.12 are called second-order-
accurate representations of first- and second-order derivatives with respect to x.
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Now to evaluate the time derivative, we write

ACED] (2.13)
P

(CTY = (CT)S+ At

or

ACT)
ot

_(CT)p —(CT)
- At '

(2.14)

In Equation 2.13, derivatives of order higher than 1 are ignored; therefore,
Equation 2.14 is only a first-order-accurate representation of the time derivative.’

Inserting Equations 2.11 and 2.12 in Equation 2.7 and Equation 2.14 in Equation
2.8 and employing Equation 2.6, we can show that

p AV CP
— +Y(AE + AW) | T3 = [AETE + AW T+ S, (2.15)
P
with
Axy d(kA) Ax
AE = (kA)p + , (2.16)
AXx, 2 dx |p] (Axe+ Axy)
2 Axe d (kA A
AW = 2 | (k) — BXe D r 2.17)
Axy, 2 dx |p] (Axe+ Axy)

S=[var"+ (1 —v)gp ] AV +(1 =) [AE T + AW T3]
p AV C°
At

-1 —w)(AE+AW):| Ty, (2.18)
P
where AV = A Ax.Note thatifthe cell faces were midway between adjacent nodes,
2Ax = Axe + Axy,. Before leaving the discussion of the TSE method, we make
the following observations:

1. Calcuation of coefficients A4E and AW requires evaluation of the derivative
d (kA)/d x |p. This derivative can be evaluated using expressions such as (2.11)
in which T is replaced by k4.

2. For certain variations of (kA) and choices of Ax. and Axy,, AE and/or AW can
become negative.

3. For certain choices of A¢, the multiplier of 7y in Equation 2.18 can become
negative.

4. In steady-state problems, A¢ = oo and 7°° has no meaning. Therefore, in such
problems, ¥ always equals 1.

2 Clearly, it is possible to represent the time derivative to a higher-order accuracy. However, the
resulting expression will involve reference to 7", 7°, 7%, and so on.
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From the point of view of obtaining stable and convergent numerical solutions,
observations 2 and 3 are significant. The associated matter will become clear in a
later section.

2.4.2 |0CV Method

In this method, the RHS and LHS of Equation 2.5 are integrated over a control
volume Ax and over a time step At¢. Thus,

t' e
Int(LHS) = //a [kA—]dxdt—i—/ / q" Adxdt, (2.19)
X 0x t W

where ¢’ =t + At. It is now assumed that the integrands are constant over the time
interval At. Further, ¢’ is assumed constant over the control volume and since the
second-order derivative is evaluated at a fixed time, we may write

oT
N

oT
Int(LHS) = | k4 —
0x 0x

} Al + g} 4 Ax At. (2.20)

€ w

It is further assumed that 7 varies /inearly with x between adjacent nodes. Then

oT
ox |,

Ty — Tp aT

D —Tw
Axe axw_ )

AXy

(2.21)

Note that when the cell faces are midway between the nodes, these represen-
tations of the derivatives are second-order accurate (see Equation 2.11). Using
Equation 2.21 therefore gives

kA kA
Int(LHS) = A_ (Tz — Tp) + =~

(Tw — Tp)} At

w

+ql 4 Ax At. (2.22)

Similarly,

Int(RHS)=p 4 /t /e a(ng) dx dt
=(AAxRCT) =(CT)]p. (2.23)

Substituting Equations 2.22 and 2.23 into the integrated version of Equation 2.6,
therefore, we can show that

p AV C"

At

—H/f(AE+AW)] T =y [AETE + AW Ty + S, (2.24)
P
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where

kA

AE = = (2.25)
Ax |,
kA

AW = —= (2.26)
Ax |,

S=[vg™" +1—v)g" ] AV
+(1 =) [AE TS + AW TY]
AV C°
+ [pA—t — (1 —¥)(AE + AW)} Ty (2.27)
P

Note that Equation 2.24 has the same form as Equation 2.15, but there are
important differences:

1. Coefficients 4E and AW can never be negative since kA4 /Ax can only assume
positive values.

2. AE and AW are also amenable to physical interpretation; they represent
conductances.

3. Again, in steady-state problems, 1 = 1 because At = co. Inunsteady problems,
for certain choices of At, however, the multiplier of 7} can still be negative.
This observation is in common with the TSE method.

2.5 Stability and Convergence

Before discussing the issues of stability and convergence, we recognize that there
will be one equation of the type (2.24) [or (2.15)] for each node P. To minimize
writing, we designate each node by arunning indexi = 1,2, 3, ..., N,wherei = 1
and i = N are boundary nodes. Thus, Equations 2.24 are written as

AP, T, = ¢ [AE; i1 + AW T 1+ S;,  i=2,3,....,N—1, (2.28)

where superscript n is now dropped for convenience. In these equations, 4 P;
represents multiplier of 7p in Equation 2.24.

It will be shown later that this equation set can be written in a matrix form
[A][T] = [S], where [A] is the coefficient matrix and [T] and [S] are column vectors.
This set can be solved by a variety of direct and iterative methods. The methods
yield converged solutions only when the condition for convergence (also known as
Scarborough’s criterion [64]) is satisfied. To put it simply, the criterion states that

Condition for Convergence

VIIAE |+ [4Wil] _

<1 for all nodes, (2.29)
|4 P;|
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Figure 2.4. Explicit procedure.

VIIAE| + [AWil]
|4 P

<1 for at least one node. (2.30)

Condition for Stability

In unsteady problems, the stability of the calculation procedure, however, requires
that the coefficient of T;° contained in the §; term always be positive.? It will be
shown in the next section that this implies a restriction on the permissible size of
the time step.

2.5.1 Explicit Procedure i» =0

In this case, Equation 2.28 will read as

IN/Ze
O = AB T 4 AW TR 4 g 4
AV, CO
+ [% — (AE, + AW,-)] T®. 2.31)

Equation 2.31 shows that the values of 7; at a new time step are now calculable
explicitly in terms of values 72 |, T,°, and T;% ;. Terms containing 7;, and 7;_;
do not appear on the RHS. Therefore, the equation is explicit and no iterations are
required. This situation is also depicted in Figure 2.4. Thus, starting with known
initial temperature distribution at # = 0, one can evaluate temperatures at each new
time step. Such a solution procedure is called a marching solution procedure. It is
very easy to devise computer code for a marching procedure.

In an explicit procedure, the issue of convergence is irrelevant but the stability
of the calculation procedure requires that the coefficient of 7;° always be positive.

From Equation 2.31 it is clear that this requirement is satisfied when

pAV; C? i|
min.

PRVt (2.32)
AE; + AW;

At<|:

3 This condition of positiveness is strictly meant for the case of ¥ = 0. For ¢ = 1, the condition
is automatically satisfied. For 0 < v < 1, however, the condition again holds but can be violated
without impairing stability of the solution procedure. This is discussed in Section 2.5.2.
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Figure 2.5. Bonding of plastic sheets — Problem 1.

Mathematically more rigorous arguments concerning this stability condition
will be discussed in the next chapter. Here we consider a problem* to develop
essential understanding.

Problem 1 [80]

Two plastic sheets, each 5 mm thick, are to be bonded together with a thin layer
of adhesive that fuses at 140°C. For this purpose, they are pressed between two
surfaces at 250°C (see Figure 2.5). Determine the time for which the two sheets
should be pressed together, if the initial temperature of the sheets (and the ad-
hesive) is 30°C. For plastic sheets, £ = 0.25 W/m-K, C = 2,000 J/kg-K, and
o = 1,300 kg/m°.

Solution

In this problem, we measure x from the edge of one of the sheets as shown. We
divide the domain of 10 mm such that Ax =2 mm. This will yield seven grid
nodes, as shown in Figure 2.5. Note that the distance between nodes 1 and 2 and
that between 6 and 7 will be 1 mm. In this problem, area A is constant and may
be assigned value of 1 m? (say). Also, since there is no internal heat generation,

4 The USER file for this problem is given in Appendix B.



2.5 STABILITY AND CONVERGENCE

Table 2.1: Explicit procedure with At = 10 s (stable).

Time 0 mm 1 mm 3 mm 5 mm 7 mm 9 mm 10 mm
0 250 30 30 30 30 30 250
10 250 135.7 30 30 30 135.7 250
20 250 165.3 5543 30 5543 165.3 250
30 250 179.6 75.72 42.22 75.22 179.6 250
40 250 188.5 92.5 58.33 92.5 188.5 250
50 250 195.0 107.4 74.82 107.4 195.0 250
60 250 200.4 120.6 90.5 120.6 200.4 250
70 250 205.1 132.6 105.0 132.6 205.1 250
80 250 209.3 143.4 118.3 143.4 209.3 250
90 250 213.0 153.2 130.3 153.2 213.0 250
100 250 216.4 162.1 141.3 162.1 216.4 250

q"" = 0. We solve this problem by an explicit method (¥ = 0) and employ the IOCV
method.’

We now note that p 4; Ax; C = 1,300 x 1 x 0.002 x 2,000 = 5,200, AW, =
0.25 x 1/0.001 =250, AW; =0.25x1/0.002 =125 for i =3 to N —1,
AEN_1 =0.25 x 1/0.001 =250, and AE; = 0.25 x 1/0.002 = 125 fori = 2 to
N — 2. Therefore, the applicable discretised equations are

5,200 5,200

B =250T7 + 12577 + (A—t — 375) Ty, (2.33)
5,200 5,200

o =125 (T + 1) + ( T 250) T, (2.34)

fori = 3,4, and 5 and

5,200
At

5,200
Ty =125T , +250 T3 + ( =

—375) TS .. (2.35)

Finally, the boundary conditions are 77 = 250 and Ty = 250. These conditions
apply because it is assumed that when the sheets are pressed, the thermal contact
between the sheets and the pressing surface is perfect.

This set of discretised equations dictates that Az must be less than 5,200/375 =
13.87 s (see Equation 2.32). We therefore carry out two sets of computations, one in
which At = 10 s (see Table 2.1) and another in which At = 20 s, so that the stability
condition is violated (see Table 2.2). In both cases, computations are stopped when
Ty (x = 5 mm) exceeds 140°C.

Table 2.1 clearly shows monotonic evolution of temperature within the sheets
and thus accords with our expectation. The time for which the two sheets should

> Note that because in this problem kA4 is constant, the coefficients AE;, AW;, and AP; will be
identical in both the IOCV and TSE methods.
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Table 2.2: Explicit procedure with At = 20 s (unstable).

Time Omm 1mm 3mm 5 mm 7 mm 9mm 10 mm

0 250 30 30 30 30 30 250
20 250 241.5 30 30 30 2415 250
40 250 148.0 131.7 30 131.7 148.0 250
60 250 238.3 90.63 127.8 90.63 238.3 250
80 250 178.6 1795 92.05 179.5 178.6 250

100 250 2477 137.0  176.1 137.0 2477 250

be pressed together can be determined by interpolation as (r — 90)/(100 — 90) =
(140 — 130.33)/(141.31 — 130.33) orat¢ = 98.8 s. This calculated time, of course,
need not be considered accurate. Its accuracy can be ensured by repeating calcu-
lations with increasingly smaller Ax (increasingly greater number of nodes) and
by taking ever smaller values of Atz. Further, note that the temperature distribu-
tions at any time ¢ are symmetric about x = 5 mm. This is because of the sym-
metry of the boundary and the initial condition. Now, unlike in Table 2.1, the
results presented in Table 2.2 show zigzag or nonmonotonic evolution of temper-
ature. For example, at any x, the temperature first rises (as expected) and then
falls (against expectation). In fact, the reader is advised to carry the computations
well beyond 100 s or with larger values of A¢. Then, it will be found that the
evolved temperatures will show even more unexpected trends. That is, the interior
temperatures will exceed the bounds of 30°C and 250°C. Clearly, this is in vio-
lation of the second law of thermodynamics. Results of Table 2.2 are, therefore,
unacceptable.

2.5.2 Partially Implicit Procedure 0 < v < 1

In this case, if the condition of positiveness of the coefficient of 7} is invoked then
At must obey the following constraint:

PAV;C?
At < L . (2.36)
[(1 —V)(4E; + AWi)]min

However, computations of the previous problem will show that stable (monotoni-
cally evolving) solutions can be obtained even with

t < pAViC;)
(I =29)(4E; + AW))

} for Y < 0.5, (2.37)

and, for ¥ > 0.5, At can be chosen without any restriction. Clearly, therefore,
condition (2.36), though valid, is too restrictive on the time step. The reader
will appreciate this matter by solving Exercise 29. The more rigorous proof
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Figure 2.6. Implicit procedure.

can be developed by carrying out the stability analysis described in the next
chapter.

2.5.3 Implicit Procedure ¢» =1

In this case, Equation 2.28 will read as

IOAVlCtn m
T—FAEi-i-AVVi Ii =AE; Tip1 + AW T,y +q; AV
AV, CO
+’°A7t'Ti°. (2.38)

This equation is implicit because the RHS also contains reference to tempera-
tures at the new time step. Further, note that the multiplier of 7)° is always positive
and, therefore, Equation 2.38 is unconditionally stable irrespective of the time step.
The situation of Equation 2.38 is shown in Figure 2.6. Because of its implicitness,
Equation 2.38 must be solved iteratively, so that we may write

AP T = AE T/ + 4w, T +5, i=2,3,...,N—1, (2.39)
where / is the iteration number.

Now, in the [OCV method, the condition of convergence (2.29) is always satisfied
because the 4 P coefficient is the largest (see Equation 2.38) and condition (2.30) is
satisfied at the boundary node. Also, A E and A W are always positive (see Equations
2.25 and 2.26).

The overall procedure can thus be described through the following steps:

Specify 7T° fori = 1to N and set 7; = T°.

Begin a new time step. Choose At.

Solve Equation 2.39 to obtain 7} .

Check convergence by calculating the fractional change FC; = (Ti“rl —

7))/ T}

5. If FC; max > convergence criterion (CC) go to step 3 by setting Tl.l = Til 1 else,
go to step 6.

6. Set T° = T; and go to step 2.

bl
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Table 2.3: Implicit procedure with At =10 s.

Time Omm 1mm 3 mm 5mm 7 mm 9 mm 10 mm

0 250 30 30 30 30 30 250
10 250 9296  40.79 3350 40.79 9296 250
20 250 131.6 55.5 40.65 555 131.6 250
30 250 156.2 71.04  50.51 71.04 1562 250
40 250 172.6 86.07 62.06 86.07 172.6 250
50 250 184.1 100.1 74.41 100.1 184.1 250
60 250 192.5 112.9 86.92 1129 1925 250
70 250 199.1 124.7 99.19 124.7 199.1 250
80 250 204.4 135.4 1109 1354 2044 250
90 250 2089 1452 1221 1452 2089 250

100 250 2133 1542 132.0 1542 2133 250
110 250 216.1 162.2 1421 162.2  216.1 250

The specification of procedural steps is called an algorithm. To illustrate the al-
gorithm, we again consider Problem 1. Then, using the IOCV method, the equations
to be solved are

5,200 5,200
( N ) T, =250T, +125T5 + == T3, (2.40)

5,200 5,200
(A—t+250)T_125(T H T+ 2= T i=3,. N =2,

(2.41)

5,200 5,200
( N )TN 1= 125Ty 0 +250Ty + 2= Ty (242)

It is now possible to cast our algorithm in the form of a computer program. This
matter is taken up in a later section. Here, results of computations with Az = 10
and 20 s are presented in Tables 2.3 and 2.4, respectively.

Table 2.4: Implicit procedure with At = 20 s.

Time Omm 1mm 3mm 5 mm 7 mm 9mm 10 mm

0 250 30 30 30 30 30 250
20 250 121.6 55.52 4251 55.52 121.6 250
40 250 164.7 84.10 6290 84.10 164.7 250
60 250 184.5 109.9 84.94 109.9 184.5 250
80 250 201.2 1319 108.5 131.9  201.2 250

100 250 2104 1504 129.1 1504 2104 250
120 250 217.2  166.0 147.1 166.0  217.2 250




2.6 MAKING CHOICES

From the computed results, we make the following observations:

1. The temperature evolutions are monotonic irrespective of the time step since
there is no restriction on the time step in the implicit procedure.

2. With At = 10s, the time for pressing is evaluated at 107.81 s and with Ar = 205
at 112.09 s. Again these times are not necessarily accurate. Accuracy can only
be established by repeating computations with ever smaller values of A¢ and
Ax till the evaluated total time is independent of the choices made.

3. Comparison of results in Table 2.3 with those in Table 2.1 shows that temperature
evolutions calculated by the implicit procedure are more realistic. Note, for
example, that 7} in the explicit procedure does not even recognise that heating
has started for the first 20 s. Of course, this lacuna can be nearly eliminated by
taking smaller time steps.

4. For the same time step, the explicit procedure reaches 74 = 140 in 10 time
steps. The implicit procedure has, however, required 11 time steps. In addition,
at each time step, a few iterative calculations have been carried out. Thus,
in this example, the implicit procedure involves more arithmetic operations
than the explicit procedure. This, however, is not a general observation. When
Ax and At are reduced to obtain accurate solutions, or when coefficients A F
and AW are not constant but functions of temperature (through temperature-
dependent conductivity, for example), or when ¢”" = ¢”’(T) is present, one
may find that an implicit procedure may yield more economic solutions than the
explicit procedure because the former enjoys freedom over the size of the time
step.

2.6 Making Choices

In the previous two sections, we have introduced TSE and IOCV methods as well as
explicit and implicit procedures. Here, we offer advice on the best choice of combi-
nation, keeping in mind the requirements of multidimensional problems (including
convection) to be discussed in later chapters. Further, we also keep in mind that
coefficients AE and AW are in general not constant. This makes the discretised
equations nonlinear.

1. Note that the TSE method casts the governing equations in non-conservative
form whereas the [OCV method uses the as-derived conservative form. As we
shall observe later, this matter is of considerable physical significance when
convective problems are considered.

2. In the TSE method, coefficients AE and AW carry little physical meaning. In
the IOCV method, they represent conductances.

3. In the TSE method, Scarborough’s criterion may be violated. In the IOCV
method, this can never happen.
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4. The question of invoking explicit procedure arises only when unsteady-state
problems are considered. The implicit procedure, in contrast, can be invoked
for both unsteady-state as well as steady-state problems. In fact, in steady-state
problems (At = o0o) the implicit procedure is the only one possible.°

5. The explicit procedure imposes restriction on the largest time step to obtain
stable solutions. The implicit procedure does not suffer from such a restriction.

In view of these comments, the best choice is to employ the [OCV method with
an implicit procedure. Throughout this book, therefore, this combination will be
preferred.

2.7 Dealing with Nonlinearities

Now that we have accepted a combination of IOCV with the implicit procedure, we
restate the main governing discretised equation (equations 2.38 and 2.39) but in a
slightly altered form:

AP, + Sp)TH' = AE, T + AW, T + Su;, i=2,3,...,N—1,
i i—1

i+1
(2.43)
AP = AE; + AW, (2.44)
kA
AE;, = — , (2.45)
AX |it1p
kA
AW; = — , (2.46)
Ax i)
AV; C? AV; C?
Su; = pPAVIE T°, Sp; = '0# (2.47)
At At

In these equations, the ¢” term is deliberately ignored because it is a problem-

dependent term. The altered form shown in Equation 2.43 will be useful in dealing
with nonlinearities. Also, a generalised computer code can be constructed around
Equation 2.43 in such a way that preserves the underlying physics. The nonlinearities
can emanate from three sources:

1. if¢g” is a function of T

2. if conductivity kis a function of 7 or changes abruptly, as in a composite material
and/or

3. boundary conditions at x = 0 and x = L.

¢ Some analysts employ an explicit procedure even for a steady-state problem. In this case, calcu-
lations proceed by introducing a false or imaginary time step. Hence, such procedures are called
false transient procedures.



2.7 DEALING WITH NONLINEARITIES

In the following, we discuss methods for dealing with nonlinearities through
modification of Su; and Sp;.

2.7.1 Nonlinear Sources

Consider a pin fin losing heat to its surroundings under steady state by convection
with heat transfer coefficient 4. Then, ¢”” will be given by
hi Py Axi (T; — To)

e , 2.48

where P; is the local fin perimeter. Therefore,
q" AV; = —h; Py Ax; (T; — Txo). (2.49)

When this equation is included in Equation 2.43, it is obvious that 7; will now
appear on both sides of the equation. One can therefore write the total source term
as

Source term = Su; + h; P Ax; (Too — T7). (2.50)
This prescription can be accommodated by updating Su; and Sp; as

Sl/l,' = Su,- + h,’ P,-Ax,- Too:
Sp,' = sz + h,’ }), Ax,-, (251)

where Su; and Sp; on the RHSs are the original quantities given in Equation 2.47.

Note that, in this case, the updated Sp; is positive and, therefore, there is no
danger of rendering 4 P; + Sp; negative. Thus, Scarborough’s criterion cannot be
violated. However, if we considered dissipation of heat due to an electric current or
chemical reaction (as in setting of cement) then, because heat is generated within
the medium, ¢;” = a + b T}", where b is positive. In this case, Su; = Su; +a AV;
and Sp;, = Sp; — b Tl.’”_1 AV;. But now, there is a danger of violating Scarbor-
ough’s criterion and, therefore, one simply sets Su; = Su; + ¢/ AV; and Sp; is not
updated.

Accounting for the source term in the manner of Equation 2.51 is called source
term linearization [49]. We shall discover further advantages of this form when
dealing with the application of boundary conditions.

2.7.2 Nonlinear Coefficients

Coefficients AE; and A W; can become functions of temperature owing to thermal
conductivity as in k =a + b T + ¢ T?. Thus, kit12 in AE; (see Equation 2.45),
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Figure 2.7. Interpolation of conductivity.

for example, may be evaluated in two ways:
kivip=a+bT1p+c T,-2+1/2, Tiv12=05(T + Tiv1)  (2.52)
or
kiv10=0.5[k(T;) + k(T4 ]. (2.53)

Both of these representations are pragmatically acceptable but neither can be
justified on the basis of the physics of conductance. To illustrate this point, let us
consider a composite medium consisting of two materials with constant conduc-
tivities k| and k, (see Figure 2.7). In this case, we lay the grid nodes i and i + 1
in such a way that the cell face i + 1/2 coincides with the location where the two
materials are joined. Thus, there is a discontinuity in conductivity at the i + 1/2
location.

Now, in spite of the discontinuity, the heat transfer Q;,1/,, on either side of
i + 1/2 must be the same. Therefore,

I — Tivap

Oivip=kidiq12 e ky = ki, (2.54)
Xit1/2 — Xi
Tiv12 — Tig

Oivip=hky Aiy1)2 e T ky = kiy1. (2.55)

Xitl — Xit1/2

Eliminating 7; /> from these equations gives

Xit1/2 — Xi n Xitl — Xit1/2
ki kit

—1
OQit1p=4i11p [ i| (T; = Tiv1).  (2.56)
We recall, however, that our discretised equation was derived on the basis of
linear temperature variation between nodes i and i + 1 (see Equation 2.21). This
implies that

A

Oivip= —

ki T: — Tiyq). 2.57
Ax +12( +1) (2.57)

i+1/2
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Comparing Equations 2.56 and 2.57, leads to

(2.58)

-1
Xiv1/2 — Xi Xi+l — Xi41/2 i|
ki kit

kivip = Axit1p [

If the cell face were midway between the nodes then this equation would read as

N T
kivip=2 [ki + ki+l] . (2.59)

These equations suggest that the conductivity at a cell face should be eval-
uated by a harmonic mean to accord with the physics of conductance. We shall
regard this as a general practise and extend it to the case when thermal conduc-
tivity varies with temperature. Thus, instead of using either Equation 2.52 or 2.53,
Equation 2.58 will be used with k; and k;; evaluated in terms of temperatures

T; and Tj44, respectively. Further, note that if conductivity is constant, k; 1, =
ki = kiy1.

2.7.3 Boundary Conditions

In practical problems, three types of boundary conditions are encountered:

1. Boundary temperatures 77 and/or Ty are specified.
2. Boundary heat fluxes ¢, and/or g are specified.
3. Boundary heat transfer coefficients /| and/or 4 are specified.

Our interest in this section lies in prescribing these boundary conditions by
employing Su and Sp for the near-boundary nodes.

Boundary Temperature Specified
For the purpose of illustration, consider the i = 2 node, where 7] is specified. Then,
Equation 2.43 will read as

(APy + Sp)) T = AE, TF 4 AW, T + Su,, (2.60)
where Su, and Sp, are already updated to account for any source term. Equation
2.60 can be left as it is but we alter it via a three-step procedure in which we set

Suy = Suy, + AW, T,

Sp2 = sz + AW27
AW, = 0.0. 2.61)
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With this specification, 4 P, will now equal A4 E, because 4 W, is set to zero,
but the coefficient of Tzl+1 remains intact because Sp, has been updated. Thus,
the boundary condition specification is accomplished by snapping the boundary
connection in the main discretised equation.

Heat Flux Specified
Let heat flux g, be specified at x = 0 (see Figure 2.8) Then, temperature 7; is
unknown and heat transfer will be given by

O1=41q1 = AW (T) — Tr), (2.62)
Arqi

T, = . 2.63

1 A, + 13 ( )

From Equation 2.60, it is clear that one can apply the boundary condition by
employing the following sequence:

1. Calculate 7} from Equation 2.63.
2. Update Suy = Suy + A1 q1 and Sp, = Spy + 0.
3. Set AW, = 0.

The ¢ y-specified boundary condition can be similarly dealt with by altering
AEN_I and SMN_l.

Heat Transfer Coefficient Specified
In this case, let /] be the specified heat transfer coefficient (see Figure 2.8 again)
and let 7, be the fluid temperature adjacent to the surface at x = 0. Then,

Or=41q1 =41 (Tsc — Th) = AW (17 — T1). (2.64)

Therefore,

. T2+(A1h1/AW2)TOO
L 14+ (A1 h/AW)

(2.65)
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In this case, the boundary condition can be implemented via the following steps:

1. Calculate 7 from Equation 2.65.
2. Update

—1 1 1 -1
j| and Suy = Suy + [ + ] T

1
sz:szJr[_J“ Ak AW,

Arhy AW,
3. Set AW, =0.

Thus, for all types of boundary conditions, we are able to find appropriate Su
and Sp augmentations and then set the boundary coefficient of the near-boundary
node (A4 W, in our examples) to zero. The usefulness of this practise will become
apparent when we consider the issue of convergence enhancement of the iterative
solution procedures of 2D equations in Chapter 9.

2.7.4 Underrelaxation

In a nonlinear problem, if k£ and/or ¢”” are strong functions of temperature then, in
an iterative procedure, as the temperature field changes, the coefficients 4P, AFE,
and AW and the source S may change very rapidly from iteration to iteration. In
such highly nonlinear problems, the iterative solution may yield oscillatory or erratic
convergence or may even diverge. Therefore, it is desirable to restrict the changes in
temperature implied by Equation 2.43. Such a restriction is called underrelaxation.
It can be effected by rewriting Equation 2.43 as
o [AE: T/ + AW, T/ + Su;]

Tl+1 — i+1 1 — T~l, 2.66

where 0 < @ < 1. Ifa = 1, nounderrelaxation will be effected. I[f« = 0, no change
will be effected, therefore, this case is not of interest. The underrelaxation can be
effected without altering the structure of Equation 2.43 by simply augmenting Su
and Sp before every iteration. Thus,

(I-0a
o

Su; = Su; + (AP; + Spi) T}, (2.67)

Spi = Sp;i +

d - D AP, + Spy). (2.68)

If the coefficients A E; and A W; were constants and not functions of 7 then it is
also possible to take 1 < o < 2. This is called overrelaxation. Typically, compared
to the case of @ = 1, the convergence rate with overrelaxation is faster up to a
certain optimum o, but for @ > ap, the convergence rate again slows down, so
much so that it may be even slower than that with o = 1. The magnitude of oy is
problem dependent.



38

1D HEAT CONDUCTION

2.8 Methods of Solution

When coefficients AE;, AW;, and A P; are calculated and Su; and Sp; are suitably
updated to account for the effects of source linearization, boundary conditions, and
underrelaxation, we are ready to solve the set of equations (2.43) at an iteration
level / + 1. There are two extensively used methods for solving such equations.

2.8.1 Gauss-Seidel Method

The Gauss—Seidel (GS) method is extremely simple to implement on a computer.
The main steps are as follows:

1. At a given iteration level /, calculate coefficients AE, AW, AP, Su, and Sp
using temperature 7' fori =2to N — 1
2. Hence, execute a DO loop:

100 FCMX = 0
DO1ITI =2, N-1

TL = T(I)

ANUM = AE(I)*T(I+1) + AWCI)*T(I-1) + SU(I)
ADEN = AE(I) + AW(I) + SP(I)

T(I) = ANUM / ADEN

FC = (T(I) - TL) / TL
IF (ABS(FC).GT.FCMX) FCMX = ABS(FC)
1 CONTINUE

3. If FCMX > CC, gotostep 1.

The method is also called a point-by-point method because each node i is visited
in succession. The method is very reliable but requires a large number of iterations
and hence considerable computer time, particularly when N is large.

2.8.2 Tridiagonal Matrix Algorithm

In the tridiagonal matrix algorithm (TDMA), Equation 2.43 is rewritten as

Ii=aTipq+bTii+c, (2.69)
where
AE,’ AVV; S i
g = = A = 2 (090
AP,-FSP, APl-—i-Sp,- APi+Spi

Note that since Sp; > 0, a; and b; can only be fractions. Equation 2.69 represents
(N — 2) simultaneous algebraic equations. In matrix form, these equations can be
written as [A] [T] = [C], where the coefficient matrix [A] will appear as shown
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2 3 4 5 6 7 8 9 10 N-1
2

1 —a, 0 0 0 0 0 0 0 0 T, C,
3 -b \

3 1 —a3 0 0 0 0 0 0 0 Ty Cy

4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0o -b 1 -a; 0 0 0 0 T. | = C

7 0 0 0 0
s 0 0 0 0
9 0 0 0 0
10 0 0 0 0
N-1 0 0 0 0 Tnog CN—I

Figure 2.9. Diagonally dominant matrix [A].

in Figure 2.9. Notice that the coefficient of 7; occupies the diagonal position of
the matrix with —a; and —b; occupying the neighbouring diagonal positions. All
other elements of the matrix are zero. The matrix [A] thus has diagonally dominant
tridiagonal structure. This structure can be exploited as follows. Let

T, = A; T; 11 + By, i=2,....,N—1 (2.71)
Then
Tiyv=4i1 T + Biy. (2.72)
Now, substituting this equation in Equation 2.69, we can show that
a; bi Bi_1 +¢;
Ii=|——| T, — . 2.73
[1—b,»AH] “+[1—b,-AH} (@73)
Comparison of Equation 2.73 with Equation 2.71 shows that
ai
Aj= ——, 2.74
Il (2.74)
b; B .
B = Nl (2.75)

Cl=bidi
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Thus, 4; and B; can be calculated by recurrence. The implementation steps are
as follows:

1. Prepare a;, b;, and ¢; fori =2 to N — 1 from knowledge of the Til distribution.

2. From comparison of Equations 2.69 and 2.71, set A, = a; and B, = ¢, (because
b, = 0 via the boundary condition specification). Now evaluate 4; and B; for
i = 3to N — 1 by recurrence using Equations 2.74 and 2.75.

3. Evaluate 7; by backwards substitution using Equation 2.71, that is, from
i = N —1 to 2. Note that since we prescribe boundary conditions such that
AEy_1 =0, it follows that Ay_; = 0.

4. Evaluate fractional change as before and go to step 1 if the convergence criterion
is not satisfied.

The TDMA is essentially a forward elimination (implicit in the recurrence
relations) and backward substitution procedure in which temperatures at all i are
updated simultaneously in step 3. Hence, the TDMA is also called a line-by-line
procedure to contrast it with the point-by-point GS procedure introduced earlier.
Further, we note that if a;, b;, and ¢; were constants and not functions of 7" then
the TDMA would yield a solution in just one iteration whereas the point-by-point
procedure would require several iterations even when coefficients are constants.

2.8.3 Applications

To illustrate performance of the methods just described, we consider two steady-
state problems.’

Problem 2 — Rectangular Fin [80]

A rectangular fin of length 2 cm, thickness 2 mm, and breadth 20 cm is attached
to a plane wall as shown in Figure 2.10. The wall temperature 7y, = 225°C
and ambient temperature 7, = 25°C. For the fin material, £ = 45 W/m-K and
the operating & = 15 W/m?-K. Determine the heat loss from the fin and its
effectiveness. Assume the tip heat loss to be negligible.

Solution
The exact solution to this problem is
I'—Ts _ coshm(L —x)

_ oe = VI PRA(Ty — Ta)tanh (m L),
Tw — Two coshmL o ( ytanh(m L)

(2.76)

where m = 4/h P /kA. In our problem, perimeter P = 2 x 20 = 40 cm, area 4 =
20 x 0.2 = 4cm?, and L = 2 cm. Therefore, m = 18.257m ™! and Qjoes = 23 W.

7 The USER files for these problems are given in Appendix B.
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Plane \V

All Dimensions in cm

Figure 2.10. Rectangular fin — Problem 2.

To obtain a numerical solution, let us take N = 7 so that we have five control
volumes of length Ax = 0.4 cm. Thus, we have a uniform grid. Using definitions
(2.25) and (2.26), it follows that A W, = 45 x 4 x 1074/0.002 = 9and AW; = 4.5
for i = 3 to 6. Similarly, AE; =4.5 fori =2 to 5 and AE¢ = 9. The boundary
conditions are 77 = 225 and g7 = 0 (negligible tip loss).

Further, Su; = h; P Ax; To = 15 x 0.4 x 0.004 x 25 = 0.6 and Sp; = 15 x
0.4 x 0.004 = 0.024. Now, from an equation such as (2.63), 77 = 0 + T5 = Ts.
Thus, our discretised equations are

Ty =225,
[O9+4540.024] , =457+ 9T, + 0.6,
[454+45+0.024] ; =457+ +45T1 +0.6, i=3,45,
[4.5+0.024] Ts =4.5Ts + 0.6,
17 = Ts.

In this problem, the conductivity, area, perimeter, and heat transfer coefficient
are constants. Therefore, coefficients 4 £; and 4 W; do not change with iterations.
Thus, after carrying out the developments of Section 2.7.3, it is possible to construct
a coefficient table. The relevant quantities are shown in Table 2.5.

The solutions obtained using the GS method are shown in Table 2.6. No
underrelaxation is used. Entries for / = 0 indicate the initial guess for tempera-
tures (assuming a linear variation). At subsequent iterations, maximum fractional
change (FCMX) reduces monotonically from 0.01 at / = 1 to 0.000092 at / = 24.
The convergence criterion was set at 107*. The converged solution compares
favourably with the exact solution although only five control volumes have been

a1
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Table 2.5: Coefficients in the discretised
equation — Problem 2.

i 2 3 4 5 6
AW; 0 4.5 4.5 4.5 4.5
AE; 4.5 4.5 4.5 4.5 0

Su;  2025.6 0.6 0.6 0.6 0.6
Spi 9.024 0.024 0.024 0.024 0.024

used. Greater accuracy can be obtained with finer grids; however, this will require
more computational effort.

From the converged solution, the fin heat loss is estimated as Qjoss = AW> X
(Th — T») = 9(225 — 222.42) = 23.26 W. This also compares favourably with the
exact solution already mentioned.

Table 2.7 shows the execution of the same problem using TDMA. The table
shows values of 4; and B; derived from Table 2.5 and Equations 2.74 and 2.75. Since
these are constants, solution is now obtained in only one iteration. Also, the initial
guess becomes irrelevant. The estimated heat loss is Qjoss = 9 (225 — 222.45) =
22.967 W.

Thus, compared to GS, the TDMA procedure is considerably faster. Experience
shows that this conclusion is valid even in nonlinear problems. For this reason, the
TDMA is the most preferred solution procedure in generalised codes.

Problem 3 — Annular Composite Fin

Consider an annular fin put on a tube (of outer radius ; = 1.25 cm), as shown
in Figure 2.11. The fin is made from two materials: The inner material has radius
rp = 2.5 cm and conductivity £k, = 200 W/m-K and the outer material extends
to radius 73 = 3.75 cm and has conductivity k3 = 40 W/m-K. The fin thickness
t = 1 mm. The tube wall (and hence the fin base) temperature is 75 = 200°C. The

Table 2.6: Solution by Gauss-Seidel method - Problem 2.

I FCMX Ocm 02cm 06cm 10cm 14cm 1.8cm 2.0cm
0 225 223 219 215 211 207 205
1 0.01 225 222.65 21831 214.15 210.08 209.1 209.1
2 0.0034 225 22242 217.77 21344 210.77 209.78 209.78
3

0.0021 225 22224 21732 213,54 211.16 210.18 210.18

22 0.00012 225 22241 21828 21522 213.19 212.19 212.19
23 0.00011 225 22241 21830 21524 21321 21221 21221
24 0.000092 225 22242 21831 21525 21323 21223 212.23
Exact — 225 222.58 21852 21551 21349 21249 212.37
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Table 2.7: Solution by TDMA - Problem 2.

x(cm) 0 0.2 0.6 1.0 1.4 1.8 2
A; - 0.333 0.598 0.711 0.772 0.0 -
B; —  149.78 89.628  63.776  49.357 212375  —

=1 225 22245 21840 21538 21337 21237 21237
Exact 225 22258 21852  215.51 213.49 21249 21237

fin surface experiences heat transfer coefficient 2 = 20 W/m?-K and the ambient
temperature is 7T, = 25°C. Assuming conduction to be radial, estimate the heat
loss from the fin and the fin effectiveness. Neglect heat loss from the fin tip.

Solution

In this problem, if the origin x = 0 is assumed to coincide with the base of the
fin, then at any radius , area 4 =27 rt =27 (r] + x)t and perimeter P = 2 X
(2mr)=2 x [27 (r; + x)]. The multiplication factor 2 in P arises because the fin
loses heat from both its faces. Further, since the fin material is a composite, grids
must be laid such that the cell face coincides with the location of the discontinuity
in conductivity. Therefore, we adopt practise B and specify cell-face coordinate (x.)
values. Choosing N = 8 and equal cell-face spacings, we have six control volumes
of size Ax = (r3 —r1)/(N —2)=0.4167 cm. This grid specification provides
three control volumes in each material. The boundary conditions at the fin base
and fin tip are 7' (1) = 200 and gy = 0, respectively. Finally, the heat loss from the
fin is accounted for in the manner of Equations 2.51.

MATERIAL Kj

I3

MATERIAL K,

R S N E—

h
T ANNULAR
FIN
t

Figure 2.11. Annular fin of composite material — Problem 3.
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Table 2.8: Solution by TDMA (N = 8) — Problem 3.

xx10® 0 2.083 6.25 10.417 14.58 18.75 22917 25.0
Ax10°  7.845 7.845 10.5 13.1 15.7 18.3 20.9 23.6
T 200 196.7 19243 189.4 183.38 177.39 174.63 174.63

The predicted temperature distribution in the fin is shown in Table 2.8 and plotted
(open circles) in Figure 2.12. From the table, the heatloss O = —k, 49T /0x |x=0 =
—200 x 7.845 x 107 (196.7 — 200)/2.083 x 1073 =24.86 W. To evaluate fin
effectiveness, the maximum possible heat loss from the fin is evaluated from
2xh x 7wy —r) x (Tp — Too) = 27.49 W. Therefore, the predicted effective-
ness ® = 24.86/27.49 = 0.9046.

To carry out the grid-independence study, computations are repeated for N = 16
and N = 32. These results are also plotted in Figure 2.12. The figure shows that
results for N = 16 (open squares) and N = 32 (solid line) almost coincide. Thus,
in this problem, results obtained with N = 16 may be considered quite accurate
for engineering purposes. This is also corroborated by the computed QO and & for
the two grids. For N = 16, the computed results are Q = 24.933 and ¢ = 0.907;
for N = 32, they are Q = 24.941 and ® = 0.9073. Note also the change in the

200 @— T T T T T T T T T T T T T T T T T T T T T T T
O N=8
i O N =16 ]
—— N=32
190 — —
= L i
O
180 — —
i o B
X (meters)
170 L L L L | L L L L | L L L L | L L L L | L L L L
0.0000 0.0050 0.0100 0.0150 0.0200 0.0250

Figure 2.12. Variation of temperature with X — Problem 3.
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slope of the temperature profile at the point of discontinuity (x = 0.0125 m) in
conductivity. Finally, by assigning different values to k», k3, 7, 73, and ¢, it would
be possible to carry out a parametric study to aid optimisation of fin volume and
economic cost in a separate design study.

2.9 Problems from Related Fields

Quite a few problems from the fields of fluid mechanics, convective heat transfer,
and diffusion mass transfer are governed by equations that bear similarity with
Equation 2.5. Only the dependent variable, the coefficients, and the source term
need to be interpreted appropriately. We discuss such problems next.

Fully Developed Laminar Flow
Steady, fully developed laminar flow in a tube is governed by

ad ou dp
— | pu2nr— ) —27r— = 2.
o </,L Tr 8r) Tr 7 0, (2.77)

where u is velocity parallel to the tube axis and the pressure gradient is a negative
constant. Since velocity u is directed in the z direction, it can be treated as a scalar
with respect to the » direction. Comparison with Equation 2.5 shows that 7 = u,
0x =0r,A =2nr,k = pu,andgq” = —d p/d z.Foracirculartube,u = Qatr = R
(tube radius) and du /dr = 0 at the tube axis» = 0. Equation 2.77 is also applicable
to an annulus with boundary conditions # = 0 at» = R; and r = R,. Similarly, the
equation is applicable to flow between parallel plates if we set 4 = 27 r = 1 and

0x = or = dy, where y is measured from the symmetry axis.

Fully Developed Turbulent Flow
In this case, if Boussinesq approximation is considered valid then the axial velocity
is governed by

L RS S DS Y (2.78)
or | T e T e T '
where the turbulent viscosity 11 = p 12| 3“| with
y* y
ky |1l—exp T3 for n <y,
I, = (2.79)
0.085R  for % >,

where k =0.41, y =R —r, y,~0.2, and y* = y /1,,/p /v with t,, the shear
stress at the wall (i.e., 7, = p ou /9y |,—o). Clearly, Equation 2.78 can be solved
iteratively by estimating the turbulent viscosity distribution from the velocity
gradient.
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Fully Developed Heat Transfer
The equation governing laminar fully developed heat transfer in a tube is given by

—8 k2w —8 -2 C —8 =0 (2.80)
r Trp =0, .
or ar p Hid 0z

where ugg = 2% (1 — r?/R?) or can be taken from the numerical solution of Equa-
tion 2.77. Evaluation of 37" /dz can be carried out from the boundary conditions at
the tube wall as follows.

Constant Wall Heat Flux: From the overall heat balance and from the condition
of fully developed heat transfer [33], it can be shown that

OT _dT,  2qy

— = = ——. (2.81)
0z dz pC,uR
Therefore, Equation 2.80 can be written as
" (k2T Cga (1 0 (2.82)
- nr — — 8T — - 5 w — . N
or or R\ r2)1

Thus, if 97 is replaced by dx, 4 by 277, and ¢”' by — 4(1 —r?/R*)q./R, Equa-
tion 2.82 is same as the steady-state form of Equation 2.5.

Constant Wall Temperature: In this case, the condition of fully developed heat
transfer implies that

0T dTi 2k0T /or |,—
O -ty o = (g, — gy 2K/ rr

, 2.83
0z dz pCruR ( )

where 7, is the mixed-mean or bulk temperature. Thus, by setting ¢” =
—4k/R(1 —r*/R*) (T — T)"' 9T /0r |,—r, Equation 2.80 is same as Equa-
tion 2.5. However, 7, and 07 /dr |,—x must be evaluated at each iteration. The
bulk temperature T;, is evaluated as

fOR pCpuT2mrdr

T, = .
fOR pCpulmrdr

(2.84)

Thermal Entry Length Solutions

Consider laminar flow between two parallel plates separated by distance 25. When
Pr > 1, it is possible to obtain the variation of the heat transfer coefficient 4 with
axial distance z by solving the following differential equation:

0 oT aT
—\|bk—)=pChup —, (2.85)
ay ay oz



EXERCISES

where

3 y2
Ugg = Eu <1 — ﬁ) (286)

and y is measured from the symmetry axis. The initial conditionis 7 = 7; atz = 0
and the symmetry boundary conditionis 7 /dy = 0 at y = 0. At y = b, however,
T = T, if both walls are at constant wall temperature, or, if constant wall heat
flux is specified, then k97 /0y |, = gw. For this problem, if we set y =x, z = ¢,
q" =0,4=1,and C,ug = 1.5u(1 — y?/b*) C, then Equation 2.85 is the same
as Equation 2.5 in which the unsteady term is retained.

Diffusion Mass Transfer
In a binary mixture of species i and j, the equation (in spherical coordinates)
governing radial diffusion of j in a stationary medium i is given by

d [ pmDATr? do; , dw;

or

(—w) or Adrs — (2.87)

ar -’

where w; is the mass fraction of j in the mixture and D is the mass diffusivity.
Thus, if we set dr = 9x, A =4nr?, k = pm D/(1 —w;),C, =1, T = w;, and,
g"” = 0 then this equation is the same as Equation 2.5. To solve the equation,
one will need boundary conditions at » = r; and » = r, and the initial condition
at + = 0. Estimation of penetration depth during surface hardening of materials,
estimation of leakage flow of gases from storage vessels, or estimation of burning
rate of volatile fuel in still surroundings are some of the mass transfer problems
of interest. The reader is referred to the unified formulation of the mass transfer
problem by Spalding [72] and to the book by Gupta and Srinivasan [26].

EXERCISES®

1. Show that the derivative expressions in Equation 2.21 are second-order accurate
if the cell face is midway between adjacent nodes.

2. A slab of thickness 25 is initially at temperature 7. At ¢t = 0, the boundary
temperatures at x = —b and +b are raised to 7} and maintained there. The
exact solution for evolution of temperature in this case is given by

T —T, _) i sin (A, b)
Ty — T, )

where A, b = (2n — 1) /2. Hence, considering the data of Problem 1 in the

text, write a computer program to determine the value of ¢ for the centerline

cos (A, x)exp (—a kﬁ t) ,

n=1

§ All numerical problems given in these exercises can be solved by the generalised computer code
given in Appendix B.
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temperature to reach 140°C. What is the minimum value of # required to obtain
an accurate estimate of #?

. Repeat Problem 1 from the text using both explicit and implicit methods by

choosing N = 7, 12, and 22. Determine the largest allowable time step in the
explicit case. Compare your solution for the time required for adhesion with
the exact solution determined in the previous problem.

. Evaluate Suy_; and Spy_; for an unsteady problem when 7 is specified as a

function of time. Assume an arbitrary value of .

. Consider a time-varying heat-flux-specified condition at i = 1. Hence, derive

Su, and Sp, for arbitrary 1. Confirm the validity of the three-step procedure
following Equation 2.63 for v = 1.

. Repeat Exercise 5 for a time-varying heat transfer coefficient boundary condi-

tion. Hence, confirm the validity of the procedure following Equation 2.65 for

v = 1.

. Confirm the correctness of Equations 2.67 and 2.68.

. Verify the entries in Tables 2.5 and 2.7 by carrying out the necessary

calculations.

. Develop a TDMA routine in which the postulated equation is

Ti=A4;Ti—1 + Bi.

Consider aslab of widthb = 20cm. Atx = 0,7 = 100°Candatx = b,q = 1
kW/m?. The heat generation rate is ¢”” = 1,000 — 57 W/m>. Calculate the
steady-state temperature distribution with and without source-term linearisa-
tion. Compare the number of iterations required in the two cases for N = 22
and 42. Also calculate the heat flux at x = 0 and T;, and check the overall heat
balance. Take £ = 1 W/m-K. Use TDMA.

Consider a nuclear fuel rod of length L and diameter D. The two ends of the rod
are maintained at 7j. The internal heat generation rate is ¢”" = asin(7x/L),
where x is measured from one end of the rod and a is an arbitrary constant. The
rod loses heat by convection (coefficient /) to a coolant fluid at 7.

(a) Nondimensionalise the steady-state heat conduction equation and identify
the dimensionless parameters. [Hint: Define 0 = (T — Tw)/(To — Tto),
x*=x/L,Pi=al?/k(Ty— Ty),and P, = 4h L?/(k D).]

(b) Compute the temperature distribution in the rod and compare with the exact
solution for 0 < P;, P, < 10. Use source-term linearisation and TDMA.
Carry out an overall heat balance from the computed results

(c) Solve the problem for P; = P, = 10 using different underrelaxation pa-
rameters 0 < o < 2 for N = 22 and N = 42. Determine o in each case.
Use uniform grid spacing and the GS procedure.
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To

Figure 2.13. Circumferential fin.

12.

13.

14.

15.

Exploit the symmetry in Exercise 11 at L/2 and compute the temperature
distribution over 0 <x < L/2. Compare the value of 7;,, with the exact
solution.

Consider the fin shown in Figure 2.13. The following are given: T,, = 25°C,
Ty = 200°C, B = 2 mm, L = 6 mm, tube diameter D = 4 mm, kg, = 40 W/m-
K, h =20 W/m*-K, and h; = 200 W/m?-K.

(a) Write the appropriate differential equation for steady-state heat transfer
and the boundary conditions to determine the temperature distribution in
the fin.

(b) Discretise the equation assuming six nodes (four control volumes) and list
AE, AW, Su, Sp, and AP for each node.

(c) Evaluate the effectiveness of the fin.

Consider a rod of circular cross section (L = 10cm,d =1 cm, £k = 1 W/m-K,
p =2,000 kg/m?, and C = 850 J/kg-K). The rod is perfectly insulated around
its periphery. At ¢ = 0, the rod is at 25°C. Fort > 0, T\—o = 25°Cand T\~ =
25 4 t(s)°C. Compute temperature distribution in the rod as a function of x
and ¢ over a period of 15 min using ¢ = 0, 0.5, and 1. Also determine ¢,— as
a function of time and plot the variation. Take N = 22 and Af = 5 s in each
case.

Consider a rod of circular cross section (L = 10cm,d = 1 cm, £k = 1 W/m-K,
p = 2,000 kg/m?, and C = 850 J/kg-K). The rod is initially at 600°C. The
temperatures at the two ends of the rod are suddenly reduced to 100°C and
maintained at that temperature. The rod is also cooled by natural convection
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to surroundings at 25°C. If h = 3(Tiq — Too)®? W/m?-K, perform the
following:

(a) Compute the variation of 4 with time at x = 5 cm and x = 9 cm over a
period of 1 min. Take Az = 1 s and ¥ = 1 and use TDMA.

(b) Compute the percentage reduction in the energy content of the rod at the
end of 1 min.

(c) Extend the calculation beyond 1 min and estimate the time required to reach
near steady state. (Hint: You will need to specify a criterion for steady state.)

Consider an unsteady conduction problem in which 7} is given. However, at
x = L, the heat transfer coefficient is specified. By examining the discretised
equation fora general node i, fornodei = 2,and fornodei = N — 1, determine
the stability constraint on Az. Assume uniform control volumes, constant area,
and conductivity with ¢” = 0 and ¢ = 0.

A semi-infinite solid is initially at 25°C. At ¢ = 0, the solid surface (x = 0) is
suddenly exposed to ¢y, = 10 kW /m?. A thermocouple is placed at x = 1 mm
to apparently measure the surface temperature. Compute the temperature distri-
bution in the solid as a function of x and ¢ and estimate the error in the thermo-
couple reading as a function of time. Carry out computations up to 1 s. Given
are the following: k = 80 W/m-K, p = 7, 870 kg/m?, and C = 450 J/kg-K.
[Hint: The boundary condition at x = oo is 7; = 25°C at all times. Choose
sufficiently large L (say 1 cm) and execute with Az = 0.01 s.]

A laboratory built in the Antarctic has a composite wall made up of plaster
board (10 mm), fibreglass insulation (100 mm), and plywood (20 mm). The
inside room temperature is maintained at 7; = 293 K throughout. The plywood
is exposed to an outside temperature 7, that varies with time 7 (in hours) as

273—|—5sin<lt) for  0<¢<12h,
- 12
-

273 + 30sin (%r) for 12 <t <24h.

(a) Compute the heat loss to the outside over a typical 24-h period (i.e., under
periodic steady state) in J/m?.

(b) Plot the variation of interface temperatures between the plasterboard and
the fibreglass and between the fibreglass and the plywood as a function of
time. Assume: #; = 15 W/m?-K and &, = 60 W/m?-K. Material properties
are given in Table 2.9.

Solve for fully developed laminar flow in a concentric annular (* = R;/R, =
0.6) duct. Compare the predicted velocity profile with the exact solution [33]

SIRGENO)]
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Table 2.9: Properties of the wall materials.

Material p (kg/m®) C [J/kg-K) k (W/m-K)
Plasterboard 1000 1380 0.15
Fibreglass 30 850 0.038
Plywood 545 1200 0.1

20.

21.

where B = (r*z —1)/Inr* and 4 =1+ #* — B. Hence, compare the pre-
dicted friction factor based on a hydraulic diameter Dy, = 2 (R, — R;) with

(f Re)p, = ; (1 —r*2>.

Solve Equation 2.78 for turbulent flow in a circular tube and compare your
results with the expressions [33]

y*, yt<11.6

u
— = 1.5(1 R
u; 2.5In |yt 151 +r/R)
1+ 2(r/R)?
Also compare the predicted friction factor f with ' = 0.079Re%% for Re <
2 x 10*and with f = 0.046Re~2 for Re > 2 x 10*. Plot the variation of total

(laminar plus turbulent) shear stress with radius r. Is it linear? (Hint: Make sure
that the first node away from the wall is at y* ~ 1.)

i| +5.5, yt > 11.6.

Engine oil enters a tube (D = 1.25 cm) at uniform temperature 73, = 160°C.
The oil mass flow rate is 100 kg/h and the tube wall temperature is maintained at
Tw = 100°C. Ifthe tube is 3.5 m long, calculate the bulk temperature of oil at exit
from the tube. The properties of the oil are p = 823 kg/m®, C, = 2,351 J/kg-K,
v = 107>m?/s, and k = 0.134 W/m-K. Plot the axial variation of Nusselt num-
ber Nu, and bulk temperature 7, , and compare with the exact solution given
in Table 2.10.

Table 2.10: Thermal entry length solution - T, =
constant [33].

(x/R)/(RePr) Nuy (Tw — Tv)/(Tw — Tin)
0 o0 1.0

0.001 12.80 0.962

0.004 8.03 0.908

0.01 6.0 0.837

0.04 4.17 0.628

0.08 3.77 0.459

0.10 3.71 0.396

0.20 3.66 0.190

00 3.66 0.0




52

22.

23.

24.

25.

26.

27.

1D HEAT CONDUCTION

It is proposed to remove NO from exhaust gases of an internal combustion
engine by passing them over a catalyst surface. It is assumed that chemical
reactions involving NO are very slow so that NO is neither generated nor
destroyed in the gas phase. At the catalyst surface, however, NO is absorbed
at the rate of m” = Kpnwy, where the rate constant K = 0.075 m/s and w
is the mass fraction of NO at the catalyst surface. In the exhaust gases (7' =
500°C, p =1 bar, M = 30) the mole fraction of NO is Xnxo = 0.002. Now,
it is assumed that NO diffuses to the catalyst surface over a stagnant layer of
1 mm with effective diffusivity = 3 x D, where D = 10~ m?/s. Determine
the steady-state absorption rate (kg/m?-s) of NO and its mass fraction at the
surface.

The mass fraction of carbon in a low-carbon steel rod (2 cm diameter) is 0.002.
To case-harden the rod it is preheated to 900°C and packed in a carburising
mixture at 900°C. The mass fraction of carbon at the rod surface is now 0.014
and is maintained at this value. Calculate the time required for the carbon mass
fraction to reach 0.008 at a depth of I mm from the rod surface. Assume radial
diffusion only. In this case, cross-sectional area 4 = 2. However, since the
penetration depth is only 10% of the rod radius, one may take 4 =27 R =
constant (i.e., assume plane diffusion). Compare the time required in the two
cases. Take the diffusivity of carbon in steel to be D = 5.8 x 1071 m%/s.

Gaseous H, at 10 bar and 27°C is stored in a 10-cm inside diameter spher-
ical tank having a 2-mm-thick wall. If diffusivity of H, in steel is D =
0.3 x 107!2 m?/s and solubility S = 9 x 1072 kmol/m>-bar, estimate the time
required for the tank pressure to reduce to 9.9 bar. Also, plot the time variation
of tank pressure py, and the instantaneous hydrogen loss rate. Take pgeel =
8,000 kg/m>. The density of hydrogen at the inner surface of the tank is given
by pu,.i = Spu, My, . Is an exact solution possible for this problem?

Consider steady-state heat transfer through the composite slab shown in
Figure 2.14. Assume k; = 0.05(1 + 0.008 T7'), k> = 0.05(1 4+ 0.0075T'), and
ks = 2 W/m-K, where T is in degrees centigrade. Calculate the rate of heat
transfer and the temperatures of the two interfaces. Ignore radiation.

Repeat Exercise 25 including the effect of radiation. The emissivities at x = 0
and x = 17 cm are 0.1 and 0.8, respectively. In this problem, one must use the
concept of effective heat transfer coefficient Aegr = & + hyaq. Thus, at x = 0,
for example,

her = 50 +0.10 (Too + Trmo) (T2 + Ty)

where the Stefan—Boltzmann constant o = 5.67 x 10~% W/m*’—K*, and T,
T—p are in Kelvin.

Consider fully developed turbulent heat transfer in a circular tube under con-
stant wall heat flux conditions. Equations 2.80 and 2.81 are again applicable
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h =50 W/m*K

Scm 10 cm 2 cm

T, =600 C T,=50C

/ h=5W/m?K

Figure 2.14. Composite slab.

28.

29.

30.

but the fully developed velocity profile is determined from Exercise 19.
Also, k in Equation 2.80 is replaced by (k + k), where k; = C, i/ Pry. Cal-
culate the Nusselt number Nu for different Reynolds numbers at Prandtl
numbers Pr = 1, 10, and 100. Take Pr = 0.85 + 0.039(Pr + 1)/ Pr. Com-
pare your result with following correlations: (a) Nu; = 0.023 Re’® pr04
and (b) Nu; =5+ 0.015 Re™ Pr", where m = 0.88 — 0.24(4 + Pr)~! and
n=0.33340.5exp(— 0.6 Pr).

Consider laminar fully developed flow and heat transfer in a circular tube under
constant wall heat flux conditions. The fluid is highly viscous. Therefore, Equa-
tion 2.80 must be augmented to account for viscous dissipation s (du/dr)?.
Calculate Nu and compare your result with Nu = 192/(44 4 192 Br), where
the Brinkman number Br = u%° / (¢w D). In this problem, Equation 2.81 must
be modified as follows:

T dTy,  2(qw+4pu’/R)
0z  dz pCpuR ’

Explain why.

Repeat Problem 1 from the text using ¥ = 0.3 and ¥ = 0.7. Choose N = 7.
Determine the largest allowable time step using constraints (2.36) and (2.37).
Compare your solution for the time required for adhesion with the exact solution
determined in Exercise 2.

Consider fully developed laminar flow of a non-Newtonian fluid between two
parallel plates 2b apart. For such a fluid, the shear stress is given by

-1
" Qu

@$

ou

Tyx = U @
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where n may be greater or less than 1. Forn = 1, a Newtonian fluid is retrieved.
Compare the computed velocity profile with the exact solution

u 2n+1 1 (y)(n+1)/n
U n+l b ’

where y is measured from the symmetry axis.

In Exercise 30 consider fully developed heat transfer under an axially constant
wall heat flux condition. Compare your computed result for this case with
_ hDy 1 @n+1)Sn+2)
k R2n24+17n+2"°
where hydraulic diameter D, = 4b.

Nu




3 1D Conduction—-Convection

3.1 Introduction

Consider a 1D domain (0 < x < L) through which a fluid with a velocity u is
flowing. Then, the steady-state form of the first law of thermodynamics can be
stated as

gy
=5, (3.1)
where
aT
G = q=™ + g = pCyuT —k——. (3.2)

These equations are to be solved for two boundary conditions, 7 = Ty at x =0
and T = T at x = L. It is further assumed that p u is a constant as are properties
C, and k.

Our interest in this chapter is to examine certain discretisational aspects as-
sociated with Equation 3.1. This is because in computational fluid dynamics
(momentum transfer) and in convective heat and mass transfer, we shall recur-
ringly encounter representation of the total flux in the manner of Equation 3.2.
Note that if ¥ =0, only conduction is present and the discretisations carried
out in Chapter 2 readily apply. However, difficulty is encountered when con-
vective flux is present. The objective here is to understand the difficulty and
to learn about commonly adopted measures to overcome it. In the last section
of this chapter, stability and convergence aspects of explicit and implicit proce-
dures for an unsteady equation in the presence of conduction and convection are
considered.

3.2 Exact Solution

Because our interest lies in examining the discretisational aspects associated with
convective—conductive flux, we take the special case of S = 0. For this case, an
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1.0

0.8

0.6

0.4

0.2

00 1 1 I
0.00 0.25 0.50 0.75 1.00

Figure 3.1. Effect of P — exact solution.

elegant closed-form solution is possible. Thus, we define

T—-T,
d = , (3.3)
T — Ty
x
X = T 34
; (3:4)
p_ pCpu  Convective flux (3.5)

k/L ~ Conduction flux’

where P is called the Peclet number. Therefore, Equations 3.1 and 3.2 can be
written as

9 JD
Zlre-""1|=0 (3.6)
9X X

with ® =0at X =0and ® = 1 at X = 1. The exact solution is
— == — (3.7)

The solution is plotted in Figure 3.1 for both positive and negative values of P.
Negative P implies that the fluid flow is from x = L to x = 0 (or u is negative).



3.3 DISCRETISATION

It will be instructive to note the tendencies exhibited by the solution.

1. Figure 3.1 shows that irrespective of the value of P, ® always lies between 0
and 1. This means that ® at any x is bounded between its extreme values.

2. When P = 0, the conduction solution is obtained and, as expected, the solution
is linear.

3. At X = 0.5 (i.e., at the midpoint)

exp(0.5P)—1

O == AT (3.8)

It is seen from the figure that as P — + o0, ®(0.5) — 0 and as P — — oo,
@ (0.5) — 1. Thus, at large values of | P|, the midpoint solution tends to a value
at the upstream extreme.

This last comment is particularly important because a large | P| implies domi-
nance of convection over conduction. As we will shortly discover, the main difficulty
in obtaining numerical solution to Equation 3.6 is also associated with large | P|.

3.3 Discretisation

Equation 3.6 will now be discretised using the [OCV method. Then with reference
to Figure 2.3 of Chapter 2, we have

/ei[Pcb—@]dX:o, (3.9)
W 0X 9X
or
Po.— 22| _po,+ 22| o (3.10)
30X |, X |,

Now, as in the case of conduction, it will be assumed that ® varies linearly between
adjacent nodes. Also, though not essential, we shall assume a uniform grid so
that AX. = AXy = AX. Thus, since the cell face is midway between adjacent
nodes,

1 1
P, = 3 (P + Pp), o, = > (Pw + Dp) (3.11)
and
i) b — O i) $p — D
9Pl _ Pe— P et I 0\ (3.12)
X |, AX 0X w AX

This practise of representing cell-face value and cell-face gradient is called the
central difference scheme (CDS). Substituting Equations 3.11 and 3.12 in Equa-
tion 3.10, we have

P 1
— (O —Dy)— — [P —2D ) =0. 3.13
2( E w) AX[ E p+ Owl (3.13)
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Clearly, the first term represents the net convection whereas the second term rep-
resents the net conduction. However, note that, unlike in the conduction term, ®p
does not appear in the convection term.

Equation 3.13 will now be rewritten in the familiar discretised form to
read as

AP ®p = AE O + AW Dy, (3.14)
where
P
AE = (1 — —°) , (3.15)
2
P
AW = <1+?°>, (3.16)
and
ul Ax u Ax
P.=PAX=—"-= , (3.18)

o L o

where o = k/(p C),) is the thermal diffusivity and P is called the cell Peclet num-
ber. If we now invoke Scarborough’s criterion, it is clear that Equation 3.14 will be
convergent only when AE and AW are positive. This implies that the condition for
convergence is

[P | < 2. (3.19)

Thus, when convection is very large compared to conduction, to satisfy condition
(3.19), one will need to employ very small values of AX or a very fine mesh.
However, this can prove to be very expensive.

The more relevant question, however, is, Why do AE and/or AW turn neg-
ative when convection is dominant? The answer to this question can be found
in Equation 3.11, where, contrary to the advice provided by the exact solution,
the cell-face values are /inearly interpolated between the values of @ at the adja-
cent nodes. Note that when P, > 2 and large, the exact solution gives &, — ®p
and &, —» . Similarly, when P, < —2, &, — &g and &, — Dp. In Equa-
tion 3.11, we took no cognizance of either the direction of flow (sign of P.) or its
magnitude.

To obtain economic convergent solutions, therefore, one must write

Qe =y Pp + (1 — ) P, Py =y Py + (1 -9)Pp,  (3.20)



3.4 UPWIND DIFFERENCE SCHEME

where 1 is sensitized to the sign and the magnitude of P.. Note that, in Equa-
tion 3.11, we took ¥ = 0.5, an absolute constant.

3.4 Upwind Difference Scheme

The upwind difference scheme (UDS) was originally proposed in [8] but later in-
dependently developed by Runchal and Wolfshtein [60] among others. The scheme
simply senses the sign of P, but not its magnitude. Thus, instead of Equation 3.11,
we write

1 1

P®.= 3 [P+|P|] &+ [P —|P|] @, (3.21)
1 1

Py =5 [P+|Pl] Gy +5 [P~ Pl &r. (3.22)

These expressions show that when P > 0, &, = ®p and ®,, = Py. Similarly,
when P < 0, &, = &g and &, = $p. That is, the cell-face values always pick
up the upstream values of @ irrespective of the magnitude of P, hence, giving
rise to the name of this interpolation scheme as the upwind difference scheme.
Substituting these equations in Equation 3.10, we can show that Equation 3.14 again
holds with

1

AE =1+ (1P| = P). (3.23)
1

AW =1+ (1P| + P, (3.24)

and AP = AE + AW .Equations 3.23 and 3.24 show that, irrespective of the mag-
nitude or sign of P (or P;), AE and AW can never become negative. Also, AP
remains dominant. Therefore, obstacles to convergence are removed for all values
of P,. This was not the case with CDS.?

Physically, the UDS can be understood as follows: Imagine standing at the middle of a long cor-
ridor at one end of which there is an icebox (at 7i.) and at the other end a firebox (at Tfe).
Then, neglecting radiation, the temperature experienced by you will be 7, = 0.5 (Tice + Tfire)
when the air in the corridor is stagnant and heat transfer is only by conduction. Now, imag-
ine that there is air-flow over the firebox flowing through the corridor in the direction of the
icebox. You will now experience Tj, that weighs more in favour of Ty, than Ti.. The reverse
would be the case if the airflow was from the icebox end and towards the firebox end. The UDS
takes an extreme view of both situations and sets 7;,, = 7§, in the first case and 7T}, = T in the
second case.

Incidentally, with respect to Equation 3.20, we may generalise AE and AW coefficients for both
CDS and UDS in terms of ¥ as

AE=1—(1—y)P., AW =1+ P, (3.25)

¥ =0.5 (CDS), Y= % (1 + 'i“') (UDS). (3.26)
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Table 3.1: ®p values for g = 1 and &y = 0.

P. Exact CDS ubs HDS Power
10 0.454e—4 -2 0.0833 0.0 0.0
8 0.335¢—3 —-1.5 0.100 0.0 0.40e—4
6 0.247e-2 —-1.0 0.125 0.0 0.17e—2
4 0.018 —0.5 0.167 0.0 0.0187
2 0.119 0.0 0.25 0.0 0.123
1 0.269 0.25 0.333 0.25 0.271
0 0.5 0.5 0.5 0.5 0.5
-1 0.731 0.75 0.667 0.75 0.729
-2 0.881 1.0 0.75 1.0 0.981
—4 0.982 1.5 0.833 1.0 1.0
—6 0.998 2.0 0.875 1.0 1.0
-8 1.0 2.5 0.900 1.0 1.0
—-10 1.0 3.0 0.917 1.0 1.0

3.5 Comparison of CDS, UDS, and Exact Solution

To compare the exact solution with CDS and UDS formulas, let L = 2 Ax. Then,
it can be shown that (see Equation 3.7)
o1 exp(2 Pex*)—1 D + exp(2 Pex*)—1
exp(2P)—1 exp(2P,)—1
where x is measured from node W and x* = x /(2 Ax). Therefore, ®p (x* = 0.5)

is given by

AT

] o, (3.27)

i| dg, (Exact).

exp(2F)—1 exp(2FP)—1
(3.28)
The corresponding CDS and UDS formulas are
1 P 1 P,
Pp==(1—-= )P+ |1+=])D CDS), 3.29
P 2( 2) E+2<+2> w o ( ) (3.29)
1 -05(F —| P 14+05(P.+ | P
CDP:[ (P —| D]CDE [ +0.5(P; +| |)]q>w (DS,
24P 24P
(3.30)

In general, & and ®w may have any value. However, to simplify matters,
we take the case of &g = 1 and ®w = 0 and study the behaviour of ®p with P..
Values computed from Equations 3.28-3.30 are tabulated in Table 3.1 and plotted in
Figure 3.2. Two points are worth noting:

1. The CDS goes out of bounds for | ;| > 2. For this range, the CDS is also not
convergent as was noted earlier. It is a reasonable approximation to the exact



3.6 NUMERICAL FALSE DIFFUSION

-10 -5

Figure 3.2. Comparison of CDS and UDS with exact solution.

solution when | P;| — 0. In spite of this, mathematically speaking, CDS is taken
as the best reference case to compare all other differencing approximations
because the CDS representation evaluates both convective and conductive con-
tributions with the same approximation. That is, the spatial variation of & is
assumed to be linear between adjacent grid nodes.

2. Although UDS is convergent at all values of P, and nearly approximates the
exact solution for | P;| — oo, it is not a very good approximation to the exact
solution at moderate values of | P.|. Also, UDS deviates from CDS for | P.| < 2.

3.6 Numerical False Diffusion

It was already noted that CDS is mathematically consistent. We consider the CDS

formula (3.13) again and write it as

P
7°(c1>E — dy)— [P —2Dp+ DPw]=0 (CDS).
Now, consider UDS formula (3.30) for P, > 0 (say):

P (Pp — Py) — [P —2Pp + Py ] =0

(UDS).

10

(3.31)

(3.32)
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To compare CDS and UDS formulas, we modify Equation 3.32 to read as®
| P |
2

Comparison of Equation 3.33 with the CDS formula (3.31) raises several inter-
esting issues:

%(@E—epw)—(w )[q>E—2q>P+q>W]=o (UDS). (3.33)

1. Recall that the first term in Equation 3.31 corresponds to the convective con-
tribution whereas the second term corresponds to the conductive contribution.
Further, since P is constant, we may view Equation 3.6 as

AP 9’

aX X2
If we discretise both the first and the second derivative through a Taylor series
expansion, it will be found that the CDS formula (3.31) represents both the
derivatives to second-order accuracy.

2. Equation 3.32, in contrast, suggests that UDS represents the convective contri-
bution to only first-order accuracy, whereas the conductive contribution is still
represented to second-order accuracy. Mathematically speaking, therefore, the
estimate of the convective contribution will have an error of O (Ax).

3. In Equation 3.33, this error is reflected in the augmented conduction coefficient

(3.34)

because the convective term is now written to second-order accuracy as in the
CDS formula. Mathematically speaking, therefore, it may be argued that the
second-order-accurate UDS formula represents discretisation with augmented
or false conductivity kgye = p Cp, | u | Ax /2. In fact, it can be shown that Equa-
tion 3.33 is nothing but a CDS representation of

9 pCylulAx\ T
— | pCoulT —[k+—L ") — |[=0. 3.35
ax [p rt ( + 2 )8x} (3:33)

Thus, if the last comment is given credence, then clearly the UDS represents
distortion of reality and is therefore a poor choice. Yet, the closeness of the UDS
result to the exact solution shown in Figure 3.2 suggests that the so-called false
conductivity is indeed needed. In fact, it is this false conductivity that reduces the
value of the effective Peclet number and thereby ensures convergence of the UDS
formula for all Peclet numbers.

Patankar [49] has therefore argued that to form a proper view of false diffusion,
it is necessary to compare the UDS with the exact solution rather than with the
second-order-accurate CDS formula. This is yet another example where the TSE
method is found wanting.

Of course, this is not to suggest that the UDS formula is the best representation
of reality. The properties embodied in the UDS formula suggest that one can derive
other variants that will sense not only the sign of P, but also its magnitude. Further

3 Equation 3.33 can also be derived for P, < 0.



3.8 TOTAL VARIATION DIMINISHING SCHEME

considerations associated with false diffusion in multidimensional flows will be
discussed in Chapter 5.

3.7 Hybrid and Power-Law Schemes

Spalding [75] derived a hybrid difference scheme (HDS) such that, in Equation 3.20,
Y is given by

v = % [PC ~ 14 max (—Pc, - % 0)} (HDS).  (3.36)

Similarly, Patankar [49] argued that the best representation is the exact solution
itself (see Equation 3.28). However, this will require evaluation of exponential terms
and this is not economically attractive in practical computing. Therefore, he chose
to mimic Equation 3.28 through a power-law scheme, which implies that

1// = [Pc_ 1 +max(07_Pc)]/Pc
+max {0, (1 —0.1]P|)’} /P, (Power law). (3.37)

With these two expressions for i, it is now possible to construct AE and AW
coefficients (see Equation 3.25) for the HDS and power-law schemes. The resulting
implications for ®p are tabulated in Table 3.1. Notice that for |P.| < 2, the HDS
results match exactly with those of the CDS. For |P.| > 2, the HDS assumes that
| P.| = oo or, in other words, conduction flux is set to zero. This may be considered
too drastic but it nonetheless ensures positivity of coefficients for all values of P..
The results from the power-law scheme, of course, do mimic the exact solution
quite well.

3.8 Total Variation Diminishing Scheme

The difference schemes discussed so far are found to be adequate when the spatial
variation of @ is expected to be smooth and continuous. Often, however, the ®
variation is almost discontinuous (as across a shock). To capture such variation,
extremely small values of Ax become necessary, resulting in uneconomic com-
putations. However, if coarse grids are employed then UDS, HDS, or power-law
schemes produce smeared shock predictions.

Total variation diminishing (TVD) schemes enable sharper shock predictions
on coarse grids. In these schemes, in addition to magnitude and sign of P, the
nature of the variation of @ in the neighbourhood of node P is also sensed. Thus,
instead of Equations 3.21 and 3.22, we write

Pd, = %(P +|PD[fiF @e+ (1 — fHPw]

PSP IR [ et (- 0], B39
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P(DW:%(P—HPD [ fd®p+ (1= 1) Pww]

1
+§(P—|P|) [ fo @w+ (1 — fi)Pe], (3.39)
where the /s are the appropriate weighting functions to be determined from
oy — CI>UU)
= = - 3.40
F=r©=r (e (3.40)

with suffix D referring to downstream, U to upstream, and UU to upstream of U.
The f.", for example, is thus a function of (®p — Py)/(Pr — Pw) and £ is a
function of (&g — ®gg)/(Pp — Dgg). Here, EE refers to the node east of node E
and WW to the node west of node W.

It is interesting to note that if f'equals its associated & then Equations 3.38 and
3.39 readily retrieve the UDS formula. Therefore, writing

fE) =&+ fc(§) (3.41)

we can show that

1
Pq)e=P©e|UDS+§(P+|P|) (Pp — Dw)
1 _
3 (P —|P]) foe (Pgg — Pp), (3.42)
1
P @y =P ®ylups + 5 (P +|P)) o (Pp — Dyyw)

1 _
=5 (P = PD) feu (P — Pw). (3.43)
Substituting the last two equations in Equation 3.10, we can show that
AP ®p = AE O + AW dw + Stvp, (3.44)

where AE, AW, and AP are the same as those for the UDS and the additional
source term Styp contains the f. terms in Equations 3.42 and 3.43, which the
reader can easily derive. The f. (&) functions for some variants of TVD schemes
are tabulated in Table 3.2.

To appreciate the implications of the TVD scheme, consider the case in which
P, > 0. Then, from Equation 3.42, P ®. = P ®p + P [} (P — Pw) and & =
(Pp — Pw)/(Pg — Pw). Therefore, using the Lin—Lin scheme, for example, we get

cDPaS > (09 1),

2q)P - q)Wv S € (07 03)7
o.=1 5 3 (3.45)

1
- ® — Qg — — Dy, £ €(0.3,5/6),
2 P+8 ET 3 w, & € ( /6)

®p, & € (5/6, 1.0).




3.9 STABILITY OF THE UNSTEADY EQUATION

Table 3.2: Function f; (£).

Scheme Range of ¢ fe

Second-order —00<é <o &2

UPWIND

QUICK [42] —00<é < 3/8 —&/4

HLPA [90] E>[0,1] 0
§£€[0,1] §(1-¢)

Lin—Lin [43] E>[0,1] 0
£€[0,0.3] &
£e€[03,5/6] 3/8—£&/4
§e[5/6,1] -4

Thus, for positive P., whereas UDS will always return &, = ®p, the TVD scheme
returns different values of ®. depending on the value of & (or shape of the local
® profile). In fact, as the last expression shows, even a downwind value may be
returned. The TVD schemes thus typically switch among upwind, central-like, and
downwind (DDS) schemes.

3.9 Stability of the Unsteady Equation
We now consider the unsteady conduction—convection equation

oT oT T
pCp—+pChu— =k

— 3.46
P ot dx 9x2 (3.46)

where all properties and u (positive) are constant. Now, let X = x/A, T = ot /A2,
and P = u A/a, where X is an arbitrary length scale to be further defined shortly.
Then, Equation 3.46 will read as

oT oT  9°T

—+P—=— 3.47
ot + X X2 ( )
3.9.1 Exact Solution
Ifat ¢t = 0, with 7 = Tjsin (X), the exact solution to Equation 3.47 is
T = Tyexp(—1)sin(X — P ). (3.48)

The solution represents a wave that moves P At to the right in each time interval
At. The amplitude of the wave is Ty exp (—7). Thus, over a time interval At, the
amplitude ratio (or the amplitude decay factor) AR is given by

_ Tyexp [—(r + A7)]
N Toexp(—7)

AR

=exp(—AT). (3.49)
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To understand the relevance of AR, let 7p be the temperature at Xp after the
first time step. Then, from Equation 3.48, it follows that
T
- P =exp(—AT) = AR, (3.50)
Tosin(Xp + €)

where the wave propagation speed € is given by

At
ot = —P AT = —”A . (3.51)

Finally, we note that the arbitrary length scale A is nothing but the wave-
length and the propagation speed depends on A. This dependence on A is called
dispersion.

3.9.2 Explicit Finite-Difference Form

Since P > 0, using UDS, the explicit discretised form of Equation 3.47 will read as

To = AETS + AW Ty + (1 — (AE + AW)} TP, (3.52)
where
AE = BF aw =2 L p At (3.53)
TOAXY T AX? AX’ '

Now, consider the first time step. Then, 7y = Ty sin(Xp), T = Tpsin(Xp +
AX), and T = Ty sin(Xp — AX). Therefore, after some manipulation, it can be
shown that

Tp
Ty sin (Xp)

tan egp
tan (Xp)

=[1—(4E + AW)(1 —cos AX)] x [1+ } (3.54)

where

(AE — AW)sin(AX)
1 —(AE + AW)(1 —cos AX)'
In these equations, the suffix ED denotes explicit differencing. Now, consider the
identity

tane€gp = (3.55)

. . tan egp
sin(Xp + €gp) = sin(Xp)cos(egp) | 1 + . (3.56)
tan (Xp)
Substituting Equation 3.56 in Equation 3.54, it follows that
T 1 —(AE + AW)(1 —cos AX
ARgp = ——F _1ZUEF AN ZcosAY) 5 5
To sin(Xp + €gp) COS €Ep

Now, let us consider tendencies of 4 Rgp and tanegp for fine (AX — 0) and
coarse (AX — ) grids.* These are shown in Table 3.3.

4 Note that I — cos AX = 2sin’* (AX/2).
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Table 3.3: Comparison of exact and explicit-differencing solutions.

Exact Fine grid Coarse grid

Wave speed —P AT €gp — —P AT egp — 0
1-0.5 (AE+AW) AX? 12 (AE+AW)

AR exp(—Ar) COS emp COS emp

The table shows that, for fine grids, egp behaves in a correct manner but, for
coarse grids, egp does not demonstrate the expected dependence on A. Therefore, for
reasonable accuracy, AX < 1, which implies that one must live with dispersion.
Now, instability occurs when absolute amplitude ratio exceeds 1. Thus, for stability,

Tp

|AR| = | ——
Tosin(Xp + €)

<1 (3.58)

From Table 3.3, therefore, we must have

At At .
1-4 —2P—| <1 (coarse grid),
AX? AX
AX
' 1 - At (1 + P T)‘ < cosegp  (fine grid). (3.99)

These equations show that, to meet the stability requirement, At must be limited
to a small value. In pure conduction (P = 0), we had already stated these require-
ments and showed consequences of their violation through a worked example. For
the entire range of Ps, however, it is best to observe the following conditions for
stability [76]:

At 1 AT

The first condition is operative when P — 0; the second when P is large.

3.9.3 Implicit Finite-Difference Form
The implicitly discretised form of Equation 3.47 will read as
(1+AE+AW)Tp = AETe + AW Tw + Ty (3.61)

Therefore, substituting for 7p, Tg, Tw, and T for the first time step, we can show
that

(14 AE + AW)sin(Xp +€) = AEsin(Xp + AX + €)
+ AW sin(Xp — AX + ¢€)
+ sin(Xp)exp (A7), (3.62)
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where € is given by Equation 3.51. To derive an expression for tanep (where the
subscript ID stands for implicit differencing), therefore, let Xp = 0. Then, from
Equation 3.62, it can be shown that

(AE — AW)sin(AX)
1+ (AE + AW)(1 —cos AX)'

tanep = (3.63)

Equation 3.63 again shows that, as AX — 0, €;p — €cxact- Also, notice that the
denominator of this equation with a plus sign before (4£ + A W) is not the same
as the denominator in Equation 3.55. The plus sign indicates that the propagation
wave will be more severely damped than in the explicit procedure and this damping
will be greater for large A X (small wavelength) than for small AX. Now, to derive
an expression for A Rip, let Xp = /2. Then, using Equations 3.62 and 3.63, we
can show that

Tp COS €1p

ARp = - = .
ToSln(Xp+6]D) 1 —|—(AE—|—AW)(1 —COSAAXj

(3.64)

Again, this expression is different from Equation 3.57. Equation 3.64 shows
that when AX and ep are small, ARp=[1+ (4E + AW) AX2/2]7l =
(14+ A7)"' ~1+ At — exp(—At)asrequired. When AX = 7 (i.e., foracoarse
grid), however, AR|p = cosep/[1 +2(AE + AW)].

These remarkable results show that 4 Rjp can never be greater than 1 because
neither 4AE nor AW can be negative. Thus, the implicit discretisation is uncondi-
tionally stable and there is no restriction on the time step. Again, in pure conduction
(P = 0), we had demonstrated this result in Chapter 2 through a worked example.
The implicit discretisation is thus safe. The only disadvantage is that the discretised
equation must be solved iteratively rather than by a marching procedure, which is
possible in an explicit scheme.

The conclusions arrived at in this section apply equally to variables other than
T, to nonuniform grids, to ®-dependent coefficients, and to multiple dimensions.

EXERCISES
1. Derive Equation 3.7.

2. Show that the CDS formula (3.31) is second-order accurate for both the first
and the second derivatives.

3. Show that the UDS formula (3.32) represents convection to only first-order
accuracy.

4. Show that the UDS formula is a CDS representation of Equation 3.35.

5. Show correctness of the HDS (3.36) and power-law (3.37) expressions by
recalculating the ®p values shown in Table 3.1.



EXERCISES

6.

10.

11.
12.
13.

Consider the steady 1D conduction—convection problem discussed in this chap-
ter. Assume a nonuniform grid (i.e., Ax. # Axy). Hence, derive expressions for
AE, AW ,and A4 P using the power-law scheme. If &g = 1 and dw = 0, calcu-
late ®p for P, = u Ax./a = —10, =5, —1,0, 1,5, and 10 when Ax./Ax,, =
1.2. [Hint: Start with Equation 3.20 with ¢, = F(P,) and ¥, = F(F,,).]

. Show that if f'in Equation 3.40 equals its associated &, Equations 3.38 and 3.39

will yield the UDS formula. Hence, derive Equations 3.42 and 3.43 and the
expression for the Styp term in Equation 3.44.

. Use ®g = 1 and ®w = 0 and determine the variation of ®p with P, for the

TVD scheme when ®gg = 5 and ®ww = —0.1. Assume —200 < P, < 200
and use the Lin—Lin and HLPA schemes. Assume a uniform grid. Compare
your results with those given in Table 3.1 and comment on the result. (Hint:
Iterations are required.)

. Show that for a general differencing scheme, the false conductivity is given

by kgase = p Cpu Ax (¥ — 0.5), where ¥ is defined by Equation 3.20. Hence,
compare ke,se for UDS and HDS and comment on the result. Assume a uniform
grid.

Runchal [61] developed a controlled numerical diffusion with internal feed-
back (CONDIF) scheme capable of sensing the shape of the local ® profile.
According to this scheme, AE and AW in Equation 3.14 are given by

1 |Pc|_Pc |Pc|+Pc
ap=1+ () B av=reaen B
where

_0D/0X|.  (Pp— Dp) AKX,

CAD/dXN | (Pp— Pw)AX.

Further, the values of R are constrained as follows: If R < 1/R.x then R =
1/Rmax; if R > Rpax then R = Ry« Typical values assigned to Ry.x vary
between 4 and 10. Assuming a uniform grid, show that

(a) If R = 1, the CONDIF scheme is the same as the UDS.

(b) CONDIF represents both convection and diffusion terms to second-order
accuracy irrespective of the sign and the magnitude of the Peclet number.

(c) Taking ®w = 0 and ®g = 1, compare values of ®p for | P, | < 20 with the
exact solution given in Table 3.1. Carry out this comparison for Ry, = 4
and 10.

Derive Equations 3.55, 3.57, 3.63, and 3.64.
Starting with Equation 3.59, show the correctness of Equations 3.60.

Verify that T = Tyexp(—t)sin(X) is an exact solution to the unsteady heat
conduction equation 97 /3t = 9>T /9 X>.
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14. It is desired to investigate stability of the equation in Exercise 13 for differ-

ent values of weighting factor ¥ (see Equation 2.6) so that the equation will
read as

oT 92T L) 92T°
ax2’

e~ Vax
(a) Obtain a discretised analogue of this equation and substitute the exact
solution for temperatures at P, E, and W. Set Xp = /2 and show that

1 —4A4(1 — y)sin® (AX/2)

P (AT = S (AX)2)

’

where 4 = AE = AW = At/(AX) .
(b) Hence, show that AR for any Xp is given by

Tp

AR = To = exp(—AT).
P

(c) For stability, | AR| < 1. Hence, show that for ¢ < 0.5, the solution is sta-

ble when A4 < 0.5/(1 — 2) whereas, for 0.5 < ¢ < 1, the solution is

unconditionally stable.



4 2D Boundary Layers

4.1 Governing Equations

It will be fair to say that the early developments in CFD and heat and mass transfer
began with calculation of boundary layers. The term boundary layer is applied to
long and thin flows: long in the streamwise direction and thin in the transverse
direction. The term applies equally to flows attached to a solid boundary (wall
boundary layers) as well as to jets or wakes ( free-shear layers).

Calculation of boundary layer phenomena received a considerable boost follow-
ing the development of a robust numerical procedure by Patankar and Spalding [50].
This made phenomena that were either impossible or too cumbersome to calculate
by means of earlier methods (similarity, nonsimilarity, and integral) amenable to
fast and economic computation. The procedure, for example, permitted use of vari-
able properties, allowed for completely arbitrary variations of boundary conditions
in the streamwise direction, and led to several new explorations of diffusion and
source laws. Thus, calculation of free or forced flames or wall fires could be carried
out by considering the detailed chemistry of chemical reactions. Similarly, cal-
culation of turbulent flows (and development of turbulence models, in particular)
could be brought to a substantial level of maturity through newer explorations of
diffusion and source laws governing transport of variables that characterise turbu-
lence. Computer programs based on the Patankar—Spalding procedure are available
in [50, 77, 10]. There are also other methods, for example, the Keller—Box method
described in [35].

The emphasis in this chapter is on describing the Patankar—Spalding procedure
using simple notation. The procedure generalises all two-dimensional boundary
layer phenomena by introducing the coordinate system shown in Figure 4.1. This
system permits consideration of

1. axisymmetric as well as plane flows,
2. wall boundary layers as well as free-shear layers, and
3. internal (or ducted) as well as external boundary layers.
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E Boundary

Boundary Layer
/ Axisymmetric Body

I Boundary

Axis of Symmetry

Figure 4.1. The generalised coordinate system.

Following the generalised manner of presentation introduced in Chapter 1, the
equations governing steady two-dimensional boundary layer phenomena can be
written as

Npur®) dpvrd) 9 9D
(pur®)  pvr®) 0 4 L 8], .. 4.1)
ax ay ay ay

where ® stands for u (streamwise velocity), w (azimuthal velocity), 7' (tempera-
ture), / (specific enthalpy), and w; (mass fraction). The meanings of I'¢ and Sg are
given in Table 4.1. The source terms of the # and w equations assume axisymmetry
and dp/dr — 0 so that dp/dx = dp/dx. In writing the energy equation in terms
of T', we assume the specific heat to be constant. Note that in the presence of mass
transfer, p and I" represent mixture properties and, in turbulent flows, the suffix eff
(for effective) must be attached to I". Later, we shall find that ® may also represent
further scalar variables such as turbulent kinetic energy & and its dissipation rate €.
Independent variables x and y are shown in Figure 4.1 and are applicable to both
axisymmetric and plane flows. In the latter, » = 1. It will be shown later that », y,
and angle «(x) are connected by an algebraic relation.

Table 4.1: Generalized representation of
boundary layer equation.

q) I‘@ S<I>

1 0 0

u " —dp/dx + By
w I 0

[0)% 14 Dk Rk

T k/Cy 0"/Cy

h k/ Cp Q///
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Wasted Nodes

Ymax E Boundary
=
/
/
y 0]
' A T T
X / . / X I Boundary
Too Fine Too Coarse

(a) (b)
Figure 4.2. Notion of adaptive grid.

Equation 4.1 is to be solved with appropriate boundary conditions at I (inner)
and E (external) boundaries and an initial condition at x = x, (say) for each ®.
Although the I boundary with radius 7;(x) is shown as a wall boundary, it may
well be an axis of symmetry with 7;(x) = 0. Similarly, although the E boundary is
shown as a free boundary, it may be a wall boundary. Thus, the specification of the
three types of flows mentioned here can be sensed through appropriate designation
of I and E boundaries as free, wall, or symmetry boundaries.

Finally, we note that Equation 4.1 is parabolic. This implies that the values of
® at a given x are influenced only by ® — values upstream of x; values downstream
of x have no influence. Our task now is to discretise Equation 4.1.

4.2 Adaptive Grid

It is well known from boundary layer theory that, in general, boundary layer thick-
nesses of velocity and other scalar variables can grow or shrink in an arbitrary
manner in the streamwise direction. Also, for a given domain length L (say) in
the x direction, the maximum values of thicknesses for different ®s are a priori not
known. This makes the choice of y.x [see Figure 4.2(a)] difficult if the (x, y) coor-
dinate system is used. Further, in this system, for a given number of nodes in the
y direction, the boundary layer region of interest may be occupied by too few grid
nodes, resulting in wasted nodes. Similarly, in some other regions, there may be
more nodes than necessary for accuracy. What one would ideally like is a grid that
expands and contracts with the changes in boundary layer thickness preserving the
same number of grid nodes in the transverse direction at each axial location. Such
a grid (called an adaptive grid) is shown in Figure 4.2(b) with coordinates x and
w, where w is defined as

_ VM ycw<, 42)
YE — ¥

@
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and where v is the stream function defined by

w

=—pvr, 4.3)
ax
d
W pur (4.4)
ay
Thus, at any x
w:/purdy—i-c, 4.5)

where C is a constant. The y coordinate is thus related to ¢ and the latter, in turn, is
related to w via Equation 4.2. Suffixes I and E, of course, refer to inner and external
boundaries.

4.3 Transformation to (x, w) Coordinates

Our task now is to transform Equation 4.1 from the (x, y) coordinate system to
the (x, w) coordinate syatem. To do this, we shall follow the sequence (x, y) —
(x, ¥) = (x, ). Making use of the mass conservation equation (& = 1), we can
write Equation 4.1 in nonconservative form as

od od 19 ad
plu—+v—|=-—|rI— | +S. (4.6)
dax ay r dy ay
Now, the transformation (x, y) — (x, ¥) implies that
oy 0 d
x| a_w o | T ox @7
x x 0y |, x|y
d oy 0 ad
— =_W_ =pru —| . (4.8)
ay [, 9y Iy |, oy |,
Substituting these equations in Equation 4.6, we can show that
0P 0 0P S
— == |:,0r2uF—i|+—. (4.9)
ax |, oY Y pu
Further, the (x, ¥) — (x, w) transformation implies that
od od dw| 0
—| = — — —, (4.10)
ox [, x|, Odx|[, dow|,
but, from Equation 4.2,
do| _ i[O dvn 0V
ax |y TR ax ax ax |,
_1 | 9 OVEr
1
=— — , 4.11
Vel |: 3 w ax ] (4.11)
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where, for convenience,

Vel = YE — Y1 (4.12)
Thus, substituting Equation 4.11 in Equation 4.10, we can write Equation 4.9 as
0P 0P ad od S
—| +a@+bw) — [pr uF—]—i—— (4.13)
ox |, o |, 31,0 oY
where
—1 9y
1
= _ 2 4.14
a Vel ox (4.14)
_1 0YEr
1
— 4.15
Vil o (*.15)
Now, invoking Equation 4.2 again, we obtain
Ly (4.16)
oy~ TE he’ '
Therefore, Equation 4.13 can be written as
0P 0P 0 00 S
— bw) —| =— |c— —, 4.17
ax w+(a+ ©) 8a)‘x dw [CBa)L—i_pu 417
where
c=Yg priul. (4.18)

Equation 4.17 represents Equation 4.1 in the (x, @) coordinate system in
nonconservative form. To develop the conservative counterpart, the equation is
written as

ad

0x

d 0P a S
+—|a+bo)®—c—|—-P—(@@+bw)y=—, (4.19)
ow dw dw pu

w

where, since a and b are not functions of w,
d
d—((@+bw)=>b. (4.20)
w

Now, consider the identity

od L 0Ygr 0P

o (We®)=——+@ =——-bd. 4.21
1\”EI (E”El ) = ~+ Yer = o (4.21)
Using the last two equations, we can write Equation 4.19 as
0P S
[¢EI®]+— [lﬁEI {(a-i—ba))cb—c—}] = Ve . (4.22)
dw pu

This is the required boundary layer equation in the (x, w) coordinate system
written in conservative form. It will be useful at this stage to interpret the terms
in Equation 4.22. Thus, from Equations 4.12 and 4.5, it is easy to show that g
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represents the total streamwise mass flow rate through the boundary layer at any x.
Similarly, making use of the definitions of a, b, and ¢ and using Equation 4.16, we
can show that

0 . 0P
Yeiila+bw)®—c— ¢ =rm® —rIr—, (4.23)
ow ay
where
d d
o _Yu 9 (4.24)
dw  pru dy
and
rm=rpv=(1—w)rim + wrgnmg
with  mg = (pv)E, mp = (p V). (4.25)

Thus the total transverse mass flux »z at any y is a weighted sum of mass fluxes at
the inner (#17) and external (r15 ) boundaries in the positive y direction. Equation 4.23
therefore represents the total convective—diffusive flux in the y direction. Then by
substituting Equation 4.23, Equation 4.22 can be written as
0 ] _ YmS

0 0
— P] 4+ — n® —rl— .
ox e @]+ ow [rm " ay ou

(4.26)

4.4 Discretisation

Figure 4.3 shows the (x, w) grid at streamwise location x. Suffix u refers to upstream
and d refers to downstream. Note that nodes N, P, and S are not equidistant because
Aw, in general, will not be uniform. This will become apparent in a later section.
To derive the discretised version of Equation 4.26, each term in the equation will
be integrated over the control volume. Thus, assuming source term .S to be constant
over the control volume, we have

Xd n
/ ‘”EIde //—dxdw //Srdxdy

=Srp Ax Ay = SAV, (4.27)

where
AV =rpAx Ay. (4.28)

Similarly, the streamwise convection term integrates to

/ / [P @] dx do = [ ©) — (e )], Ao (4.29)
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Xu Xd

E Boundary (j =JN)

j=IN-1

IBoundary (j=1)

Figure 4.3. The (x, w) grid.

Finally, the convection—diffusion term in the transverse direction integrates to

Yoo rmog . oD . 0D
—|rm®—rI' —|dxdo=3rm®—rI'—; Ax
w Js 0o ay ay ),

. od
— {rm@—rF—} Ax. (4.30)
ay J

Equation 4.30 implies that the net flux at the cell faces is uniform between x,,
and x4. Now, assuming /inear variation of ® between adjacent nodes gives

P (of — @9) P

wl, Awm oy

od — Ppd
_ M’ (4.31)
Ays

S

where Ay, = yn — yp and Ays = yp — ys. Note that the ®s are evaluated at xq4
rather than midway between x, and x4. However, assuming that Ax is small, this
liberty is permissible.

The next task is to evaluate convective fluxes at the cell faces. To do this, we
may use any of the schemes introduced in the previous chapter but, following
Patankar [52], we use the exponential scheme that follows from the exact solution
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to the equation

0 . 0P
— |}m<l>—rl“—i|=0. (4.32)
dy

Then, it follows that

_ ot 4 (08 — pd) | FPFa/2) — 1

D, = Of + (D oI>P)[exp(Pcn)_1 ] (4.33)
_ ol 4 (od — oty | SR Fe/2) — 1

D, = OF + (P d)s)[ oxp (Po) —1 } (4.34)

where, the cell Peclet numbers are evaluated using the harmonic mean (see Equa-
tion 2.58):

My Ayn . Yn — )P YN — Vn
S L : 435
Cn T, My |: Tp + e :| ( )
g Ays . Vs — s Yp— Vs
P =—= . 436
Cs T, ny |: T's + I'p :| ( )

Thus, substituting Equations 4.33—4.36 in Equation 4.30 and combining the
latter with Equations 4.27 and 4.29, we can show that the discretised version of
Equation 4.26 takes the following form:

AP @) = AN O + AS DL+ AU DL+ SAV, (4.37)
where
1 A
AN = 2 (4.38)
exp P, — 1
As = s A exp B, (4.39)
exp P, — 1
AU =y, Aw, AP = AU + AN + AS. (4.40)

In deriving the A P coefficient, use is made of the mass conservation equation. Thus,

n9 n9
/a—(pru)dy=—f 9 (orvydy
s Ox s dy

= — (Fn ity — Fytits) (4.41)
a3 ("9
ax Jg dy
Aw u

=~ Wi —vm).- (4.42)

Finally, the node-indexed version of Equation 4.37 can be written as
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for j=2,3,...,JN — 1. Note that superscript d is now dropped for
convenience.

4.5 Determination of w, y, and r

Equation 4.43 represents a set of algebraic equations at a streamwise location x4.
These equations can be solved by TDMA when values of @Y at x, are known along
with the two boundary conditions at x4 (i.e., at j = 1 and j = JN). Thus, starting
with x = x (say), one can execute a marching procedure taking step Ax. This
situation is very much like the unsteady conduction problem in which the marching
procedure is executed with time step Af.

Thus, at x = x¢, the u; ~ y; relationship is assumed to have been prescribed
either from experimental data or from an analytical solution. One can use this
prescription to set w; once and for all. Let

w;=wp, Wc;=0ws, Y;=1Yp, VY.;=1s,

.Vj:yP, yC,j:yS’ rj:l"P, rc,j:rs, (444)

where, atx = x¢,y,;(j =1,2,..., JN)areknown. Thus, one canset y. | = y.» =
y1 where y; refers to the I boundary and y,y to the E boundary. Now, from the
geometry of Figure 4.1, it follows that»; and 7. ; can be evaluated from the formula

r=r;+y cos(x), (4.45)

where « is function of x. This completes the grid specification at x = xy.

For evaluation of w;, we first calulate ;. Thus, setting V| = .1 = V1 (say),
where 7 is arbitrarily chosen, one can use Equation 4.5 to set all other ;. The
relevant discretised equations are

wC,j = wc,j—l + (pru)j_l (yc,j — yc,j—l)’ ] = 2, 3, ey JN, (446)

Vi =v;—1+05{(pru); +(oru)—1 } vy —yi-1),  j=2,3,....JN.
(4.47)

It is now a simple matter to evaluate @; and w, ; using definition (4.2). Thus,
w; at y; represents the ratio of streamwise mass flow rate from y; = y; to y; to the
total mass flow rate from y; to yg at x = xy. It is now assumed that this ratio remains
intact at all values of x and thus the w; distribution does not change throughout the
domain in the x direction.

Note, however, that the physical distance y (and therefore ) must go on changing
at different values of x as the boundary layer grows or shrinks. We thus seek the
yj ~ w; relationship applicable to every x.
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Plane Flow
From Equations 4.4 and 4.2, it can be shown that

© g
v = Ve f 29 _ I(say). (4.48)
0o pPU

Thus, knowing the initially set values of w; and w. ;, y,; and y. ; can be estimated.
Note that ¥ and p u will change with x. Therefore, y will also change with x.

Axisymmetric Flow
In this case, from Equation 4.45, it follows that

Y o = () + y cosa)dy (4.49)

pu
and, therefore, from Equation 4.48
32
I =ry+cosa ER (4.50)
The solution to this quadratic equation suitable for computer implementation is
21
= 2 0.5
ri+ (rf +21 cosa)

y , (4.51)

where [ is given by Equation 4.48. Now, knowing y; and y. ; in this manner, 7;
and r. ; can be evaluated using Equation 4.45.

4.6 Boundary Conditions

At the E and I boundaries, three types of boundary conditions are possible: sym-
metry, wall, or free stream. We discuss them in turn.

4.6.1 Symmetry

There can be no mass flux across the symmetry plane. Also, 0®/dn|, = 0, where
suffix b denotes the E or I boundary node. This implies that

CDb = chb and I’i’lb = 0, (4.52)

where suffix nb stands for near-boundary node. A further consequence of the
myp = 0 condition is that dy,/dx = 0 or ¥, = constant. The boundary condition
can be effected by setting 4S5, = 0 at the I boundary or AN;y_; = 0 at the E
boundary.
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4.6.2 Wall

The term wall signifies a solid boundary. However, it must be remembered that
when a gas flows over a liquid surface, the gas—liquid interface too will act like a
wall. For different ®s, the wall boundary conditions are also different. We consider
them in turn.

Velocity Variables ® = u or w
For these variables,

Up = Uwall, Wp = Wwall- (4.53)

Thus, if the surface is rotating about the axis of symmetry (see Figure 4.1) with
angular velocity €2, then the surface fluid velocity will be wy,; = r1 Q2. Similarly,
the streamwise velocity will always be zero unless the surface itself is moving with
velocity uya,y. Equation 4.53, therefore, signifies the no-slip condition.

In some circumstances, a fluid may be injected (by blowing) into the boundary
layer or the boundary layer fluid may be withdrawn (by suction) through the wall.
Alternatively, in case of evaporation or surface burning, mass will be transferred into
the boundary layer. In all such cases 71y, is known or knowable and the consequence is

Wb ()C) = Wb ()C - Ax) - meb Ax. (4.54)

Thermal Variables ® =T or h
For these variables, typically two types of conditions are specified. In the first, the
value of the variable itself is specified. Thus,

Tb = Twall (x), hb = hwall (x) (455)
In the second, the heat flux gy, is specified. Then, at the | boundary, for example,

oT k 0h oh
Go=—k—| = =T

— (4.56)
C, dy =0 ay

y=0

The flux boundary condition is effected by adding ¢, Ax to the source term of
Equation 4.43 for j = 2 and, further, by setting 4.5, = 0, the values of T}, or 4y, can
be extracted in the usual manner. A similar procedure is adopted if ¢, is specified
at the E boundary.

In a chemically reacting boundary layer, the mass transfer flux at the wall 7z, is
given by

Bwk aT
iy = (hy — hr)™' [pm Dy — hyc + ki —] ; (4.57)
; ay ay y=0

where /4t is the enthalpy of the mixture deep inside the I boundary. If the Lewis
number is taken to be unity (i.e., Pr = Sc) or a simple chemical reaction (SCR)
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is assumed with equal specific heats then this relationship can be simplified
to [33]
oh

my = (hy—hr)'T —| . (4.58)
=0

Knowing 7, boundary condition %}, can be extracted.

Mass Transfer Variables ® = wy
The most common boundary condition [33] for these variables at the I boundary,
for example, is

my = rynity = (wrp — or1) Tk ? , (4.59)
Y o ly=0
where w1 refers to the mass fraction deep inside the I boundary. The suffix T, thus,
represents the transferred substance state and wy,  must be known. Equation 4.59 is
again a flux condition, therefore, it can be treated in the manner of the gy, condition
just described. Again, from the converged solution, wy ;, can be extracted.
When heterogeneous chemical reactions occur at the wall, r1y, is typically given
by the Arrhenius relationship, which yields

my = f(@kp, Tp)- (4.60)

The exact implementation of the boundary condition for a heterogeneous reaction
requires modification of Equation 4.59. This is explained later through an example
of carbon burning (see Equation 4.129).

In problems involving evaporation or condensation, the value of wy }, itself can
be specified from the equilibrium relation (or saturation condition).

wr = f(T). (4.61)

Thus, in mass transfer problems with or without surface chemical reaction, 71y, can
be known and this knowledge can be used to evaluate , from Equation 4.54. It is
important to remember, however, that the most general problem of mass transfer is
usually quite complex and, therefore, several manipulations are typically introduced
to simplify the boundary condition treatment [33, 38].

4.6.3 Free Stream

The free-stream boundary condition has relevance only when external' boundary
layers are considered. The free stream is really a fictitious boundary and is identified

' In internal flows, only wall or symmetry conditions are relevant because in these flows the flow
width is a priori known. Thus, for developing flow between two parallel plates a distance b apart,
for example, the flow width b remains constant with x. However, in 2D plane diffusers or nozzles,
b may vary with x but still be known a priori.
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with the notion that the variation in ® in the transverse direction asymptotically
approaches a value @, (say) there. Thus, the fictitious notion of a boundary layer
thickness is associated with
o — P
——— =4, (4.62)
cDoo - CDI
where suffix I refers to the inner boundary (wall or symmetry) and 4 is typically
taken to be 0.99 by convention. Note, however, that this boundary layer thickness
will be different for different meanings of ® and the magnitude of thickness typically
depends on the Prandtl number? Pr¢ defined as
Pro = —. (4.63)
Iy
The Prandtl number is a property of the fluid. In fact, in Table 4.1, we may replace
k/Cy by u/ Pry and p Dy by ju/ Pr,,.
There is one further notion associated with the free stream. If we assume the
E boundary to be the free boundary (see Figure 4.1), the flow region above the
boundary can be taken to be a region in which there is no transverse convection or
diffusion and

Dy, = O (x), (4.64)

where @, (x) is specified. However, the physical location where this boundary
condition is to be applied is not a priori known because of the asymptotic nature
of variation of ® in the vicinity of this boundary. To circumvent this problem,
Patankar and Spalding [50] relied on estimating the entrainment rate (—mg) into
the boundary layer that occurs from the fluid above the E-boundary.

Thus, as previously mentioned, since there is no net flux of @ in the transverse
direction, from Equation 4.17, it follows that

0 d 0P
(a+bw)yp—| =— |:c—i| . (4.65)
dw|p OJdo | do g
However, at the E boundary, v = 1. Therefore,
0
(a—i—ba))E:a—i—b:—l/fE_Il%. (4.66)

Thus, Equation 4.65 can be written as

IVE ’ AP\ 9 [ 9D ’ a [ oo
ax "\ow) o | o Moo | dw
3 D

=—— | rTe — | = —rpin. 4.67
8d>|:r ®8y] e Mg ( )

2 The term Prandtl number applies to variables 7 and 2. When ® = wy, the appropriate dimensionless
number is called the Schmidt number (Sc). For velocity variables, of course, Pre = 1. We thus use
Prg generically to cover all ®s.
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® IN+1
Ay
E Boundary 4 IJN
Ay Figure 4.4. The grid construction near the E
boundary.
® IN-1

Now, to estimate the required 7, we adopt the following special procedure.
Since the E boundary is located at j = J N (see Figure 4.4),

9 [F 8d>] (acp)‘l [F 82CI>+8F¢ acp} 468
T | Tle T =\5- o5 T A A T'JN- .
P 3y |,y dy o Ay Ayl

However, near the E boundary, "¢ /0y|, v can be set to zero. Now, let Ay be the
distance between the J N and J N — 1 nodes. We next construct an imaginary node
JN + 1 at Ay above the E boundary. Then,

910 _ DPynp = Dy
3y yn 2Ay ’
RRI d — 2@,y + Dyy_
- — JN+1 JN JN l‘ (469)
ay* N Ayz

Noting that ® ;] = &5 = P, we can simplify the derivative expressions fur-
ther and, therefore, Equation 4.68 can be written as

0 oo r 2 r
KN LY YA Y 71, S
IP 3y Jn Ay |,y  YIN —VIN-1
Thus, from Equation 4.67, since r;y = rg
, 1 oy 2T,
g g ~ — — —— oE 4.71)
re 0x YIN — VIN-1
Using the above estimate, it follows that
2rele g A
VE(x) = ¢YE(x — Ax) — e eRDY (4.72)

YIN = YIN-1
With this estimate, it is now possible to evaluate coefficients in Equation 4.43. This
is because, when the E boundary is a free boundary, the I boundary can only be a
wall or a symmetry boundary for which y(x) is already known.

Equation 4.71 is of course an approximate formula for mig. To derive an exact
formula, we note that I'g will be different for different ®s and, as already noted,
the respective boundary layer thicknesses will also be different. Our interest lies in
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selecting that ® for which the thickness is /argest. Usually, the largest thickness
will correspond to the largest I'g, and for this selected ©, we evaluate

A
AD* '

R AD* = 1073 (say), (4.73)
where A®* is a sufficiently small reference quantity. Since Equation 4.43 is it-
eratively solved, Patankar [52] has suggested the following formula for exact
evaluation:

mE (exact) = Mg gq X R", (4.74)

where, from computational experience, n =~ 0.1 is found to be a convenient value
in most cases. Thus, when Equation 4.43 has converged, ¥, as evaluated from
Equation 4.72, will provide a correct estimate of total mass flow rate ¥g; = g — ¥y
through the boundary layer at the given x. Once this mass flow rate is known, the
y dimension and hence the largest boundary layer thickness among all ®s can be
estimated.

4.7 Source Terms

4.7.1 Pressure Gradient

In external boundary layers, the pressure gradient is specified or indirectly evaluated
from

dp d Uy
= pUyp—=, 4.75
dx p dx ( )

where Uy (x) is specified. In internal flows, however, a special procedure must be
adopted to specify the pressure gradient. The procedure relies on satisfying the
overall mass flow rate balance at every streamwise location x. Thus, in a general
duct, let A4 (x) represent the duct area between the axis of symmetry (I boundary)
and the wall (E boundary). Then

E 1 da)
Ad = / I"dy = 1//]51 / —. (476)
I 0o pu
Therefore,
A Aw;
2 _c (constant) = Z d . 4.77)
VEI pju;

The task now is to replace u; in terms of the pressure gradient. To do this,
Patankar [52] writes the discretised version of the momentum equation as

APlej=AN]'L{]'+1+AS]'M]'_1+DJ—AVjpx, (478)
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where p; is the pressure gradient and D; contains source terms arising from other
body forces. To solve this equation by TDMA, let the postulated equation be

uj=Ajuj+1+Bj_ijx’ (4-79)
where R; = R,y = 0. Then, the recurrence relations will take the following form:
4 — AN; B.:ASijfl"}_Dj R_:AS]-Rj,l—FAVj
! DEN’ / DEN DEN
where DEN = AP; — AS; A;_;. Note that 4(2), B(2), and R(2) can be recovered

from Equation 4.78. Therefore, the coefficients in Equation 4.80 can be determined
for j =3 to JN — 1 by recurrence. Now, let u; be further postulated as

u; =F; — G px, (4.81)

, (4.80)

where, again by recurrence, F; and G can be determined for j = JN — 1 to 2 by
Fi=A4;F;j .1+ Bj, Gi=4;Gj1 + Ry, (4.82)
where A(JN) = G(JN) = 0. Thus, it is possible to replace u ; in Equation 4.77 by
Equation 4.81. The replacement yields a nonlinear equation in p,:
Aw;
pj(F; —Gjpx)

This equation can be solved by Newton—Raphson iterative procedure:

—-C=0. (4.83)

. C-5
px:px—‘r S2 ’
Aw;j
Slz —j’
2 pj (Fj =G p3)
Aw: G
=3 it (4.84)

pj (Fj = G pp)*
where p7 is the guessed pressure gradient. Iterations are continued until |C — §;| <
10~* C. Usually, about five iterations suffice.
Finally, we note that in free-shear flows, the pressure gradient is zero.

4.7.2 Q" and Ry

The source terms in the energy and mass transfer equation depend on the problem
at hand. In general, however,
Dp

QW = Qrad + ch +u q)v + D—t + de, (485)

where Qg = 0¢rad,y/0y represents the radiation contribution, O repre-
sents the generation rate due to endothermic or exothermic chemical reac-
tions, u ®, = w(du/dy)* represents the viscous dissipation effect, D p/Dt =
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udp/dx represents the pressure—work effect in steady flow, and Opng =
0/0y{(Q_ 1 x P Dk dwi/dy) hy} represents the contribution of species diffusion
mass transfer having specific enthalpy 4. If 4; equals mixture enthalpy /# then
de =0.

When no chemical reaction is present, R, = 0. However, for a reacting boundary
layer, R; will be finite for each species because each may be generated via some
reactions and destroyed via some other reactions among the postulated chemical
reactions. Very often, for gaseous fuels and for highly volatile solid/liquid fuels,
an SCR can be assumed [73]. The SCR is specified as

1 kg of fuel + Ry kg of oxidant — (1 4 Ry) kg of product, (4.86)

where Ry is the stoichiometric ratio for the fuel under consideration. Thus, there
are three species and one must specify Rp, Rox, and R,.. However, in an SCR,
Rty = Rox/ Ry = —Rp:/(1 + Ry) so that no net mass is generated or destroyed as a
result of chemical reaction. This enables construction of a conserved scalar variable
¥ = wf — wox/ Ryt = wpy + wpe/(1 + Rg) when mass diffusivities of all species
are taken equal. Thus, one may now solve only for wg, and W with Ry = 0 instead
of three variables. Further, ch = | Rsy| A H, where A H. is the heat of combustion
of the fuel. The value of Ry, is obtained from a reaction rate law

E
Rfu = Rfu’kin =—4 eXp (—ﬁ> (,()g.l1 a)gx, (487)
u

where, preexponential constant 4 and constants £, m, and n are specified for the
fuel [82] and R, is the universal gas constant.

If turbulent reacting flow is considered then the effective Ry, is given by a variant
[44] of the eddy-breakup model due to Spalding [74],

€ . Wox ; @Wprod
Reyy=—pp—min{ Awg, A—, A' ——,
fu Pm o { fu R (1 + Ry)

where A = 4 and A’ = 2. The postulated arguments in favour of this expression
are beyond the scope of this book.

Rfu,kin} , (4.88)

4.8 Treatment of Turbulent Flows

In turbulent flows, I'¢ in Table 4.1 will assume an effective value. Thus, following
Equation 4.63, we have
w Mt

Poer = ——
’ P}"q; Pl"t’q)’

(4.89)

where suffix t denotes the turbulent contribution. The task now is to represent i and
Pry ¢ viamodelled expressions. This exercise, called turbulence modelling, implies
validity of the Boussinesq approximation for turbulent viscosity. Although there
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are many variants, all turbulence models of this type stem from a dimensionally
correct representation

pe o< plv', (4.90)

where v’ is the representative velocity fluctuation scale in the transverse direction
y and / is a representative length scale. Two turbulence models used extensively for
boundary layer calculations are described in the following.

4.8.1 Mixing Length Model

Since v’ is responsible for transverse momentum transfer, it may be written in
dimensionally correct form as

9
v =1, |22 (4.91)
dy
so that
9
we=plZ |20 ], (4.92)
ay

where [y, is called Prandtl’s mixing length. Now, because the velocity gradient can
be evaluated from the solution of the momentum equation, /,;, must be prescribed to
complete evaluation of . Kays and Crawford [33], after extensive investigations
of a variety of wall-boundary-layer flows have prescribed the following formulas:

Ky | 1—exp V] for 2 <0 (4.93)
L A+ 5
0.0858 for %zo.z, (4.94)

where y is the normal distance from the wall, § is the velocity-boundary-layer
thickness and k = 0.41. Further,

yu T ou
y+ = T’ U = W, Tw = MU |W- (495)
o ay

%

Finally, the value of 4™ is sensitised to effects of suction or blowing and local
pressure gradient in a generalised manner as

At =25 [a {vi+bp/(1+cevf) ) +1]7, (4.96)
where
dp ~0.5 Vy
+ _ 3 + _
P =K dx (Tw ) ’ vw - ur’ (497)

anda =7.1,b =4.25,and, c = 10.0. If p* > O then b = 2.9 and ¢ = 0.
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Laminar-to-Turbulent Transition
To predict laminar-to-turbulent transition, the effective value of I'¢ is written as
N +T My ’
Pr ) P I"t’ )

Coeff = (4.98)

where the intermittancy factor Y is given [1] by

T:l—exp{—S(x_xts>}. (4.99)
Xte — Xts

In this equation, xis and x. denote the start and the end of transition, respectively.
When x = x¢, Y = 1 and a fully turbulent state is reached. For x = x, T = 0 and
the flow is laminar. There are several empirical relations proposed in the literature
for estimating x and xi; here, two will be given.

Abu-Ghannam and Shaw Model
In the Abu-Ghannam and Shaw [1] model

Ux $ Tu
Res, s = °°v 25 = 163 + exp |:m (1 — m)} (4.100)
where m (K > 0) = 6.91—12.75K + 63.64K? and m (K < 0) = 6.91— 2.48K —
12.27K?% and K = — 83 /v(d Uy /d x). Here, 8, 5 is the boundary layer momentum
thickness at x = x. These relations thus identify xs. The value of x;. is identified
with

Xie = X5 + 4.6 2222 4.101)
Uy B
where B(K <0)=1,B(K > 0)=1+1710K"*exp —(1 + Tu**)*3, and oy =
103 (2.7 — 2.5 Tu*?) (1 + Tu33)~'. Here, Tu is the turbulence intensity in the free
stream.

Cebeci Model
In the Cebeci [4] model
22400
Res, = 1.174 <1 + ) Re%4S, (4.102)
€x
Xee = X + 60 22 Re2/3, (4.103)
Uso

where Re, = Uy x / V.

4.8.2 e-e Model

In this model, the turbulent viscosity is determined from solution of two partial
differential equations for scalar quantities e (turbulent kinetic energy) and e
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(turbulent energy dissipation®). Thus,

62

,ut=CM,0:. (4.104)

Fortunately, the modelled equations for ¢ and € can also be cast in the form of
Equation 4.1. Thus, we have

Turbulent Kinetic Energy Equation

®=e, FE:/L#—Pl:’e, S,=G—pe* (4.105)
and
Energy Dissipation Rate Equation
b =€*, oo =+ Pl:;*’
€* 92\’
Sé*z;[ClG—Czpe*]—l-Zv,ut (a—y2> , (4.106)
where
€ =€—2v <aa—f>2, (4.107)
and
2
G = <g—;> . (4.108)

In these equations, Launder and Spalding [40] specify Pri, =1, Prie = 1.3,
Cy = 1.44,

—3.4
C, =0.09 — |, 4.109
" =P [(1 n Ret/50>2} (109
and
C,=1.92[1-03exp—Re;], (4.110)

where the turbulence Reynolds number Re; = /. The e—e model described
here, called the Low Reynolds number (LRE) turbulence model, permits applica-
tion of boundary conditions e = €* = 0 at the wall. Further, the model is equally
applicable to prediction of laminar-to-turbulent transition and one need not in-
voke the intermittency factor required in the mixing length model. In fact, Jones
and Launder [30] have successfully applied the model even to the case where a
turbulent boundary layer reverts to a laminar boundary layer becuase of strong
free-stream acceleration. Several changes to the e—¢ model have been proposed by
different authors. The more recent among these, for example, are listed in [9].

3 Here p € is the turbulent counterpart of the u ®, term introduced in Equation 4.85.
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4.8.3 Free-Shear Flows

In free-shear flows, the mixing length is given by

Im = B (e — ), (4.111)

where the E boundary is free and the I boundary is the symmetry axis. The value of
constant 8 depends on the type of flow. According to Spalding [78] 8 = 0.09 for
a plane jet, 8 = 0.075 for a round jet, and § = 0.16 for a plane wake. In general,
however, f must be regarded as an arbitrary constant whose value is determined
from experiment.

When the e—e model is used, Equations 4.105 and 4.106 are directly applicable.
However, because of the absence of a wall, there will be no region where Re; — 0.
Also, the wall-correction terms 9./e/dy and 2 v i, (%1 /dy?)? vanish. As such, the
model will reduce to
Mt

d=e, To=pu+-1 S, =G-pe 4.112)
Pl"t,e
At €
d=e T.=pu+-C 5. =S[CG=-Cpel,  (4113)
Pl"t’é e

with C; = 1.44, C, =192, C, = 0.09, Pr., = 1.0, and Pry. = 1.3. This set is
called the High Reynolds number (HRE) model.

4.9 Overall Procedure

4.9.1 Calculation Sequence

The previous sections have provided all the essentials to construct the calculation
procedure. This is listed in the following.

Evaluations at x
1. Choose x¢, where the initial profiles ® (y;) are specified for j =1,2,..., JN
for the chosen JN.
2.Calculate r; knowing & (xo).
3.Set xy = x¢ and evalvate w; (j =1, 2, ..., JN) from specified u; for a chosen
value of y'. This sets ¥ and hence ;.

Begin a New Step

4.Choose Ax so that xg = x, + Ax. Calculate p;, u;, and C), from appropriate
known functions of scalar QD‘; Specify or calculate 71y or mg as described in
Section 4.6.

5.Choose relevant @ and calculate coefficients and source terms in Equation 4.43
using upstream values. Note that if ® = u, the pressure gradient for internal
and external flows must be appropriately evaluated. Now solve Equation 4.43
using TDMA.
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6.Reset y;, r; using the u; just calculated. Also reset yr, for a free boundary
(b=Eor]).
7.Go to step 5 and repeat until convergence of all relevant ®s is reached.
8. Calculate integral quantities &1, &3, Cgy, St,, etc.
9.Set x, = x4 and & = Pp and return to step 3 to execute a new step.
10. Continue untill the domain of interest in the x direction is covered.

4.9.2 Initial Conditions

For internal flows, the flow width at x = xo = 0 is known and it is easy to specify
all ¢(y;). For external wall boundary layers, the initial profiles by necessity are
to be specified at x = x; to avoid singularity at x = 0 where the boundary layer
thickness is zero. A suitable choice of x( can be made assuming Re,, = 10° (say).
If and when experimentally measured starting profiles are not available, one may
choose the generalised polynomial velocity profile used in the integral method of
laminar boundary layer analysis:

u A
— | =2n-20+n"+Z[n-30"+31° +n*], (4.114)
Uoo |y, 6
where n = y /8 and
82 dU,
A= — 2 (4.115)
v dx

X0

With reference to Figure 4.1, the region 0 < x < xo will typically connote a
stagnation flow region for which A = 7.052 and § >~ 2.65 x, Re;oo'5 .Ifoneis dealing
witha flat surface, however, one may set A = 0 and evaluate § =~ 5.83 xo Re,** [65].
Thus, one is now free to choose the y; distribution and evaluate #; from equation
4.114.

With these specifications, calculations can continue from the laminar region
through the transition region and ending in the turbulent region. If, however, the
flow was turbulent from the start of the boundary layer, it is advisable to use an
experimentally generated velocity profile. Alternatively, one may use

_ (%)1/7, (4.116)

u

Uso X0

where & 2~ 0.37x Re;, 0.2 Similar starting profiles for other ®s can also be pre-
scribed using results from the integral method. For example, for a scalar variable
s = h or wy, the initial profiles may be specified as follows:

S — Sw

=2ns—2 773 + ni (Laminar)
X0

=n7  (Turbulent), (4.117)
where ng = y/8s and 8s = 8/ Pr or §/Sc.

Soo — Sw
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For free-shear flows, again x; must be chosen to avoid the elliptic flow region
very close to where a jet or a wake originates. For advice on the choice of x¢ and
the u(y) profile, the reader is referred to Schlichting [65].

4.9.3 Choice of Step Size and Ilterations

Iterative calculation is required to deal with nonlinearities arising out of implicit-
ness. In the present procedure, nonlinearities arise from four sources:

1. They can arise from dependence of coefficients and sources in Equation 4.43
on other scalar ®s. Thus, the source term Ry in the equation for w; may depend
on T, and p, and "'y may depend on w; and 7.

2. Atadownstream station, y; are not a priori known and therefore the values Ay,
Ay required in several evaluations are not known. These y;s can be evaluated
only after the ®¢ profile is established.

3. Inexternal boundary layers and free-shear flows, the flow width at a downstream
station is not known and we wish to select the largest width among all ®s. This
is done via Equation 4.74.

4. In internal flows, the pressure gradient is not known at a downstream station.

By choosing a small enough Ax, one can make the procedure completely non-
iterative. This can be achieved by evaluating AN, A4S, and S in terms of upstream
values. We, however, prefer partial linearization. Thus, whereas the different ®s
required in the evaluation of AN, A4S, and § are taken from the upstream station, y;
are established through an iterative solution of equations for all relevant ®s. With
this choice, experience shows that we may choose

Ax ~ 0258 (4.118)

This choice ensures both economy and accuracy. However, situations may arise
when larger step sizes are also permissible.

4.10 Applications

Flat Plate Boundary Layer

Figure 4.5 shows computed results of friction coefficient C £, and Stanton number
St for a flat plate boundary layer. Computations were begun with a laminar velocity
(with A = 0 in Equation 4.114) and temperature profiles prescribed at Re,, = 10
with JN = 102. Such a large number of (nonuniform) grid points are necessary
to resolve the profiles in the vicinity of the wall and in the turbulent range. In the
mixing length model, transition is sensed by the Cebeci model (Equations 4.102
and 4.103). In the LRE model, the transition is sensed automatically. It is seen that
the mixing length model predicts transition at a higher Re, than the LRE model.
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Figure 4.5. Flat plate boundary layer.

The predicted values of Cf; and St, are compared with well-known correlations
derived from integral analysis. The agreements are satisfactory.

Figure 4.6 shows the velocity and temperature profiles in wall coordinates.
The predictions of the mixing length model [Figure 4.6(a)] nearly agree with the
two-layer prescriptions of the law of the wall [33] except in the very outer layers.
The predictions from the LRE model [Figure 4.6(b)] are somewhat higher than
those of the law of the wall. The dimensionless temperature is defined as 7 =

(T —=Ty)p Cp”r/‘]w-

Burning of Carbon

We consider burning of carbon in a laminar plane stagnation flow of dry air so that
the free-stream velocity varies as U,, = Cx. The surface is held at constant wall
temperature 7y,. The objective is to predict the burning rate of carbon as a function
of T. The postulated chemical reactions at the surface are [82] as follows:

Reaction 1
C* 4+ 0, — CO,, AH, =32.73 MJ/kg of C,
593.83 T, exp (— 18,000/ T,)m/s, T, < 1,650K,
ky =

(2.632 x 1075 Ty, — 0.03353) Ty (m/s), T, > 1,650K,

M,
'y, = pwki ——wo,  kg/m*—s (4.119)

Mo,

where T is the near-wall gas temperature,
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Figure 4.6. Velocity and temperature profiles at Rey = 5 x 108.

Reaction 2
C*+ %oz — CO, AH, =92 MJ/kgofC,
ky = 1.5 % 10° exp (— 17,966/ T,,) m/s,
!y, =2 pwka ﬁ—; wo,  kg/m’-s, (4.120)
and
Reaction 3

C*+CO, — 2CO, AH; = —14.4 MJ/kg of C,
ks = 4.016 x 10 exp (—29,790/T,) m/s,

» Mc

sy = pwks wco,  kg/m’ss. (4.121)

CO,

The above 3 reactions are surface reactions. In addition, we have the following
gas-phase reaction:
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Reaction 4
1
CO + 502 — CO,, AH;=10.1 MJ/kg of CO,

ks =2.24 x 10'? exp (—20,137/T) s\,

o 0.25 OH0 0.5
RCO = p1'75 k4 wCco < 2 ) ( 2 > , (4122)
Mo, Mu,0

where wy, 0 is treated as a parameter of the problem. The steam mass fraction is, of
course, small enough so that it does not take part in other possible reactions. These
rate laws are taken from Smoot and Pratt [68] and Turns [82].

The problem thus requires solution of equations for & = u, wo,, wco,, ®co, and
enthalpy 4. We define 7 = C, (T — Tir) so that the source terms for each of the
variables are

Sa=pC?x AV, (4.123)
_ 1 Mo, poav. (4.124)

a)()2 - 2 MCO CO .

_ Mco,

Seee, = Rco AV, 4.125
0, = oo Reo ( )
Suco = — Rco AV, (4.126)
Sy, = Rco AH, AV. (4.127)

The total carbon burn rate is given by
mg = mglw + mg2w + n;l/c/3w‘ (4128)

To effect the wall boundary condition for mass fractions, we modify Equa-
tion 4.59 to account for surface reaction:
dawy

! = (o —wpr) ' | p Dy —
ay

+ mwk> , (4.129)

y=0

where r;, is the surface generation rate of species k and w; T = 0 for all species.

After discretisation, the wall mass fractions can be deduced from

IOD/AywOZ nw (mclw+05mc2W)M02/ C
pD/Ay +m]

. (4.130)

6l)OZW -

D/A — M, M,
P p D/ Ay @co, nw + (Mg, — Nisy,) Mco,/ c @.131)
pD/Ay +m

P p D/Ay wconw + (1), +2m5,) Mco/Mc (4.132)
pD/Ay +m]
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and the enthalpy at the wall boundary is given by
hyw = Cp (T — Tres). (4.133)

With this enthalpy, we account for the surface heat generation via the source
term Sj, for the near-wall (suffix nw) control volume. Thus, for j = 2

Sp= 5+ |:mg Cpe(Tr = Tred) + ) 1, AHk:| Ax, (4.134)
k

where Tt = T, and the carbon specific heat is C),, = 1,300 J/kg-K. In the free
stream at the E boundary, we specify Uy, = Cx, Too =298 K, w0, o0 = 0.232,
®co.00 = 0.0, and wco, .0 = 0.0. The reference temperature is taken as Tref = Too
so that 4, = 0.

To start the computations, it is assumed that for the starting length x( (Re,, =
1,000), the surface is inert. So, the inlet profiles for mass fractions and enthalpy
are easily specified as uniform, corresponding to the free-stream state. The velocity
profile is of course derived from Equation 4.114 with A and § corresponding to the
stagnation flow condition. Computations are now continued till Re, = 10° so that
the combustion is well established and the burn rate is constant with x. The density
and viscosity are assumed to vary over the width of the boundary layer according to

Mmix
_ P mix. (4.135)
R, T
T \'° [303+110
nw=18.6x10"°( — 205+ 19 N-s/m?, (4.136)
303 T +110

where p = 10°N/m? and R, = 8,314 J/kmol-K. The molecular weight of the
mixture is evaluated from

—1
wo, = Wco, = ®cO = N, wHZO] ’ 4.137)

Miiy =
o |:M02 Mco, Mco My, Mnu,o

where wn, = 1 — wo, — wco, — wco — wn,0- The gas specific heat is, however,
assumed constant and is calculated from C, = 919.2 + 0.2 T, J/kg-K and T, =
0.5(Ty, + Tx). Computations are carried out for 800 < 7y, < 2,000 K and Pr =
0.72. The value of the Schmidt number is uncertain in this highly variable property
reacting flow. Following Kuo [38], we take the Schmidt number for all species as
0.51. To facilitate evaluation of Rco, the water vapour fraction is taken as wp,0 =
0.001, but the vapour is assumed chemically inert.

For the purpose of comparison with published [38] experimental data, the pre-
dicted burning rate is normalised with respect to the diffusion controlled burning
rate. Thus we form the ratio

m, (predicted)

BRR = )
i (de)

(4.138)
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Figure 4.7. Variation of BRR, wo, w; ©®co,,w, and wco,w With Ty,.

where the denominator is estimated* for the stagnation flow from [33]

057 p Pr\" /T, \™!
1! (dc):TP:gf6 Re™’In(1 4+ B) (5) <ﬂ) (4.139)

and the driving force B = 0.174. Figure 4.7 shows the variation of the ratio BRR
with T,,. The experimental data for the burn rate are shown by filled circles. Data
are predicted with (solid lines) and without (dashed lines) Reaction 1 to ascertain
the influence of this reaction at low temperatures. It is seen that the experimental
BRR has considerable scatter and exceeds unity, against expectation. However, this
may be due to the normalising factor used by Kuo [38]. Nonetheless, the data show
a mild plateau for 1,100 < T3, < 1,400. This tendency is nearly predicted by the
present computations, particularly when Reaction 1 is included. For 75, > 1,350, the
experimental data show a sudden rise that is again observed in present predictions.
The predicted BRR — 1 at 1,800 K as expected. However, for 7, < 1,000 K,
the present data grossly underpredict the experimental data; the underprediction is
greater when Reaction 1 is ignored.

* Equation 4.139 is derived from Reynolds-flow model developed by Spalding [73] assuming fluid
properties in the free-stream state and then corrected for property variations through the boundary
layer.
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The predicted wall mass fractions for CO, O,, and CO, are also plotted in
Figure 4.7. The wall mass fraction wo, v, starting from 0.232 at 800 K, decreases
rapidly to zero at T, ~ 1,300 K. Note that wo, , decreases more rapidly when
Reaction 1 is included, as expected. The wall mass fraction wco, w gradually in-
creases with temperature, peaks at 7, = 1,300 K, and then rapidly falls to zero.
In this range where wco, w 1s significant, the BRR indicates a mild plateau after
an initial rapid rise with temperature. The wco w, however, increases with wall
temperature. At 7, > 1,300, CO evolution becomes significant, indicating domi-
nance of Reaction 3. At very high temperatures, this reaction becomes the most
dominant and combustion is now diffusion controlled with wo, w = @wco, w =0
and wco.w — 0.406. Overall, Reaction 1 is important at low temperatures and
Reaction 3 is important at high temperatures. It must be noted that although the
tendencies predicted here are similar to the similarity solution for BRR obtained
by Kuo [38], the quality of predictions in combustion calculations greatly depends
on the accuracy of the assumed reaction-rate laws.

Entrance Region of a Pipe

We consider simultaneous development of velocity and temperature profiles in the
entrance region of a pipe of radius R. The flow is laminar (Re = 500) and the
fluid Prandtl number Pr = 0.7. An axially constant wall temperature boundary
condition is assumed. In this axisymmetric flow, the I boundary coincides with the
pipe axis and the E boundary with the pipe wall. Computations are performed with
a JN = 25 nonuniform grid with closer spacings near the wall. The axial locations
are determined fromx = L (/ — 1/ IMAX — 1)', where L = 0.2 x R x Reand
[ is the axial step number. Figure 4.8 shows the computed variations of f* x Re,
Nu,, and velocity u at the pipe axis with x™ = (x/R) / Re / Pr. Also plotted in the
figure are previous numerical solutions for Nu, reported in [33]. It is seen that the
present solutions match perfectly with the previous solutions. The f x Re product
also varies as expected with asymptotic approach to 16.0. Similarly, the velocity
u/u at the pipe axis also reaches 2.0 at large x .

Similar computations are now carried out at higher Reynolds numbers
(1,000 < Re < 10,000) including the transition range. For this purpose, the LRE
model is used and computations are performed with a J N = 47 nonuniform grid.
Here, IMAX = 1,000 and L = 100 x D. Figure 4.9 shows variation of f, Nu
(Pr = 0.7 and 5.0), and u,yis/u with Reynolds number in the fully developed state
(X/D = 100). Itis seen that for Re < 1,600, the characteristics correspond to those
of'a laminar flow (u,xis/2 = 2.0). Accoring to the model, transition occurs abruptly
and appears to extend up to Re ~ 2,500, as evident from the Nu predictions. The
Uaxis/U ratio now drops suddenly from its laminar value of 2.0. At Re = 10,000,
Uaxis/U = 1.246. For Nu, the expected trend is again observed. In the laminar range,
Nu approaches the analytically derivable fully developed value of 3.667 for Ty, =
constant boundary condition for both Prandtl numbers. The thermal development
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Figure 4.10. Variation of u™ and Re; with y* — pipe flow.

length is a function of Pr in laminar flow [33]. In turbulent flow, X/D = 100 is
sufficient for fully developed flow and heat transfer and, therefore, the predicted
values of Nu match well with the well-known correlation Nu = 0.023 Re%3 Pr04.

In the turbulent range, the friction factor also corroborates f = 0.079 Re

well.

—0.25

Figure 4.10 shows the fully developed velocity profile in wall coordinates at
Re = 3,000 and 10,000. In the transition range, the sublayer is thick. At Re =
10,000, the predicted profile nearly coincides with the wall law up to y* = 30 and
then departs in the outer layers. The figure also shows variations of turbulence
Reynolds number Re; = /. At Re = 3,000, the maximum value of Re; is lower
than that at Re = 10,000. All these tendencies accord with expectation.

EXERCISES

1. Starting with Equation 4.17, derive Equations 4.22 and 4.26 in their conserva-

tive form.

2. Verify Equations 4.37-4.40 through detailed algebra.

3. Derive an equation for 7] g, similar to Equation 4.71, when the free-stream

boundary is located at the I boundary.

4. Derive recurrence relations (4.80) and (4.82).

5. Show that when Re; is large, the LRE model reduces to the HRE model given

in Equations 4.112 and 4.113.
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Figure 4.11. Flow over a spinning cone.

6.

10.

Itis desired to calculate turbulent boundary layer development so that the initial
velocity profile may be given by Equation 4.116. Choose a distribution of y;
(0 <y < d)suchthat (wj41 —w;) /(wj —w;j_1) = 1.2 forallj.

. Consider flow across a long horizontal cylinder of radius R. It is desired to cal-

culate boundary layer development near the forward stagnation point. Specify
variation of o and 7| with x. Also specify the starting velocity profile.

. In Exercise 7, it is of interest to calculate the mass transfer of an inert substance

in the forward stagnation region. Specify the starting mass fraction profile and
select the appropriate boundary conditions for the mass-fraction variable w and
u. (Hint: Use the integral method to specify the w profile.)

. Itis desired to calculate boundary layer development over a cone spinning with

angular velocity €2 (see Figure 4.11). Write the governing equations and the
boundary conditions at the I and E boundaries for this problem. Also provide
initial conditions. (Hint: Assume that the spinning rate is high so that centrifugal
and Coriolis forces must be considered. Also, dp/dr is not negligible. Hence,
dp/dx will vary with y.)

Consider an adiabatic wall 2 m high, as shown in Figure 4.12. The bottom 1 m
is covered with a thick layer of highly volatile solid material having latent heat
Ao. The fuel burns in stagnant dry air under natural convection conditions.
Assume SCR (4.86) with reaction rate given by (4.87).

(a) Write all relevant equations governing the phenomenon of burning along
with their source terms. (Hint: Use the Boussinesq approximation for the
buoyancy term.)

(b) Write boundary conditions at the [ boundary to determine the burning rate.
Also write conditions at the E boundary. [Hint: In this problem, the adiabatic
condition implies that T, = Tr. Further, the burning surface temperature
will equal the evaporation (or boiling) point temperature Ty, and is a known
property. Further, the SCR assumption implies that wg, = wex = 0 at the
burning surface.]



EXERCISES 103

ADIABATIC
WALL N
]
1m
TOO
Figure 4.12. Burning from a vertical wall.
N
g
1m
L]
VOLATILE
FUEL v

(c) Write initial conditions for each variable assuming pure natural convection
heat transfer between x = 0 and x = xy.

11. In the stagnation-flow carbon-burning problem described in the text, the water
vapour was treated as inert and its mass fraction was held constant. However,
water vapour can react with carbon, resulting in the following two additional
surface reactions:

C*+ H,0 - CO+H,
C* +2H, — CHsy.

The reaction rate of the first reaction is about twice that of Reaction 3
(i.e., 2 k3). For the second reaction, k = 0.035exp (—17,900/ 75,). Assuming
®H,0.00 = 0.01, write the equations to be solved along with their source terms
and boundary conditions. [Hint: You will need to postulate the following ad-
ditional gas-phase reactions to approximately account for the presence of H,,
H,0, and CHy:

1
CH4 — E C2H4 + Hz,

24,962 M3
_ 20.32 > 1.97 0.5 1.07 04 CH
Rep, =10 exp (_—T ) Pm ' Och, @o, @H, [7Mé‘07 Ajg“‘}l ,
2 214

C2H4 — 2CO+ 2H2,

25,164 B My
RC2H4 — 1017.7 exp (_ T ) prln.7l a)g.29H4 w10.218wcg.437 |: 2y ,

118 5 ,—0.37
Mg, ° Mey;
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1
H, + 502 — H,0,

20,634 M1
_ 16.52 > 1.71  0.85 1.42 —0.56 H,
RH2 — 10 eXp <_ T ) /Om sz woz a)HZ [Mé42 ME%Sé )
2 214

with AHcp, =50.016 MJ/kg, AHcu, =47.161 Ml/kg, and AHy, =
120.9 MJ/kg. The reaction rates for these reactions are obtained from Turns

[82] ]



5 2D Convection - Cartesian Grids

5.1 Introduction

5.1.1 Main Task

In the previous chapter, we considered convective—diffusive transport in long
(x direction) and thin (y direction) flows. This implied that although convective
fluxes were significant in both x and y directions, significant diffusion fluxes oc-
curred only in the y direction; diffusion fluxes in the x direction are negligible. We
now turn our attention to flows in which diffusive fluxes are comparable in both x
and y directions. Thus, the general transport Equation (1.25) may be written! as

o) | 10rg))

=3, =1, 2, 5.1
ot rooox; I 1)
where
0o
qj:puquD_FeffE- (5.2)

In Equation 5.2, the first term on the right-hand side represents the convective
flux whereas the second term represents the diffusive flux. Note that suffix f is
attached to the velocity appearing in the convective flux; the significance of this
suffix will become clear in a later section. In Equation 5.1, » stands for radius.
This makes the equation applicable to axisymmetric flows governed by equations
written in cylindrical polar coordinates. When plane flows are considered, » = 1 and
Equation 1.25 is readily recovered. By way of reminder, we note that & may stand
for 1, u; (i =1, 2), us (velocity in the x; direction), wy, T or &, and e and €, and
[efr 1s the effective exchange coefficient (see Equation 4.89).

Flows with comparable convective—diffusive fluxes in each direction occur rou-
tinely in most practical equipment although they are usually three dimensional.
Here, only 2D situations are considered for convenience and because the primary

I Note that py, signifying mixture density is now written as p for convenience.
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objective is to learn the main issues of discretisation. Figure 5.1 shows a practical
situation that can be represented by 2D equations (5.1). The figure shows flow at
the connection between two pipes of different diameters. The flow is assumed to
be axisymmetric. Immediately downstream of the pipe enlargement, the flow will
exhibit recirculation and thus, in the absence of any predominant flow direction,
convective—diffusive fluxes in the x; and x, directions will be comparable. This
implies that property & at any x; in the recirculation region will be influenced
by property values both upstream as well as downstream of x. Similar two-way
influence is also expected in the x, direction. Such two-way influences are called
elliptic influences [49] and, therefore, Equation 5.1 is an elliptic partial differential
equation.’

Figure 5.1. 2D flow situation.

5.1.2 Solution Strategy

Before discretising Equation 5.1, we shall make distinction between the following
two problems:

1. the problem of flow prediction and
2. the problem of scalar transport prediction.

Here, scalar transport means transport of all ®s (u3, wy, T, i, e, €, etc.) other than
velocities (& = u, u;) that are vectors. Note that 3, although a vector, is included
in the list of scalars. This is because variations in direction x3 are absent and, with
respect to x; and x, directions, u#3 may be treated as a scalar. The reason for this
distinction between scalars and vectors is twofold.

It is clear from Equation 5.2 that calculation of scalar transport will be facilitated
only when the velocity field is established. In fact, if source S and the properties

2 The reader will recall the equation a ®,, + 25 ®,, +cdy, = S(Dy, Dy, D, x, y), where, when
the discriminant b> — a ¢ = 0, the equation is parabolic; when b> — a ¢ < 0, the equation is elliptic;
and when b?> — a ¢ > 0, the equation is hyperbolic.
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p and I were not functions of scalar ®s then the flow equations for ® = uy, u;
will be independent of the scalar transport equations. This is the first reason for
distinguishing the flow-field equations from other scalar transport equations. To
appreciate the second reason, we first set out the equations governing the flow field
(the Navier—Stokes equations):

d(p) 0 1
—_— 4+ - — -— =0, 5.3
a7 +r8 {rpupn}+ e {r pugp) (5.3)
0 1 o 1 0
(/;tul) _8_1{rpuf1ul}+_8—2{rpuf2ul}
8p 1 0 ouy 1 0 oup
= + - + -— + Su1, 5.4
8x1 r 8x1 [r Heft 8x1:| r ox;) [r et 5 0x7 i| ! S
d(puy) 1 0 1 0
” +r8 {rpuf1u2}+r8x {rougpus}
op 1 o oy 1 9 ouy
= " 5.5
8x2+r8x1[ueﬁal]+r8x |:,bbeffa i|+ u2- ( )

A few comments having a bearing on the solution strategy are now in order.

1. In Equations 5.3-5.5, there are three unknowns (u;, u,, and p). Therefore, the
equation set is solvable.

2. In boundary layer flows, the pressure gradient is specified (external flows) or is
evaluated via the overall duct mass flow rate balance (internal flows). In elliptic
flows, however, dp/dx; and dp/dx; are not a priori known.

3. Thus, if we regard Equation 5.4 as the determinant of u; field and Equation 5.6
as the determinant of u, field, then the pressure field can be established only via
the mass conservation equation (5.3). The situation is somewhat similar to the
case of internal boundary layer flows but is not as straightforward.

4. The suffix f is attached to velocities satisfying the mass conservation equa-
tion. The velocity field without suffix f may or may not satisfy mass conserva-
tion directly although, in a continuum, it is expected that the u; and ug fields
are identically overlapping and, therefore, the former must also satisfy mass
conservation.

5. The reader may find this distinction between the u; and uy fields somewhat
unfamiliar. This is because most textbooks a priori assume a fluid continuum.
Numerical solutions are, however, developed in a discretised space and the
distinction mentioned here becomes relevant. This will become clear in a later
section.

These points reveal the fact that there is no explicit differential equation for
determination of the pressure field with p (or its variant) as the dependent variable.
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Such an equation, however, can be derived from explicit satisfaction of the mass
conservation equation. In the sections to follow, the SIMPLE method for determi-
nation of the pressure field is presented. This method was developed by Patankar
and Spalding [51]. It is among the most extensively used methods in CFD practice.
In fact, most CFD packages employ this method. The acronym SIMPLE stands for
Semi-/mplicit Method for Pressure-Linked Equations.’

The original SIMPLE method [51] was derived for Cartesian grids in which
the scalar ®s (including pressure p) and the velocity vectors were defined in a
staggered arrangement (see Figure 5.2). To understand this arrangement, consider
typical node P (i, j) with the surrounding control volume whose faces are located
at e, w, n, and s. In the staggered arrangement, pressure p; ; is stored/defined at
the node P. The same holds for other scalars ®; ;. However, the vector uy (i, j) is
stored at the cell face w and vector us, (i, /) is stored at cell face s. Thus, the vectors
and the scalars are stored in staggered locations. It is easy to identify appropriate
control volumes surrounding the cell-face locations as shown in Figure 5.2. Thus,
in the (7, j) address system, there are three partially overlapping control volumes.

Now, the SIMPLE method requires that to determine the pressure field, the
mass conservation equation must be satisfied over the control volume (ne-se-sw-
nw) surrounding node P where p; ; is stored. Thus, using the IOCV method, the
discretised version of Equation 5.3 is written as

AV
At
(5.6)

’

[(orup)e — (orup)w] Axz + [(prup)n — (or up)s] Axy = — (op — pp)

3 In compressible flows, p = p R, T, where R, is the gas constant, must be added to the equation
set (5.3-5.6). This equation of state is used to determine density p.
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where AV =rp Ax; Ax; and superscript o represents values at the old time.
Superscript n is dropped for convenience.

Equation 5.6 indicates that the velocities with suffix f appear at the cell faces
of the control volume surrounding node P. Therefore, in SIMPLE-staggered, mo-
mentum equations, Equation (5.4) is solved over control volume n-nW-sW-s and
Equation 5.6 is solved over the control volume w-wS-eS-e without explicit commit-
ment to satisfy mass conservation over these control volumes. The overall strategy
for solution of the flow equations is as follows:

1. Guess a p' field and solve momentum equations (5.4) and (5.6) over control
volumes surrounding cell faces to yield u}, and ut, fields.

2. These fields, in general, will not satisfy the mass conservation equation (5.6).

3. Derive a mass-conserving pressure-correction equation to satisfy mass conser-
vation over the control volume surrounding node P.

4. Use the pressure correction p’ so determined to correct the guessed pressure
p' and velocities uél and ulf2.

For a complete description of the SIMPLE-staggered method, the reader is
referred to [49, 51].

5.2 SIMPLE - Collocated Grids

5.2.1 Main ldea

Although the SIMPLE-staggered grid method enjoyed considerable success par-
ticularly when Cartesian grids were employed, the procedure was found to be in-
convenient when curvilinear or unstructured grids were to be employed to compute
over ever more complex domains. Further, even on Cartesian grids, the process of
discretisation required considerable book keeping because the dimensions of the
control volumes of vector and scalar variables were different.

Since the early 1980s, therefore, researchers began to explore the possibility
of implementing the SIMPLE procedure using collocated variables.* That is, the
velocity and the scalar variables were to be stored/defined at the same node P (i, j).
This, it was felt, would permit attention to be directed to a single transport equation
(5.1), thereby reducing the book-keeping requirements considerably.

Although convenient, this departure also brought within its wake a major diffi-
culty with respect to the pressure-field prediction. It was found that if the pressure-
correction equation as derived for staggered grids was used to predict pressure on
collocated grids, the predicted pressure distribution showed zigzagness. Depending
on the identified cause of this problem, different researchers (see, for example, [59])

4 In the literature, the procedure with collocated variables is sometimes referred to as a procedure
employing nonstaggered or collocated grids.
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Figure 5.3. The collocated grid.

proposed different cures with differing amounts of complexity. Here, we shall de-
scribe the method developed by Date [14] that elegantly eliminates the problem of
the zigzag pressure prediction. It will be shown in a later section that this matter is
connected with the recognition of the need to modify the normal-stress expression
as discussed in Chapter 1.

5.2.2 Discretisation

For collocated variables, we need to consider only one control volume (hatched)
surrounding typical node P, as shown in Figure 5.3. Further, the cell faces are
assumed to be midway between the adjacent nodes. As usual, using the IOCV
method (dV = r dx| dx;), we integrate Equation 5.1 so that

" Laa) 0] o [ 209)
[ LTz [ [ =557 e o0

Now, replacing the gs from Equation 5.2, we can show that

[Ce cDe - de (qDE - cI)P)] - [CW (DW - dw (qDP - CIDW)]

+ [Cn an - dn (CDN - (DP)] - [CW (DW - dw (qDP - qDW)]

AV
= SAV—(IOCD—,OO(DO)PE, (5.8)
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where the convective coefficients are given by
Ce = peretifie Axz,  Cy = pyryufwAxz,
Cy = PnFnlUf2n Axy, Cs = PstsUsf) s Axy, (59)

and the diffusion coefficients are

Defre e AX2 Defrow rw AX2

d - 5 d = )
¢ AXie v AXiy
r A r A
dn= eff,n’n xl’ ds _ eff,s s x1. (510)
AXon Axog

Now, in terms of the notation just introduced, the discretised mass conservation
equation (5.6) (with ® = 1) can be written as

AV
(pp—,OS)E—FCe—CW-i-CH—Cs:O. (5.11)

Further, the expressions for C @ at the cell faces can be generalised to account
for any of the convection schemes introduced in Chapter 3. When this is done and
Equation 5.11 is employed, it can be shown that Equation 5.8 reduces to

AP ®p = AE O+ AW Oy + AN Oy + AS Ps + D, (5.12)
where
AE = d. [A + max (— P, 0)], P = C./d,, (5.13)
AW =dy [A 4+ max (Pey, 0)], P = Cy/dy, (5.14)
AN = d, [4 + max(— Py, 0)], P, = Cy/dy, (5.15)
AS = dg [A + max (P, 0)], P, = Cy/ds, (5.16)
,OSAV
AP = AE + AW + AN + AS + NI (5.17)
SAV
D=sAav+ 220 g (5.18)
At
In these equations
1 (UDS)
max (0,1 —0.5|P.]) (HDS)
A=
max {0, (1 —0.1|P|)’}  (Power)
1 —0.5]|F] (CDS). (5.19)

From the point of view of computer coding, the utility of this generalised rep-
resentation for all variables (scalars as well as vectors) is obvious.
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5.2.3 Pressure-Correction Equation

In the collocated-grid SIMPLE algorithm, the nodal velocities are determined using
Equations 5.12 written for ® = u; and u,. The pressure gradients appearing in the
source terms of these equations are of course evaluated by central difference [for
example, op/dx;|p = (pr — p{,v) /(2 Ax;), where p' is the guessed pressure field
and / is the iteration number]. The task now is to correct the uf and p' fields such
that mass conservation over the control volume surrounding node P is satisfied. To
do this, and to remain consistent with the SIMPLE-staggered grid, we imagine that
the momentum equations are also being solved for the cell-face velocities uf;. The
discretised versions of these imagined equations with underrelaxation will appear as

I+1 o I+1 3Pl+1 i | l
Uy = E Axugp — 8x1 +D, |+ —a)uy, (520)
I+1 T
I+1 o I1+1 817 ! I
U = ZA:« Bk = AV ==+ D, |+ (L —up, (521)

where Df“ and Dfl2 contain source terms (if any) other than the pressure gradient,
« is the underrelaxation factor, and the summation symbol indicates summation
over all immediate neighbours of the cell-face location under consideration. Thus,
when Equation 5.20 is written for cell face e, for example, running counter & refers
to locations ee, Ne, w, and Se. Now, at iteration level / + 1, it is expected that

3(,0[+l) 1 9
ot r 8x1

ot D sty =0 62

Substituting Equations 5.20 and 5.21 in Equation 5.22 we can show that

3(/01+1) 19 I+1 1 19 I+1 1
IR T AR R vl LY
1 9 | rptla un I+1 ap't! i
Z;B—x1|:AP”fl AP ufy — ZAk iy + AV = = Dy,
1 9 l apl-i-l
- ufa I+1 _nl
* r ox; |: AP { P2 uy Z Avttp o+ AV dxy P |

(5.23)

To develop the pressure-correction equation, we introduce the following
substitutions:

1+1 / / I1+1 ! / +1 _ 1 /
Up = Up + Upy, Up = Up +Up, P =p o, (5.24)
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where, p; is the mass-conserving pressure correction. Thus, Equation 5.23 will
read as’

1.9 o lra AV dp! +1 d [p*lraAV apl
r 8x1 A Pun 0x1 r o A Pk 0x,
9 1+1 1 9
_eT) 1o
ot r ox

19 pl“raAVR +1 0 pl+1ro¢AVR (5.25)
rax, P Apue R[]

1 0
{ oy l}+_3_xz {r,olHulfz}

where residuals per unit volume, R,¢ and R,p, are given by

AP““”H ZAk”flk D, ap'

R, = -, 5.26

fl AV + 3)61 ( )
APyl — 3 Agut,  — DL §p!

Ry, = 2 NG f2.k 2 4 pr (5.27)

The discretised version of the mass-conserving pressure-correction Equation
5.25 will read as

where
1+1 2 A 1+1 2 A
ap ="* (Zfl 2 ’ aw =" (jfl 2
AP . AP w
1+1 2 A I+1..2 A 2
AN:p ;szx ' AS:’O rjlfz all
AP n AP .
AP = AE + AW + AN + AS, (5.29)

mp = (pl“rufol}e — pl“rufcl‘w) AXy

AV
+ (P rupl, = P runl) Avi+ (o™ = pp) o (530)

mgr = AE Ryt Axile — AW Ry Axilw + AN Ryry Axz|n — AS Ry Axals.
(5.31)
A number of comments with respect to Equations 5.25-5.31 are now in order.

1. On both staggered and collocated grids, the pressure is stored at node P and the
mass conservation equation is solved over the control volume surrounding node
P. Therefore, Equation 5.25 is applicable to both types of grids.

5 In deriving Equation 5.25, it is assumed that ", Ay uy = > Axufy = 0. This is consistent
with the SIMPLE-staggered grid practice [51].
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2. In incompressible flows, density is independent of pressure. Therefore, p/*! =
o' = p (say). Derivation of the pressure-correction equation for compressible
flow is left to the reader as an exercise (see Date [15, 17]).

3. On staggered grids, the momentum equations are solved at the cell faces and,
therefore, residuals R,s and R, must vanish at full convergence, rendering
mr = 0. Although this state of affairs will prevail only at convergence, one
may ignore myg even during iterative solution. Thus, effectively, the pressure-
correction equation applicable to computations on staggered grids is

1 9 {lemAVap;n}Jrl 9 {p’HmAVap;n}

roox, APu 9x, r ox, AP'2  9x,
apthH 1 9 1 9
— at ; a—x1 {r pl+1 ui‘l} + ; a—xz {V ,Ol+1 leéz} . (532)

This equation is derived in [51] via an alternative route. It is solved with the
boundary condition

0

=0. 5.33
el (5.33)

The explanation for this boundary condition is given in a later section.

4. On collocated grids, cell-face velocities must be evaluated by interpolation
to complete evaluation of mip because only nodal velocities u; are computed
through momentum equations. Thus, mp in Equation 5.30 is evaluated as

I+1 I+1

m_'pz(p r Eﬂe—p r EHW) AXxy

AV
+ (M whl, = pr T) A (o - 0) T 639

Now, to evaluate u;, we use multidimensional averaging rather than simple one-
dimensional averaging. Thus, for example,

1{1 Axppith o+ Axp il
—1 / i 0% se S %1, ne
U=z |z ujptu + ,
Le 2 |:2 ( Lp l’E) sz‘n + sz’s
1
I I I I 1
Uise = 7 (uyp+uh g +ulg+uige),
1
1 I / I i
Uine = 7 () p+uh g +ul N+t Np) - (5.35)

Similar expressions can be derived for other interpolated cell-face velocities.
5. On collocated grids, we do not explicitly satisfy momentum equations at the
cell-face locations. Therefore, there is no guarantee that mzg will vanish even at
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convergence. We, therefore, write R, . in Equation 5.31, for example, as

8p[

8x1

R =AP"““f Y Axusy  — Dy,

Ufle AV (536)

This equation is the same as Equation 5.26 written for location e, but the net
momentum transfer terms are again multidimensionally averaged. This averag-
ing is done because, when computing on collocated grids, one does not have the
cell-face coefficients 4;.° Now, again using Equation 5.26, we get

AP ugy — 37 Agug  — Dy, - ap!
=Ry, — — (5.37)
AV ' X1
€ c
Thus, effectively,
o
Ry, =Ruy, — — — 5.38
fle fl,e 8x1 + 8x1 . ( )
€
6. Now, R, . is again evaluated in the manner of Equation 5.35. Thus, R,,, . will

contain residuals only at nodal locations P, E, N, S, NE, and SE. These residuals
will of course vanish at full convergence because momentum equations are
being solved at the nodal positions. Therefore, R,,, ., = 0 and

apl
8)6]
e

apl

5.39
ox, (5:39)

Ufle

&

The practice followed here is same as that followed on staggered grids (see
item 3).

7. Now, to evaluate the multidimensionally averaged pressure-gradient in Equation
5.39, we write

IRARYE)
212 \ax
PéE‘Pé ]

1
T4 [Axl ot Ax1 w | Axied Axiy

ap’
8x1
e

: ) L Axan 3p!/801| + Az ap’/axl\m}
E

ap
p 0X1 Axyn+ Axp

L1 An, P+ Phe — Pb — PN
4 AX2n + sz S Axl,e

+ —
4 Axypn + Axps AX e

Note that, in principle, evaluation of these coefficients can be carried out. However, the com-
putational effort involved will be prohibitively expensive in multidimensions. For example, in a
three-dimensional calculation, one will need to evaluate eighteen extra coefficients at the cell faces
in addition to the six coefficients evaluated at the nodal locations.
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To simplify the evaluation, we introduce the following definitions:

Axiw pE + AX) e pw

D = 5.41
Pap AXyw + Axpe (>-41)
5= Axy s pN + Axon ps (5.42)

x2,P sz,s =+ sz,n '

_ 1 _ _

pP = E(pX],P +pXQ,P)’ (543)
_ . Axl,c:pEE‘i‘Axl,ec:pP (5 44)
PrE = Axl,e + Axl,ee ' .
__ Axaspne+ Axon pse (5.45)
P, E= Axrs + Axan > -

_ | _

PE = 5 (Px, E + Px, E)- (5.46)

Substituting these definitions in Equation 5.40 and replacing pgg and pw in
favour of pg and pp, we can show that

@ :l[pé—pf) ?é_ﬁé}:lw (5.47)
8X1 . 2 Axl,e Axl,e 2 8X1 e,
and, therefore, from Equation 5.39
19 I _ =l ap’
Ry =5 (p ?) = Pom ) (5.48)
' 2 8X1 e 8x1 e
where
=2 -7 5.49
P =5 (0" =P (5.49)
The suffix sm here stands for smoothing pressure correction.
8. Repeating items 4, 5, 6, and 7 at other cell faces, we obtain
op. op. op.
R”fl w = psm ’ Ufa,n = psm ’ RufZ s = psm (550)
) 0x1 W ' 9x2 n ' 9x2 s
Thus, substituting these equations in Equation 5.31, it follows that
op. op.
g = AE L0 Ay, | — aw Lsm Ay
X1 e 8)61 W
op. op.
4 AN Psm ppo| — g5 PPsmpy, (5.51)
8)(72 n 8)(72 S

9. In evaluating coefficients AE, AW, AN, and AS, we need AP coefficients
at the cell faces (see Equation 5.29). However, these can be evaluated by
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one-dimensional averaging as

1
AP = S (AP + APY),

u 1 u u
Ag”:zcu¢+A&y (5.52)

where A P* = AP* = AP" on collocated grids.

These derivations show that Equations 5.30 and 5.31 can be replaced by Equa-
tions 5.34 and 5.51, respectively. Thus, the mass-conserving pressure-correction
equation (5.25) can be effectively written as

1 9 [pTraAV dp), 1 9 (' raAV dpl,
r ox; A Pun 0x1 r 0xp A Pt 0Xx7

:M li{ 1+1—1}+li{},pl+1u—21}

ot r 0x r 0x;
[ a [ raAV ap, +1j1 o lra AV dpl
r oxg APun 0x1 r 0x; A Pt 0x7 '

(5.53)

This equation represents the appropriate form of the mass-conserving pressure-
correction equation on collocated grids.

5.2.4 Further Simplification

It is possible to further simplify Equation 5.53. To understand this simplification,
consider, for example, the grid disposition near the west boundary as shown in
Figure 5.4. When computing at the near-boundary node P (2, j), the pressure
gradient dp/dx;|p must be evaluated in the momentum equation for velocity u p.
This will require knowledge of the boundary pressure p, = p (1, j). On collocated
grids, this pressure is not known and, therefore, is evaluated by /inear extrapolation
from interior flow points. Thus,

Ly Lyp

Pb= ——PpP— — DE» (5.54)
Lpg Lpg

where L denotes length. The same procedure is adopted at Nb and Sb. Now, assuming
that the pressure variation near a boundary is locally linear in both x| and x;
directions, it follows that

Db — Py = Pp — Dp or Pém,b = Pém,p’ (5.55)
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and, therefore,
op, op,
Psm| _ %Psm| _ (5.56)

The same condition is also applicable to p; (see Equation 5.33). Now, Equa-
tion 5.53 shows that multipliers of gradients of p;, and p; are identical and, since
the boundary conditions for these two variables are also identical, we may write the
mass-conserving pressure correction equation in the following form:

1 0 cap’ 1 o ,op’
-—{r? P +-— 117 P
roox 0x1 r 9x dx2

VARSI
ot r 0x

{ro*al} + - — {rp't'ul}, (5.57)
where T¥ = p/* ra AV/AP*" and T = p!*1ra AV/AP"2. Equation 5.57
must be solved with the following boundary condition:

op’
on |,

=0, (5.58)

where the fotal pressure correction p’ is given by
P'= Pt P (5.59)
and the discretised form of Equation 5.57 is
AP pp = AE py + AW py + AN py + AS ps — rip, (5.60)

where 7p is given by Equation 5.34 and the coefficients by Equation 5.29. In
passing we note that Equation 5.57 for collocated grids has great resemblance
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to Equation 5.32, which is applicable to staggered grids, although the dependent
variables have different meanings.

5.2.5 Overall Calculation Procedure

The sequence of calculations on collocated grids is as follows.

L.

At a given time step, guess the pressure field pf’ ;- This may be the pressure field
from the previous time step.
Solve (see the next section) the momentum equations (5.12) once each for
® = u; and u, with problem-dependent boundary conditions. Designate the
velocity fields so generated by u’1 and u’z.
Form ;. ; (Equation 5.34) using multidimensional’ interpolations of cell-face
velocity. Now, solve Equation 5.60 with boundary condition (5.58) iteratively
to yield the total pressure-correction p; ; field. The number of iterations may
not exceed 5 to 10.
Recover the mass-conserving pressure correction via Equation 5.59. Thus,
1 ’ ’ / 1 ! —l

Pmi,j = Pi,j — Psm,i,; = Pi,j — ) (pi,j - pi,j) ) (5.61)
where p f ; 1s evaluated from Equation 5.43.
Correct the pressure and velocity fields according to

P,l'j;l = le',j +,8p;n’i,j, 0<B<l, (5.62)
41 / ro Ax)
“14,;,1‘ =i T T yput | (p;n,i+l/2,j - p;n,i—l/Z,j)’ (5.63)
i
41 / ro Axy
”24,:',,‘ =Uyi;— Ape | (p;n,i,j—i-l/Z - p;n,i,j—l/2)' (5.64)
i

Note that 4 P*! = 4 P"2,

Solve the discretised equations (5.12) for all other scalar &, ; relevant to the
problem at hand.

Check convergence through evaluation of residuals (see the next section) for
momentum and scalar ® equations. Care is, however, required in calculation of
mass residuals as will be discussed shortly.

If the convergence criterion is not satisfied, treat p/*! = p/, ®*! = &' and
return to step 2

To execute the next time step, set all ®° = &'*! and return to step 1.

7 Although multidimensional interpolation is prescribed, in actual computations, one-dimensional

interpolations suffice in most applications.
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5.3 Method of Solution

5.3.1 lterative Solvers

Equations 5.12 for any ® and Equation 5.60 for p’ have the same form, which for
any node (i, j) can be generalised as

(AP j+ Spi ) OH = AE; ; ®F)  + AW, ; @11

+ AN; ;DL + A4S L 4 Sui ;. (5.65)
where Su =D, AP = AE + AW 4+ AN + AS, and Sp = (p° AV / At). Note
that Su and Sp can be further augmented to effect underrelaxation, boundary
conditions, and to some extent domain complexity. If there are /N nodes in
the i direction and JN nodes in the j direction, Equation 5.65 represents a set
of (IN —2) x (JN —2) equations for the interior nodes for each ®. These
equations can be solved by matrix-inversion-type direct methods. However, in
multidimensional convection, iferative methods are usually preferred in which
Equation 5.65 is solved sequentially for each ®. There are two extensively used
methods of this type: GS and alternating direction integration (ADI).

Gauss-Seidel (GS) Method

In the GS method, for each ®, coefficients AE, AW, AN, AS, Su, and Sp
are evaluated based on @ values at iteration level / for each node (i, j), i =2
to/N — land j = 2,JN — 1. Then the nodal value is updated in a double DO loop:

DO 1 J =2, JN-1

DO1ITI =2, IN-1

ANUM = AE (I, J)*FI(I+1, J) + AWCI, J)*FI(I - 1, J)
+ ANCI, J)*FI(I, J + 1) + AS(I, J)*FI(I, J - 1)
+ SU(I, J)

ADEN = AP(I, J) + SP(I, J)

FI(I, J) = ANUM / ADEN

1 CONTINUE

This method is sometimes called a point-by-point method because each node
(7, j) is visited in turn. Note that as one progresses from i = 2 and j = 2, some
of the neighbouring ® values are already updated whereas others still retain their
values at iteration level /. Thus, the net evaluation is really a mixed evaluation. Yet,
at the end of the DO loop, values at all nodes are treated as having (/ 4 1)-level
values. Convergence is declared when the residuals (see the next subsection) fall
below a certain low value. This iterative method, though very robust and simple to
implement, is very slow to converge.
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ADI Method

The ADI method is a line-by-line method in which Equation 5.65 is first solved for
all j = constant lines (say). This is called the j-direction sweep. The solution thus
obtained may be called the ®/*!/2 solution. Now, using this solution, Equation 5.65
is again solved for i = constant lines to generate the ®'*! solution. This is called
the i-direction sweep. The implementation details are as follows. For the j sweep,
Equation 5.65 is written as

(AP + Spi ) @2 = AE, ;o1 4+ aw, ;0112 4 ST, (5.66)

i+1,j i—1,j
where
SJij=AN;;®} | + AS;; @} ;| + Su; ;. (5.67)
Now, dividing by coefficient of ®; ;, Equation 5.66 for fixed j can also be written as
O =g o T e, i=2,.. IN—1, (5.68)

Where a; = AE,‘J /(AP,"J' =+ Spi,j)a bi = AVV,’J /(AP,J + Sp,',j), and C; = SJ,',J'/
(API'J + Spi,j)-

It is clear that Equation 5.68 can be solved using TDMA for each j =2 to
JN — 1 to complete the j sweep. To execute the i sweep, Equation 5.65 is again
written as

(AP, + Sp; ) @5 = AN, ; @ + 4S8, ; @5 + 5L, (5.69)

where

Sk = AE; ;& 1\7 + AW, ; 5% + Su; ;. (5.70)

Equation 5.69 can again be cast in the form of Equation 5.68 and subsequently
solved foreach i = constant line by TDMA. The two sweeps complete one iteration.
Thus, in the ADI method, the domain is swept twice per iteration. In spite of this,
the procedure proves to be much faster than the GS procedure. In Chapter 9, some
additional methods for convergence enhancement are described.

5.3.2 Evaluation of Residuals

The convergence of the iterative procedure is checked by evaluating the imbalance
in Equation 5.12. Thus, for each ®, we evaluate

27105

Re=| Y 1A4P®p—) A®—D . (5.71)
k

all nodes

When the maximum value of R¢ among all ®s is less than the convergence criterion
(typically 107), the iteration is stopped. Often, R is normalized with a reference
quantity specific to a problem having units of AP ®.
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Special care is, however, needed for the mass residual. On staggered grids, the
mass residual Ry, is checked via Equation 5.30 [S1]. That is,

0.5
Ry = [ > (mp)z} . (5.72)
all nodes

However, on collocated grids, one cannot use this equation directly because 7z; i #0
even at convergence. Therefore, Equation 5.72 is written as
0.5

2
Ru=| (AP Phij — D Ar p{n,k> , (5.73)
k

all nodes

where AP and Aj are coefficients of the pressure-correction equation. It will
be recognized that this equation simply represents the discretised version of the
left-hand side of Equation 5.32 (or see Equation 5.28 with mg = 0). Thus, Ry, is
evaluated affer p; ; ; 1s recovered in step 4 of the calculation procedure. This is
an important departure from the staggered-grid practice that a casual reader may
overlook.

5.3.3 Underrelaxation

Global Relaxation
As mentioned in Chapter 2, in steady-state problems (At — o0), underrelaxation
is effected by augmenting Su and Sp as

Slzl,"j:SZl,'J—FBCDl

INE Spi’j:Sp[’j—FB, B =

(AP ; + Spi ),

(5.74)

(I-a)
o

where « is the underrelaxation factor and / is the iteration level. The value of « is
the same for all nodes but it may be different for different ®s. This is called global,
or constant, underrelaxation.

False Transient

In multidimensional problems, underrelaxation is often effected in another way.
Thus, consider a steady-state problem in which A¢# = oo and, therefore, the transient
term is zero. However, one can imagine that the steady state is achieved following
a transient and each time step is likened to a change in iteration level by one. In
this case, ®7 ; may be viewed as CIDI and the time step A¢ as the false-transient
step. Then, comblmng Equation 5. 65 with Equation 5.74, we can deduce that the
resulting equation may be viewed as one in which

APl',j —I—Sp,-,j
AP, ;4 Spij + (p° AV/ AL

O[eff’i,j = (575)
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where the suffix eff is added for two reasons. Firstly, note that this equation arises
out of comparison with Equation 5.74; secondly, a.s is not a global constant but
will vary for each node (i, j). In fact, this variation also proves to be most appropri-
ate. This can be understood as follows. When 4 P; ; + Sp; ; is small, the change in
® from iteration level / to / 4+ 1 will be large (see Equation 5.65). It is precisely this
large change that is to be controlled by underrelaxation. Equation 5.75 shows that
afr 1s indeed small when AP; ; + Sp; ; is small. Conversely, when AP; ; + Sp; ;
is large, the implied change in ® is small; therefore, we can afford a larger value
of «. Thus, underrelaxation through the false-transient method is proportionate to
the requirement. Of course, the smaller the value of the false Az, the smaller is the
value of the estimated ot

Although in most nonlinear problems use of constant « suffices, the false-
transient method needs to be invoked when couplings between equations for dif-
ferent ®s are strong or when the source terms for a given ® vary greatly over a
domain or when the initial guess of different variables is very poor. Most practi-
tioners invoke the false-transient method when the global underrelaxation method
fails.

5.3.4 Boundary Conditions for ®

In fluid flow and convective transport, five types of boundaries are encountered:
inflow, outflow or exit, symmetry, wall, and periodic. At all these boundaries, mainly
three types of conditions are encountered:

1. @, specified,
2. dd/on|y specified, and
3. 3°®/09n?|y specified,

where 7 is normal to the boundary. We shall discuss each boundary type separately.

Inflow Boundary
At the inflow boundary, values of all variables are specified and are therefore
known.® Thus, at a west boundary (see Figure 5.4), for example, we can write

Suz’j :Su2,j+AW2,j q>1’j, sz’j :sz’j‘i_AWz,J, AWZ,/' =0.
(5.76)

§ Care is needed in specifying inflow conditions for turbulence variables e and €. Typically, e;, =
(Tu uip)?, where Tu is the prescribed turbulence intensity. Now, the dissipation is specified through
the definition of turbulent viscosity. Thus, €, = C,, p €*/(1 VISR), where the ratio VISR = 1,/
is assumed (typically, of the order of 20 to 40). In practical applications, 7« and VISR are rarely
known and, therefore, the analyst must assume their magnitudes.
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Figure 5.5. Exit and periodic boundaries.

Wall Boundary
At the wall, either @y, or its flux ¢y is specified. For the first type, Equation 5.76
applies. If flux is specified, then at the west boundary again,

Ajq,

Sur i = Suy ; + A1 91,
2,j 2,j 141, AW,

Dy ;= + @, ;, AW, ; =0,

(5.77)

where A ; = r; Axy; is the boundary area.’

Symmetry Boundary

At this boundary, there is no flow normal to the boundary and no diffusion either.
Thus, with reference to Figure 5.4, forascalar @, g ; = 0.0. For vectors, the normal
velocity component u (1, j)=0and u; (1, j) = u2 (2, j). In all cases, AW, ; = 0.

Outflow Boundary

The outflow boundary is one where the fluid leaves the domain of interest. The
boundary condition at the outflow or exit plane is most uncertain. To understand
the main issues involved, consider Figure 5.5(a) in which de represents the outflow
boundary. Now to affect the boundary condition, we may assume that the Peclet
number (¢; Ax;/I")|y is very large. In this case, the AE coefficient of all near-
boundary nodes will be zero and, therefore, no explicit boundary condition &}, or
dd/dn|yp is necessary. In many circumstances, this assumption may not be strictly
valid. One way to overcome this difficulty is to shift boundary de further down-
stream than required in the original domain specification. Thus, one carries out
computations over an extended domain and effect A £ = 0 at the new location of
de. A third alternative is to assume that a fully developed state prevails at de so that
both the first as well as the second normal derivatives are zero. Most researchers
prefer to set the second-order derivative to zero and extract @, by extrapolation
while the transport equation is solved with AE = 0.

° 1In turbulent flows, the wall boundary requires special attention when the HRE form of the e—
model is employed. This matter will be taken up in the next section.



5.3 METHOD OF SOLUTION

Since none of these alternatives can be relied upon, it is advisable to ensure
that the overall mass balance for the domain is maintained throughout the iterative
process. This means that the exit-mass flow rate must equal the known inflow
rate. Thus, after effecting the boundary condition (marked by superscript *, say)
according to any of the alternatives just described, it is important to correct the
boundary velocities as

wp = wiy Fy um=uly P, F =it /Z ity (5.78)

where m*

=it 1s evaluated from the starred velocity boundary condition.

Periodic Boundary
Figure 5.5(b) shows flow between parallel plates with attached fins. In this case,
after an initial development length, the flow between two fins will repeat exactly.
Such a flow is called periodically fully developed flow and the periodic boundary
condition will imply

Dy ; =Py n+1-; = 0.5(P2; + Prnv—1,n+1-))s
uz(1,j) = —U20n.j) = 0.5(U20,j) — U2 (N-1,7N+1-))); (5.79)

where /N and J N are the total number of nodes in the 7 and j directions, respec-
tively. Note that in this boundary condition specification, the u, velocity has anti-
periodicity whereas all other ®s have even periodicity.

5.3.5 Boundary Condition for p;,

The boundary condition for p;, is given by Equation 5.33. The reason for this can
be understood from step 3 of the calculation procedure. When this step is executed,
the uf fields along with their boundary values uf’b are already known. Now, when
the p’ equation is solved, it is assumed that these boundary values are correct and,
therefore, require no further corrections.

If we now consider Equation 5.12 for ® = ™' and ® = u/ and subtract the

latter equation from the former, with v} = u11+1 — ull, we have

O

APu, , = Aguy, — AV
1,P Z k%1 K ax1 |p

where ks represent neighbours of P. Also, ) | A u} ; = 0 through our assumption
introduced in Section 5.2.3. This explains the form of velocity correction introduced
in Equation 5.63 for an interior node. The same arguments apply to the u, velocity
corrections given in Equation 5.64.

Now, if the preceding equation is written for the boundary nodes (P = b),
clearly u , = 0 because no corrections are to be applied to the boundary velocities.
Therefore, dp;,/9x1|, = 0. This is boundary condition (5.33). In discretised form,
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Figure 5.6. Node tagging.

the boundary condition is implemented by setting the boundary coefficient of the
pressure-correction equation to zero for the near-boundary node.

Sometimes, we may have a boundary on which pressure is specified and, there-
fore, remains fixed. For such boundaries, p; , = 0.

5.3.6 Node Tagging

In Chapter 2, we emphasised that the introduction of Su and Sp can facilitate writing
of generalised computer codes by capturing a large variety. In multidimensional
codes, further variety can be captured by tagging each node of the domain with a
number. This is intended to facilitate handling of

1. different types of boundary conditions over different portions of the same phys-
ical boundary and
2. domains that are not perfect rectangles.

Figure 5.6 shows an arbitrary domain a-b-c-d-e-f-g-h-i-j, which we shall call the
domain of interest. However, we regard it as a part of a rectangular domain a-m-n-1
withnodesi = 1to /N and j = 1 to JN. This will create areas b-c-d-m, f-g-n-e,
and j-1-h-i, which are not of interest. We term them as inert or blocked areas. Now,
coordinates x; and x,; are chosen so that the implied cell-face locations exactly
coincide with the boundaries of the domain of interest. This ensures that our domain
of interest is filled with full (not partial) control volumes as shown in the figure.
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Node tagging is now accomplished using the following convention:

1. NTAG (I, J) = 0 identifies all nodes interior to the domain. That is, nodes falling
on the boundaries a-m, m-n, n-1, and I-a are excluded.

2. NTAG (I, J) = 1 identifies all interior nodes in the inert areas.

3. NTAGW (1, J) = 11, 12, 13, 14, 15 identifies nodes adjacent to the WEST
boundary with 11 for inflow boundary, 12 for symmetry boundary, 13 for exit
boundary, 14 for wall boundary, and 15 for periodic boundary. NTAGW is zero
for all other nodes.

4. Similarly, NTAGE (I, J) = 21, 22, 23, 24, 25 identifies nodes adjacent to the
EAST boundary, NTAGS (1, J) =31, 32, 33, 34, 35 identifies nodes adjacent to
the SOUTH boundary, and NTAGN (1, J) = 41, 42, 43, 44, 45 identifies nodes
adjacent to the NORTH boundary.

Using this convention (which is quite arbitrary), NTAGW will have a fi-
nite number for i =2 and j =2,3,...,7 (boundary a-b) and for i = 6 and
j=28,9,...,JN — 1 (boundary c-d). Similarly, NTAGN will be finite for j = 7
andi =2, 3,4, 5 (boundary b-c), for j = JN — landi = 6, 7, 8, 9, and again for
j=7andi=10,11,..., IN— 1 (boundary f-g). NTAGS and NTAGE can be
similarly specified.

The choice of numbers 11, 12, 13, etc. in NTAGW is arbitrary but brings one
advantage. That is, for near-west boundary nodes, NTAGW/10 = 1 in FORTRAN
and, therefore, a WEST boundary is readily identified. Similarly, NTAGN/40 = 1
readily identifies a NORTH boundary. Once this identification is done, the actual
numbers (11, 12, etc.) identify the type of boundary condition and therefore Su; ;
and Sp; ; for the near-boundary nodes can be set up. This facilitates specification of
different boundary conditions at the same physical boundary. Thus, if boundary a-b
is a wall, a part of it may be insulated and the rest may receive heat flux. Similarly,
with respect to mass transfer, a part may be inert but the rest may experience a finite
mass transfer flux.

Finally, at the inert or blocked node where NTAG (1, J) = 1, one simply specifies

Sui,j = 1030 quesired’ Spi,j = 1030- (580)

Examination of Equation 5.65 will show that since 4 P; ; can never be very large,
these settings render ®; ; = Pgesireq at the inert nodes. In Figure 5.6, the inert
regions are outside the domain of interest. However, it is easy to appreciate that
one can even have inert regions that are enclosed by the overall domain of interest
(hence the term blocked region), as shown in Figure 5.7. The figure also shows
how a domain with irregular boundaries may be specified by node tagging. Here,
the irregular boundary is approximated by a staircase-like zigzag boundary.'® Such

19 The accuracy of the solution will of course depend on the number of steps into which the true
boundary is subdivided.
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Figure 5.7. Domain with irregular boundary.

an approximation of the true boundary is permissible when the flow is in the x3
direction (i.e., u3 is finite but u; = u, = 0 as in the case of laminar fully developed
flow in a duct) because the replacement does not imply a rough wall.!! If, however,
the velocity components u; and u, were finite, it would be advisable to map the
domain by curvilinear or unstructured grids (see Chapter 6) so that the staircase
boundary approximation does not interfere with the expected fluid dynamics (see
Exercises 16 and 17).

Finally, note that the exit and wall boundaries may be specified in more than one
way, as discussed in the previous subsection. Thus, at a wall one may specify
temperature or heat flux. One can introduce further identifying tags for each

type.

5.4 Treatment of Turbulent Flows

5.4.1 LRE Model

In multidimensional elliptic flows, the concept of mixing length is not very useful.
This is because it is difficult to invent a three-dimensional (3D) algebraic prescrip-
tion for the mixing length. As was learnt in the previous chapter, however, the LRE
e— model is general and does not require any input that depends on the distance

! The replacement will also be permissible in a pure conduction problem.
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from the wall. The 2D elliptic version of this model can be described via Equation 5.1
for ® = e and €* with the following definitions of the source terms [9]:

S, =G — pe”, (5.81)
Se = S [C1G—Crpe'] + Ee., (5.82)
e
where
dur\’ qu\°  [(ur  dup )\’
G=p|2() +2(22) + (2242 |, (5.83)
8x1 3)62 8x1 3)(2

2 2
d ad
NONWEONE (5.84)
8)61 8)(2
+2 82M1 2+ 82u1 2
0x1 0Xx7 8x§
82u2 2 82M2 2 82u2 2
+ +2 + . 5.85
(5) +2 () + (52) 5

The expressions for C| and C, are the same as those given in Chapter 4. The
LRE e—e€* model permits use of the e = €* = 0 condition at a wall boundary.
Although this is a distinct advantage of the model, accurate predictions require a
very large number of nodes, as was learnt through boundary layer predictions. In
two dimensions, if more than one boundary is a wall then the number of nodes
required becomes very large indeed. This is because, to resolve the inner layer
near a wall, which typically spans to y* = yu, /v = 100, one may need 60-80
nodes with the first node as close as y*© = 1 whereas the outer layer may require
no more than 20-30 nodes. Physically, the inner layer occupies a very thin region
near a wall.'? Thus, computations with the LRE model in 2D and 3D elliptic flows
can be quite expensive. In the interest of economy of computations, therefore, it is
desirable if an adaptation can be made that restricts calculations only to the outer
layers.

)

5.4.2 HRE Model

In a large majority of flow situations, as is well known, the inner layer exhibits near
universality with respect to velocity and temperature profiles — the so-called laws

12 In a fully developed flow in a pipe (radius R), for example, R* = R u, /v = (Re/2) /f/2. Using
f =0.046 Re™"2 we estimate that at Re = 50,000 (say), R* = 1,285. This shows that the inner
layer is less than 10% of the radius.
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of the wall. In the two-layer approach, these laws are given by'3

— =y, yT < 11.6,
Ur

ut =4 (5.86)
—In[Ey*], y' > 116,
K

where k = 0.41, £ = 9.072, and wall-friction velocity u, = /ty/p. Similarly, the
temperature law is given by

_ —(T — Tw)pcpur

T+ = Pri(ut + PF), (5.87)
qw
where Pry = 0.9 and
P
(_r _ 1) . <116,
Prt

PV 0.75
PF=10924 [ (_) _ 1)] (5.88)
P}”t

Pr
X |:1 +0.28 exp (—0.007 —>:| , yT > 11.6.
Pl"t

These specifications are empirical but, in the range 30 < y™ < 100, they are
reasonably accurate. One can thus exploit this near universality to eliminate the
inner layer almost completely from the calculations and compute only in the outer
layers. In the outer layers, turbulence is vigorous and Re; = u¢/u is large (hence
the acronym HRE for high Reynolds number model) so that €* — ¢ and, therefore,
the source terms are given by

S.=G—pe, S.=S[C,G—Cypel, (5.89)
e

where C; = 1.44 and C, = 1.92. The task now is to modify our discretised equa-
tions for the near-wall boundary node P such that the implications of the laws of the
wall are embodied in the equations.'* To achieve this goal, we note the following
two characteristics of the 30 < y* < 100 region in which the near-wall node P is
assumed to have been placed. These are

ur = C,/* Ve, (5.90)
G =pe. (5.91)
Let node P be adjacent to south node b (see Figure 5.8). We shall consider each

variable in turn.

13 In all derivations in this subsection, distance y and x, are used interchangeably.
14 In the literature, this is called the wall function treatment [39].
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I
Figure 5.8. Wall function treatment. ! :

b
L4

— o —

b = u4
For an impermeable wall, C; = 0 and, therefore, AS = per Ax1/yp. Also, the
no-slip condition requires that u;, = 0 at the stationary wall. Thus

du _ Mefr

Tw = —_—
w Meff ay

Meft
e (ip —up) = yz uip. (5.92)
y=0

Now, replacing up from Equation 5.86, we can show that

Meft _ Tw _ _PKUr (5.93)
yp up In(E y;r)’ '
where yi = ypu, /v. Therefore, using Equation 5.90, we get
ﬁ, yt < 11.6,
Heff yp
= 1/4 5.94
yp IOKCM/ \/EP y+>116 ( )
In(E yp Ci* Vep/v)
Thus, for variable ® = u, for the near-wall node P, we may set
Su=Su+0, Sp=5Sp+TAx, 4S=0. (5.95)
yp

d=e

A further characteristic of the inner layer is that the shear stress through the layer
is constant and hence equals 7. Also, experimental data demonstrate that in the
30 < y* < 100 region, de/dy =~ 0. Therefore, AS = 0. The implications of the
law of the wall thus can be absorbed through redefinition of S, for point P:

S, = Gp — pep, (5.96)

where

duy\? up\” ouy
Gp > et (—) = [eff (—) =Ty —— (5.97)
dy yp
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and, using Equation 5.91,

1 [ Tw [0 2
= — | edy="2v | Ty, KM (5.98)
yp Jo pye Jo 9y yp
or, using Equations 5.90 and 5.93,
CI 32
&= P In(E ). (5.99)
Kk yp
It is now easy to effect the boundary condition via
AV
Sup = Su, + “EP 2R (5.100)
Vp
34 12
Spe = Spe + 251 1n(E v AV (5.101)
Kk yp
b =€
To evaluate €p, we combine Equations 5.91 and 5.97 so that
w 0 d
=22 _ 20 (5.102)
p dy ay
But, from Equation 5.86, du1/0y = u./(x y). Therefore,
3 C3/4 3/2
=% (5.103)
kyp Kk yp
To effect this condition, we set
Su, =10 ep, Spe = 10°°. (5.104)

=T
In this case, AS = ey Ax1/yp, where Ier = kegr/ Cpp. Again, we set 45 = 0 and
absorb the boundary condition via an augmented source. Thus

Cegr A
Sur = Sur + —"2 (T~ To) = Sur + I Ay (5.105)
yp Cp
Substituting for (7, — 7p) from Equation 5.87, it follows that
r
L A S (5.106)
p Pri(ujp + PF)
Thus, if gy, is specified, we set
Sur = Sur + Z,—W Axi,  Spr=Spr+0, (5.107)

p
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andrecover T;, from Equation 5.105. Similarly, if the wall temperature Ty, is specified
then

Tap A o A
Mg, Spr=Spr+—a—tl o (5.108)
yp yp

and g, is recovered from Equation 5.105. For further refinements of the wall-
function approach, see references [41, 69].

SuT = SuT +

b = Wik
It is not clear if universal mass transfer laws exist for all mass transfer rates. Fol-
lowing theory developed by Spalding [73], however, it is possible to show that

Tew _ pur _ In(1+B)

= , 5.109
yp Prt(”;rp‘i'PF) B ( )
where the Spalding number B is given by
B = LEP T kb (5.110)
Wi,b — Wk, T

and wy 1 18 the mass fraction deep inside the wall from where mass transfer is taking
place. Note that as B — 0, In (1 4+ B) — B. Further, P F is still given by Equation
5.88 but with Pr replaced by Schmidt number Sc. All other adjustments are the
same as those for the temperature variable.

5.5 Notion of Smoothing Pressure Correction

It is important to consider the notion of smoothing pressure correction introduced
in our analysis of the collocated-grid calculation procedure. This is because, in
the original SIMPLE-staggered grid procedure, such a smoothing correction is not
required. However, its introduction is vital if zigzag pressure prediction is to be
avoided on collocated grids, particularly when coarse grids are used. To understand
the importance of smoothing correction, we consider computation of laminar flow
in a square cavity (see Figure 5.9) of side L that is infinitely long in the x3 direction.
The top side (the lid) of this cavity is moving in the positive x; direction with
velocity Ujq (say). Because of the no-slip condition, the linear lid movement sets
up fluid circulation in the clockwise direction. In this case, steady-state equations
for ® = uy, us, and p’ need to be solved.

Figure 5.10 shows the computed distribution of pressure for Re = Ujg L /v =
100. In Figure 5.10(a), solutions obtained with a 15 x 15 grid are shown at the ver-
tical midplane (x;/L = 0.5). The solutions are obtained using both staggered and
collocated grids with identical grid dispositions. However, in the latter, smoothing
pressure correction is not applied (see step 4 of the calculation procedure). It is clear
that whereas the staggered-grid procedure produces a smooth pressure distribution,
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’ Figure 5.9. Square cavity with a moving lid.

the predicted pressure on the collocated grid is zigzag. Note that the zigzagness
is most pronounced in regions where the staggered-grid pressure distribution con-
siderably departs from linearity. Figure 5.10(b) shows the results obtained with a
41 x 41 grid. Notice that the pressures predicted on both grids are nearly identical
and smooth. This suggests that pressure smoothing is in fact not required when fine
grids are used. In Figure 5.10(c), the coarse-grid solutions are repeated but now
the smoothing pressure correction is applied. It is seen that the predicted pressure
distribution on collocated grids is now smooth though not in exact agreement with
the staggered-grid pressure distribution because of the coarseness of the grid and
also because p is evaluated by multidimensional averaging.

Then, what is the role of the smoothing pressure correction? This can be under-
stood from definition (5.49). The smoothing correction represents the difference
between the point value of pressure p and the control-volume-averaged pressure
7. The latter is defined by Equation 5.43 as the average of linearly interpolated
pressures in the x; and x, directions. Thus, p., can be finite only when spatial
variation of pressure p multidimensionally departs from linearity. This is the case
at the midplane of the square cavity. On coarse grids, we observe zigzagness if
smoothing is not applied. However, when grids are refined, p.,, — 0. That is, as a
continuum is approached, no smoothing should be required. The role of smoothing
pressure correction is thus simply to predict smooth pressure distribution on coarse
grids.

We now recall the quantity 1 (p — p) introduced in the normal stress expression
in Chapter 1. It was stated in that chapter that X, is trivially zero in a continuum but
is finite in discretised space. We have recovered A; = 0.5 in our definition of p[,.
But, as the grid size is refined, one approaches a continuum and, therefore, A; can
be set to zero to predict smooth pressure distributions as shown in Figure 5.10(b).

As a corollary, we may now view pressure zigzagness as a spatial counterpart of
the oscillating compressible sphere of isothermal gas explained by Schlichting [65].
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Figure 5.10. Pressure variation with
and without smoothing.
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On collocated grids, when density is constant and steady state prevails (as in our
calculation of the square cavity problem), 7iip = p VV and thus 7 p # 0, as was
recognized in Section 5.3.2. Now, as our control volume is fixed, V 4 # 0 (which
implies rate of volume change) creates dissipation in the system. It is this dissi-
pation that generates p different from p. We had anticipated this result in Chapter
1. The need for p., = 0.5(p — p) discovered through our discretisation of equa-
tions applicable to a continuum is therefore not surprising. In summary, therefore,
introduction of p; simply accounts for the dissipation introduced in the system.
Further discussion of smoothing pressure correction can be found in [16, 17].

Finally, we note that equation 5.41 suggests that p,  is a solution to the dis-
cretised version of

82p

—| =0, (5.111)
dx?

P

and, similarly, p, p (Equation 5.42) is a solution to the discretised version of

¥p

=0. 5.112
i (5.112)

P

These deductions were also anticipated in Chapter 1.

Before considering applications of our SIMPLE-collocated procedure, it would
be of interest to examine the effect of introduction of p. on the convergence rate
of the solution procedure. To do this, we plot variation of momentum and mass
residuals with iteration number / for the case of 41 x 41 grid solutions shown in
Figure 5.10(b). Figure 5.11 shows these variations for staggered and collocated
grids. The initial guess and the underrelaxation factors are identical in the two
computations. The figure shows that the convergence histories are almost identi-
cal on both types of grids. Further, computations were stopped when momentum
residuals fell below 107>, At this stage of convergence, the mass residuals are seen
to be smaller by an order of magnitude. Thus, we may conclude that our SIMPLE-
collocated grid procedure is successful in mimicking the SIMPLE-staggered grid
procedure in all respects.

The convergence rate of an iterative procedure greatly depends on the ini-
tial guess for the relevant variables. Among the different variables, the initial
guess for pressure is perhaps the most difficult to provide. Further, in deriving
the pressure-correction equation, quantities ) A, u; and ) A, v; are set to zero.
Thus, the pressure-correction equation is only an approximate one. In spite of this,
computational experience shows that the predicted pressure-correction distribution
provides very good velocity corrections, which are proportional to the pressure-
correction gradient (see Equations 5.63 and 5.64), but a rather poor correction of
pressure itself.
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To appreciate this experience, we consider a 1D flow through a porous medium'?
having porosity € (= volume of fluid/total volume). Then, the governing mass
conservation and momentum equations are given by

d *
M:O, (5.113)
dx
d dp 2u
L tuny=-2L 4ot e Ru, 5.114
dx(p uu) dx+ ’ d x? poe ( )

where p* = p/€?, u* = /e, and u is the superficial fluid velocity through the
porous medium. The medium resistance parameter R = 1/K, where K is the perme-
ability of the medium. If we assume that fluid density is constant then du/dx = 0
and the momentum equation will reducetod p/d x = —u* € R u. Therefore, taking
p=pn=1€e=0.1,and R = 4 x 10° gives the exact solution

u=1, p=4x10(1 —x/L),

where L is the domain length.
We solve this 1D problem using the 2D computer program given in Appendix C'
in two ways. In Problem 1, the initial guess for pressure is taken from the exact

15 The author is grateful to Prof. D. B. Spalding for recommending this problem for inclusion in this
book.
16 The relevant USER file for this fixed-pressure boundary condition problem is given in Appendix C.
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Table 5.1: Porous medium - Problem 2.

)

x/L 0.0 0.25 0.50 0.75 1.0

0.000E+00  0.000E+00 0.000E+-00 0.000E+00  0.000E+-00
0.266E+01  0.266E+01 0.106E—02 0.284E—06  0.284E—06
0.737E+00  0.737E+00 0.705E+-00 0.146E4+01  0.146E4-01
0.114E+01  0.114E4-01 0.913E4-00 0.919E+00  0.919E4-00
0.982E4+00  0.982E+00 0.974E4-00 0.103E+01  0.103E4-01
0.101E4+01  0.101E+401 0.992E4-00 0.992E+00  0.992E4-00
0.999E+00  0.999E+00 0.998E+-00 0.I00E+01  0.100E+-01
0.100E+01  0.100E+01 0.999E+-00 0.999E+00  0.999E+00
0.100E+01  0.100E+01 0.100E+01 0.100E+01  0.100E4-01
0.100E4+01  0.100E+401 0.100E+4-01 0.100E+01  0.100E4-01
0.I00E4+01  0.100E+01 0.100E+4-01 0.I00E+01  0.100E4-01

,_
ISI-- I - NV N UC I SR )
c

1 0.100E4+01  0.100E+01  0.100E4+01  0.100E+01  0.100E+01
12 0.100E+01  0.100E+01  0.100E+01  0.100E4+01  0.100E+01
0 0.400E+06 0.000E4+00  0.000E4+00  0.000E+00  0.000E-+00
1 0.400E+06 0.295E4+06  0.283E+06  0.155E+06  0.000E+00
2 0.400E+06 0.266E4+06  0.192E4+06  0.837E+05  0.000E+00
3 0.400E+06 0.294E+06  0.211E+06  0.993E+05  0.000E-+00
4 0.400E+06 0.294E+06  0.202E+06  0.958E+05  0.000E-+00
5 0.400E+06 0.298E+06  0.202E+06  0.982E+05  0.000E-+00
6 P 0.400E+06 0.299E+06  0.201E4+06  0.987E+05  0.000E+00
7 0.400E+06 0.299E4+06  0.201E4+06  0.993E+05  0.000E+00
8 0.400E+06 0.300E4+06  0.200E4+06  0.996E+05  0.000E+00
9 0.400E+06 0.300E+06  0.200E4+06  0.998E+05  0.000E-+00
10 0.400E+06 0.300E4+06  0.200E4+06  0.999E+05  0.000E-+00
11 0.400E+06 0.300E4+06  0.200E4+06  0.999E+05  0.000E-+00
12 0.400E+06 0.300E4+06  0.200E4+06  0.100E+06  0.000E+00
12 p,/p  0.000E+00 0.114E—03 —0.150E—03  0.341E—03  0.000E+00
12 pL./p  0.000E+00 —0.963E—04  0.188E—03 —0.288E—03  0.000E-00

solution given here, but velocity # = 0 at all nodes. In Problem 2, p(1) = 4 x 10°
and p(/N) =0, but p = 0 at all interior nodes of the domain. Again u = 0 at
all nodes. Thus, in both problems, the guessed velocity is zero and the boundary
pressures are held fixed so that p’(1) = p’ (I N) = 0. Relaxation parameters are
takenasa = 8 = 1.

For Problem 1, by solving for u and p’, the exact solutions (not shown here)
for p and u are obtained in just one iteration although the initial guess for u was
zero. This is because the initial guess for pressure was itself the exact solution and,
therefore, required no correction.

Table 5.1 shows evolutions with iteration number | for Problem 2. Notice that
because of the poor initial guess for pressure, the exact velocity solution is obtained
in eight iterations whereas the correct pressure prediction requires twelve iterations.
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Figure 5.12. Reinforced concrete slab.

Thus, the correct velocity solution is indeed obtained earlier in the iteration process.
The last two rows in the table show values of p/, /p and p. ./ p at convergence. They
are indeed small within round-off errors and become even smaller if the iterations
are continued.

The general lesson learnt from the example here is that, in a pure flow problem,
overall convergence rate is controlled by the evolution of the pressure variable for
which there is no exact equation.

5.6 Applications

In this section, a few problems are solved to illustrate the application of the proce-
dure just described. The problems are solved using the generalised computer code
given in Appendix C. The reader will find it useful to read the typical USER files
given in this appendix to understand the details of implementation.

Conduction Problem
Figure 5.12 shows a concrete slab with I-section steel beams embedded for re-
inforcement. The conductivities of steel and concrete are 100 and 1 W/m-K,
respectively. The lower surface of the slab is at 80°C and the upper surface is ex-
posed to the environment at 20°C with a heat transfer coefficient of 1.75 W/m?-K.
It is required to determine the steady-state temperature distribution in the slab.!”
In this problem, u; = 0; therefore, solution need be obtained for ® = T only.
The governing differential equation is

0 oT 0 T
— |Kk—=—|+—|Kk—]|=0. (5.115)
0x; 0x] 0x, X2

Equation 5.115 must be solved on the smallest domain, exploiting symmetries.
Thus, the chosen domain is 0 < x; < 0.5 and 0 < x, < 1.0, with x; =0 and
x1 = 0.5 taken as symmetry boundaries. The boundary conditions at the top and
bottom of the slab are shown in the figure.

17 This problem is taken from the book by Patankar [53].

139



140

2D CONVECTION - CARTESIAN GRIDS

1.0 PR
e 5 F 80.00
/1 E 7786
0.8 /JB4 4 D 7571
C 73.57
1B2
STEEL B 71.43
JB3 / A 69.29
0.6 |- 2
9 67.14
IB1 CONCRETE 8 65.00 Figure 5.13. Isotherms - conduction in a re-
7 62.86 inforced cement concrete slab.
0.4 N 6  60.71
JB2 5 58.57
8 4 56.43
oo =3Bl o || 3 5429
AT | 2 5214
—C 1 50.00
D
0.0 L —F—l ':
0.25 0.5

Figure 5.13 shows the computed temperature contours. Computations were car-
ried out by employing harmonic-mean conductivities at the cell faces. This is im-
portant because conductivities of concrete and steel are different (see interfaces
IB1, IB2, JB1, JB2, JB3, and JB4 marked on Figure 5.13). A 13(x;) x 22(x;) grid
is employed. The figure shows that, in the middle of the slab, the temperature is
almost uniform in both steel and concrete. The maximum temperature, 80°C, is
prescribed at the lower boundary and the predicted temperature at the top convec-
tive boundary is almost uniform at 54°C. The heat loss through the top boundary
is thus calculated at 60 W/m? and this also equals the heat gain through the bottom
boundary since steady-state conditions prevail. Note that if the I-section beams
were not present, one would have 1D heat conduction through concrete alone and
the heat loss would then be 38.2 W/m?. The presence of high-conductivity I-section
beams has enhanced the rate of heat transfer.

Periodic Laminar Flow and Heat Transfer

Compact heat exchangers often employ an offset-fin configuration to enhance con-
vective heat transfer at the expense of an increased pressure drop. However, when ge-
ometric parameters are suitably chosen, the overall thermo-hydraulic performance
(i.e., increased heat transfer for the same pumping power or reduced pumping power
for the same heat duty) is improved, resulting in a compact heat exchanger design.
Figure 5.14 shows an array of interrupted plates or blocks, which may be regarded
as a 2D idealisation of the offset-fin heat exchanger; the flow width in the x5 direc-
tion is large. The length and the width of each block are L and ¢, respectively, and
the transverse pitch is H.
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Figure 5.14. Flow in an interrupted passage.

Clearly, under periodically fully developed flow and heat transfer past the blocks,
suitably defined variables will exhibit distance periodicity 2L . Thus, for computa-
tional purposes, the smallest representative domain (or module) will be A-B-C-D-
E-F, as marked in Figure 5.14. Planes A-B-C and D-E-F will experience symmetry
boundary condition whereas boundaries A-F and C-D will be periodic. Equations
for ® = uy, uy, T and for p’ must be solved over this domain.

For the flow variables, the distance periodicity can be accounted for by setting

p(xX1,x2) = —Bx1 + po(x1, X2), (5.116)

where  is the overall pressure gradient (a constant because the flow is fully devel-
oped) and p, is the superposed pressure that is periodic [54]. The same situation
also holds for the velocities. Thus, the boundary conditions at planes A-F and
C-D are

pO (0,352) = pO(ZLaXZ)’ ui (Oa-x2) = ui (2L,X2). (5117)

Note that parts of A-F and C-D are solid walls. The symmetry and wall bound-
ary conditions require no elaboration. With the introduction of variable p,, it will
be appreciated that the u; and u; momentum equations are solved with source
terms S — dp,/dx; and —dp,/dx,, respectively, and the p’ equation will provide
corrections to pressure p,. In fact, the equations are solved with an assumed value
of B and the average streamwise velocity is evaluated from the resulting predicted
velocity field at convergence. The total mass flow through the module can be es-
timated at any transverse plane but we may evaluate it at plane A-F (say) so that
m= fOH/ 2 pu1dx, and define u,, based on the frontal area, as is the practice in
heat-exchanger design. Thus,

Uay =11/ (0 H/2). (5.118)
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The friction factor and Reynolds number are defined as
28H pPun2H
—2, Re= ——.
2pug, n

It is difficult to specify exact thermal boundary conditions at the blocks in a
real heat exchanger. Nonetheless, we may assume that each block or plate delivers
heat flux gy, (say) along its perimeter so that the total heat transfer will be O =

qw (2 L 4 4¢/2)and the total bulk temperature rise across the module will be ATy, =
Q/(m C)). Thus, the periodic temperature boundary condition will be

S = (5.119)

T(O, XQ) = TO (0, X2) —0.5 ATb,
T(2L,x;) = T,(2L,x2) + 0.5 AT,
T,(0,x2) = T, (2L, x). (5.120)

In Equations 5.117 and 5.120, all variables must be evaluatedat x; = 0(/ = 1)
and x; = 2L(I/ = I N). This evaluation is done as follows:

®(1,J)=D(UN,J)=05[02, )+ PUIN—-1,J)], (5.121)

where ® = p,, u;, T and it is assumed that the chosen grid disposition is such
thatx; (/N) —x; (IN — 1) = x1(2) — x1 (1). Solution of the temperature equation
enables evaluation of the mean bulk temperature 7, = 0.5 (7 ar + Tb.cp), Where
the bulk temperatures at the periodic planes are evaluated from

fOH/2 pCpuy T dx;

Ty, AForcD = (5.122)
Or fOH/zpCpuldxz
Finally, the Stanton number St is evaluated as
hav
St = , (5.123)
p Cptay
where the average heat transfer coefficient is evaluated from
1 qw
Nay = ds, 5.124
av (2L+2z)/ Too— Ty (5-129)

and s is measured along the heated surfaces. Computations are performed for air
(Pr =0.7) with a 38(x;) x 36(x;) grid and the results are shown in Figure 5.15.
In all computations, L/H = 1.0 and ¢/ H is varied. Also plotted in the figure are
experimental data of Kays and London as read from reference [54]. These data
have been obtained forz/H = 0.05, L /H = 1.14 (instead of 1 in the present case),
and the (x3-direction width)/H = 5.9. Therefore, the geometric data approximate
the present 2D computational domain. It is seen from the figure that the predicted
friction factor data (solid lines) are in very good agreement with the experimental
data (open circles). The predicted St x Pr?/3 (dashed lines) trend, however, de-
viates from the experimental data (open squares). But, as indicated earlier, it is
difficult to approximate the exact boundary conditions of the experiment, which
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Figure 5.15. Offset Fin (L/H) = 1 — variation of f and St x Pr2/3 with Re.

involved condensing steam for heating. This condition implies a nearly uniform
temperature at the blocks. However, then, the heat transfer, unlike the flow, will
not be periodically fully developed. According to [54], the effect of this deviation
from the experimental condition on predicted St may not be greater than 10%. The
reader should note that such departures from exact experimental conditions are
often made in CFD analysis.

The figure further shows that the effect of #/H on f is more significant than
on the Stanton number. An approximate analysis carried out in [33] shows that the
effect of a finite thickness fin is to create continuously disrupted laminar boundary
layers on the fin surface and thus achieve enhanced heat transfer. Thus, although it
is important to include the effect of a finite fin thickness in the analysis, the results
show that fin thickness must be optimised in order not to exact a severe penalty in
pressure drop.

To demonstrate the effect of Re, velocity vectors and temperature (7 —
Tin)/(Tmax — Tmin) contours at an interval of 0.1 are plotted for 1/H = 0.3 at
three different Reynolds numbers in Figure 5.16. In each case, the core flow is
nearly parallel to the x; axis but the strength of flow circulation in the fin-wake
regions increases with Reynolds number. Similarly, as Re increases, the tempera-
ture contours are seen to be closer near the heating surfaces, indicating higher heat
transfer rates at higher Re.

Turbulent Flow in a Pipe Expansion
We now consider turbulent flow and heat transfer at a pipe expansion, as shown in
Figure 5.1. The radius ratio (R,/R;) of the two pipes is 2. For prediction purposes,
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Figure 5.16. Offset Fin (L/H =1, t/H = 0.3) — vector & temperature plots.

the HRE e—e model is used. The predictions'® will be compared with the experimen-
tal data of Krall and Sparrow [36] for Pr = 3.0 and of Runchal [62] for Pr = 1,400.
Krall and Sparrow made measurements in a pipe with radius R, in which an ori-
fice of radius R; is fitted. Downstream of the orifice, a constant wall heat flux is
supplied. Runchal employed a converging nozzle (with exit-end radius R;) fitted
in a pipe of radius R,. He employed an electro-chemical mass transfer technique
to measure variation of mass transfer Stanton number downstream of the nozzle.
The technique involves use of a NaOH solution whose Schmidt number (>1,000)
depends on the solution concentration. The electro-chemical technique measures
transfer of ferrocyanide ions to ferricyanide ions at a cathode surface embedded in
the pipe wall to estimate the rate of mass transfer. These rates are, however, very
low so that the mass transfer measurements can readily simulate the heat transfer
situation with S¢ = Pr. The electro-chemical technique simulates a T, = constant
condition.

'8 The USER file for this problem is given in Appendix C.
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Figure 5.17. Sudden expansion, with R» /Ry = 2 and gy = constant.

In both cases, the domain downstream of the orifice or nozzle is considered. At
the inlet section, the specifications are ui, = 4 X u, e, = (0.1 X ujy)?, and €, is
evaluated from the specification u/pu = C, p eizn /€n = 0.003 Re for 0 <r < R,
and uy, = 0 (wall) for R; <r < R,. The Reynolds number of the larger pipe is
defined as Re = pu 2 R, /. Computations are carried out with p = 1 and u = 1
and R, = 1. Thus, Re is varied by varying . The Nusselt numbers at different
axial locations are evaluated from Nu, = qw2 Ry/K (T, — Ty,), where T, is the
bulk temperature and Ty, is the wall temperature at each x.

In the computations, 67 (streamwise) x 28 (radial) nodes were used with closer
spacings in the recirculation region to accurately predict the point of reattachment.
Because of the close near-wall spacings, it was not possible to ensure that the
first node away from the wall will have sufficiently large y* at all axial stations.
Therefore, the two-layer wall function is active for velocity (see Equation 5.86).
For the temperature equation, P F' is given by Equation 5.88.

In Figure 5.17, predicted Nu,/Nugs are compared with the experimen-
tal data of Krall and Sparrow. Here, as per their recommendation, Nugy =
0.0123 Re%37* P04 In these computations, the reattachment point is predicted at
x /(2 Ry) ~ 1.84 at all Reynolds numbers. The predicted Nu,.x locations (*1.81)
thus appear to coincide with the point of flow reattachment. The high values of
Numax/ Nugq indicate that the recirculation region is by no means dead with respect
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Figure 5.18. Sudden expansion, with R, /Ry = 2 and T, = constant.

to heat transfer, although the flow velocities are very low there. This is a spe-
cial characteristic of recirculating regions in which fluid mixing is enhanced. The
predictions also appear to nearly match the trends shown by the experimental data,
although the exact magnitudes of Nup,x are not well predicted.

A similar comparison with the data of Runchal is shown in Figure 5.18. Here,
Z =x/(R, — Ry)and St = Nu,/(Re Pr) so that the predicted flow reattachment
occurs at Z = 7.43. The predictions, however, show that the maximum St occurs at
nearly Z & 3.55. Thus, the point of reattachment and maximum heat transfer do not
coincide. The experimental data, however, indicate that maximum S7 occurs at Z ~
6.5. Thus, clearly our wall-function treatment with respect to heat transfer is in need
of further refinement for very large Pr. It is possible to do so by invoking a three-
layer model for heat transfer and setting different limits on the three layers. However,
this is not done here to draw the reader’s attention to the need for such empirical
adjustments. At the same time, it must be noted that the electro-chemical technique
really simulates the 7, = constant boundary condition only over a patch occupied
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by the cathode but remains inert to mass transfer on remaining portions of the wall.
This may be an added reason for lack of correspondence between predictions and
experiment. Modelling for separated flow regions at high Pr numbers is an area in
which basic research is hampered by the extremely sharp variations of temperature
in the near-wall region where, although the turbulent viscosity may be negligible,
turbulent conductivity may still be significant. Thus, a constant Pr; assumption
may not be justified.

Natural Convection Mass Transfer'®
Figure 5.19 shows an open channel (width / and height /) placed inside a wider
channel of width L and height H. The wider channel is closed at the top. The inner
channel wall thickness is 7. Both the channels are long in the x3 direction. The inner
channel has water whereas the wider channel has brine at its floor (x; = 0). The
temperatures of water, brine, and the gas (air + water vapour) are the same and
equal to the ambient temperature. In this isothermal case, evaporation will ensue
because of the difference in vapour pressures at the water (high) and the brine
(lower) surface. The vapour pressure at the brine surface can be altered by altering
brine concentration. Thus, a mass transfer driving force is established.

The inner channel may be viewed as the well-known Stefan tube in which the
evaporation rate of water can be analytically evaluated under the assumption that

19 The USER file for this problem is given in Appendix C.
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the fluid inside the channel is stagnant. However, in the present case, because of the
density gradient caused by the vapour-pressure difference, a mass transfer buoyancy
force will induce fluid motion. The objective, therefore, is to examine the range of
mass transfer Grashof numbers Gry, for which the stagnant flow assumption may
be reasonably justified. Such an inquiry has been undertaken by McBain et al. [47]
in which the inner channel is a circular tube placed inside a cubical enclosure. We
have modified this 3D configuration to accommodate a 2D analysis in Cartesian
coordinates.

We define L* = L/I, H* = H/l, h* = h/l, and t* = t/I. In this case equa-
tions for ® = uy, uy, w, and p’ must be solved. Invoking the Boussinesq approx-
imation, except for the gravity-affected source term in the u,-momentum equa-
tion, we assume the density will be constant. Also viscosity and mass diffusivity
are assumed constant. Thus, the governing equations can be nondimensionalised
using uf = u;/(v/1), p* = (p+ pgx2)/p (v/1), 0* = (0 — ay)/(w) — ay), and
x; = x; /1. The relevant source terms are

ap* ap*
Su’{ :_8—x]“’ 3 :_ax; —i—Grma)*, Sw*ZO, (5125)
where Gry, = g Bm (w1 — wp)3/v? and By, = p~ ' dp/dw*.
The boundary conditions are
a *
W' =0, 22 —0 onallwalls, (5.126)
an*

where 7 is normal to the walls. The x} = 0 line is the symmetry boundary and
computations are performed over the domain to the right of the symmetry line. The
mass transfer boundary conditions on the floor (x; = 0) are

*
ul - O,
dw*
ui = Se N wh — o)™ e , " = w] (water),
2 Ix3=0
dw*
1 1 . :
uy; =S¢ (wy — wy) o , " = w; (brine), (5.127)
9% =0

where o] = 1 and w; = 0.

These specifications indicate that in the present mass transfer problem, the
momentum equations are coupled with the mass transfer equation in two ways,
firstly, through the source term Gry, w* and, secondly, through the floor boundary
condition. The dimensionless total evaporation flux is, therefore, given by

ow™
ox;

172
Feony = 2SC?1 (1 - w:.[() f
0

dx. (5.128)
x5=0
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Table 5.2: Normalized evaporation rate R.

Grmy 1 10 100 500 1,000 2,000 3,000
R 0.7065 0.7086 0.7293 0.756 0.768 0.781 0.792

For a Stefan tube, the pure diffusion mass transfer rate is given by

In(1 + B)
Foeg = ——, 5.129
diff ol (5.129)

where the Spalding number B = —1/(1 — 7). Therefore, the flux ratio R will be
a functional given by

R — FCOl'lV

Fiifr

In the present computations, h* =2, L* =16, H* =8, t* = 0.1, and Sc =
0.614 are fixed. Also, in a typical evaporation problem, B is small. We take w} = 50,
giving B = 0.0204. Thus, with these specifications, R is a function of Gry, only.
Computations have been performed with 37 x 37 grid points with closer spacings
near the inner channel wall and near the floor. Initially, only the mass transfer
equation is solved. This corresponds to a stagnant fluid case. If o* = 0 at x; = A"
then the evaporation flux will be given by Equation 5.129. However, in the present
configuration, w* # 0 at x5 = h* because the boundary condition is applied at
the brine surface. This results in R = 0.704 for this limiting case. Now, the mass
transfer equation is solved together with the flow equations for different values of
Gry,. Table 5.2 shows the results of computations. It is seen that the ratio increases
with Gry,. A similar trend has been observed in [47]. To ensure convergence,
solutions for lower Gry,, were used to obtain solutions for higher Gry,.

The trend observed in the R ~ Gry, relation is further demonstrated in Fig-
ure 5.20 through contour and vector plots over the domain 0 < x; < 2.5 and
0 < xj < 5.5. The figure shows that the inner channel remains nearly stagnant
at Gry, = 10. For higher Gry,, the region near the top of the inner channel is influ-
enced by the recirculation outside the channel.

= f(Grn, H*, L, h*, t*, Sc, B). (5.130)

False Diffusion in Multidimensions

In Chapter 3, the question of numerical false diffusion was explored through the 1D
conduction—convection equation. Here, this matter is again considered for multidi-
mensional flows through a problem devised by Raithby [57] (see Figure 5.21). We
consider a square domain of unit dimensions through which a fluid moves with an
angle 0 with the x axis. The viscosity and conductivity of the fluid are zero so that
transport of temperature occurs by pure convection with Peclet number P = oo.
At a certain streamline at yy = 0.5(1 — tan#), a step discontinuity in tempera-
ture is imposed as shown in the figure. Thus, 7 = 1 above the streamline and 7 = 0
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Figure 5.20. Contours of »* (at an interval of 0.05) and velocity vectors for natural convection evapo-
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Figure 5.21. Transport of a step discontinuity.

below it. Now, since P = 0o, the discontinuity must be preserved in the direction
of the flow.

To examine the capability of the UDS for this large Peclet number case, the
velocities are prescribed as u = U cos6 and v = U sin@ at all nodes and the tem-
perature boundary conditions are as shown in Figure 5.21. The equation for 7 will
read as

aT oT
— +tanf — = 0. (5.131)
ax ay

This equation is solved for different angles 6 on a 12 x 12 grid. Figure 5.22
shows the predicted T profiles at midplane x = 0.5. It is seen that the profiles
are smeared. The profiles deviate from the exact solution; the deviation increases
as 6 increases and reaches maximum at 6 = 45 degrees. Now, the profiles can
be smeared only if numerical diffusion is present. This suggests that when the
flow inclination with respect to the grid line is large, the numerical diffusion is
also large. Conversely, if & = 0 or 90 degrees, the discontinuity in the temperature
profile should be predicted. This is indeed verified by numerical solutions (not
shown in the figure). Wolfshtein [89] has devised a method for estimating the false
diffusivity (see exercise 12).

What is observed here with UDS remains valid for all convection schemes,
although the profile-shape-sensing CONDIF and TVD schemes demonstrate re-
duced deviations and, therefore, reduced numerical diffusion. However, recognis-
ing the angular dependence of false diffusion, some CFD analysts have proposed
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Figure 5.22. Midplane temperature profiles — UDS.

convection schemes that sense the angle 0. In effect, they postulate flow-oriented
interpolations of cell-face values rather than use the nodal values straddling the cell

faces.

EXERCISES

1.

Starting with Equation 5.8, validate the generalisations shown in Equation 5.19.
Hence, show the correctness of Equation 5.17 for each convection scheme.

. Derive the value of 4 in Equation 5.19 for the exponential scheme.

. Show that if the CONDIF scheme (see Chapter 3, Exercise 10) is used

then, for a nonuniform grid, the coefficients 4E£ and AW in Equation 5.12,
for example, will read as

|Pc|_Pc dw |Pc|_Pc,
AE =d 1 e PERASE I ,

P, P, P, P,
=g, [14 PR g g [ILERT,

where R; = (CDE — q)p)/(q)p - wa) X AXW/AXG.
(Hint: Recognise that CONDIF is essentially a CDS whose coefficients are
modified to take account of the shape of the local ® profile).

. Using the substitutions shown in Equation 5.24, derive Equation 5.25. Hence,
using the IOCV method, derive Equation 5.28.
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Figure 5.23. Long chamber of Exercise 11.

W

. Starting with Equation 5.40, derive Equation 5.47.
6. Show the validity of Equations 5.55 and 5.56.

-

. Identify the differences and similarities between Equations 5.57 for collocated
grids and Equation 5.32 for staggered grids.

o]

. Confirm that on collocated grids 4 P*' = A P"2.

Ne)

. It is of interest to derive a total pressure-correction equation for compressible
flows in which p = pR,T. To do this, start with Equation 5.57 and write
P 2]

It
R,T " T R,T

Pt = pl +pl = pl +
With this substitution show that the p’-equation takes the form of a general trans-
port equation for any & with appearance of convection—diffusion-like terms.
Also, Viound = \/W . Hence, show the Mach number dependence in the
equation. If CDS is used, can the coefficients in the discretised equation (5.60)
turn negative? If yes, suggest a remedy.

10. Explain the need for evaluating the mass residual via Equation 5.73 when
computing on collocated grids.

11. Consider the chamber shown in Figure 5.23. The chamber is long in the
z-direction so that the flow and heat transfer can be considered 2D. Assume
that all relevant dimensions are given. The flow enters the chamber with
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Figure 5.24. Estimating false diffusion.

12.

velocity ui, (as shown) and temperature T;,. The chamber walls and the lip
separating the inflow and outflow are adiabatic. Allow for the presence of a
buoyancy effect,

(a) Write the appropriate differential equations and the boundary conditions
for all relevant variables.

(b) Carry out any necessary node tagging, defining clearly the convention
used. For example, along AB, NTAGW (2, J) = 14 (say) to indicate the
west adiabatic wall boundary.

Solve the problem of false diffusion discussed in the text for the case of 6 = 45
degrees in which the boundary conditions are as shown in Figure 5.24. Take L =
100 and yg = x9 = 2 AS, where AS = AX = AY. The situation is therefore
akin to that of a temperature source convected by U. Now, define orthogonal
coordinates £ and n as shown. Use UDS. Obviously, the maximum temperature
Tinax will occur at n = 0 for each &. Now, locate the value of 1, corresponding
to T/Tmax = 0.5. Hence, plot the computed results as 7/T;,.x versus /11, for
different values of € /AS > 50. Show that the profies collapse on a single curve

T 2
= exp {—1n(2) <L> ] ,
Tmax ni2

where 71,2/ AS = (§/AS)%3. This equation is similar to the solution to the
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Figure 5.25. Refractory furnace.
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13.
14.

15.

Hence, show that ' ~ 0.361 UAS
Derive Equation 5.94.

Consider a long furnace made from refractory brick (£ = 1.0 W/m-K), as shown
in Figure 5.25. The temperature of the inside surface is 600°C whereas the
outside surface is exposed to an environment at 30°C with heat transfer coeffi-
cient # = 10 W/m?-K. Determine the heat loss from the furnace wall.

Consider two parallel plates that are infinitely long in the x; and x; directions.
Fins are attached to the plates in a staggered fashion, as shown in Figure 5.26.

2L
| FINS

2B

Figure 5.26. Flow and heat transfer in a staggered fin array.
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Figure 5.27. Fully developed flow in an ellipse.

16.

17.

The flow is in the x; direction. The plates receive constant heat flux ¢, in the
flow direction but, at any section x3, their temperature Ty, is constant in the x;
direction. The flow and heat transfer are fully developed.

(a) Assuming laminar flow, identify the equations and the boundary conditions
governing the flow and heat transfer

(b) Nondimensionalise the equations and show that

H L § H L § kan 6
fRe=F , Nu=F — .

B BB B’ B’ B’ kuia H
(¢) Compute f and Nu for B=L =1, H = 1.2, and § = 0.05. Take Cg, =
kin/ kauia = 0, 10, and 100. (Hint: Note that the fin half-width §/2 must be
treated as a blocked region through which 1D heat conduction takes place.)

Consider fully developed laminar flow in a duct of elliptic cross section, as
shown in Figure 5.27. The flow is in the x3 direction.

(a) Write the PDE governing distribution of the u3 velocity. Identify the small-
est relevant domain, exploiting the available symmetries.

(b) The duct wall boundary of the domain is curved. This boundary can be
approximated by a series of steps. Hence, lay an appropriate Cartesian grid.
Solve the governing equation and evaluate f x Re for B/ 4 = 0.125,0.25,
0.5, and 1.0.

Consider laminar flow between two parallel plates 2B apart, as shown in Fig-
ure 5.28. The plates are infinitely long in the x3 direction. Flow, with uniform
axial velocity, enters at x; = 0. At a distance S from the entrance, an infinitely
long cylinder of radius R is placed at the axis of the flow channel. The flow
leaves the channel in a fully developed state.

(a) Ideally, the flow situation should be computed with curvilinear or unstruc-
tured grids. However, an analyst decides to compute it using a Cartesian
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Figure 5.28. Flow in a parallel-plate channel.

18.

19.

20.

mesh. What is the main difficulty that the analyst will face if the drag
offered by the cylinder is to be accurately determined.

(b) Select the domain length from fluid dynamic considerations. Assume that
the Reynolds number based on the channel hydraulic diameter is 40 and
S/R =3 and B/R = 10.

(c) How should the drag coefficient Cp of the cylinder be determined from the
converged solution in discretised form?

Consider laminar flow between two parallel plates separated by distance 25b.
Specify the fully developed axial velocity profile at the inflow plane and zero
axial velocity gradient at exit. Adapt the 2D computer program in Appendix
C for this problem and solve with and without smoothing pressure correction.
Observe the predicted velocity and pressure profiles in the two cases. Do you
notice any difference? If not, explain why.

Engine oil enters a tube (diameter = 1.25 cm) at uniform temperature 7i, =
160°C. The oil mass flow rate is 100 kg/hr and the tube wall temperature is
maintained at 7y, = 100°C. If the tube is 3.5 m long, calculate the bulk tem-
perature of oil at exit from the tube and the total pressure drop. The properties
of oil are as follows p = 823 kg/m?, C,, = 2,351 J/kg-K, v = 10> m?/s, and
k = 0.134 W/m-K. Plot the axial variation of Nusselt number Nu, and the
bulk temperature 7} ... Assume that the oil enters the tube with uniform veloc-
ity. (Hint: You will need to provide close grid spacings near the tube wall to
capture steep variations of temperature owing to the high Prandtl number. The
grid spacings along the tube axis may expand in the direction of the flow.)

Air at 7 bar and 100°C enters a nuclear reactor channel (width = 3 mm, length
L = 1.22 m) at the rate of 7.5 kg/s-m”. The heat flux at the channel walls is
given by ¢y, = 900 + 2,5005sin (7 x; /L) W/m?. Plot the variation of T, T}, and
Nu with axial distance x; and find the location of maximum wall temperature.
Assume fully developed flow and evaluate properties at 250°C.

157
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Figure 5.29. Flow in a channel containing rods.

21.

22.

23.

24.

Consider fully developed turbulent flow in a pipe of radius R. Assuming that
the inner layer extends up to y* = 100 from the wall, estimate the inner layer
thickness as a fraction of R for Re = 5,000, 25,000, 75,000, and 100,000.

Air at 30°C enters a tube (diameter D = 5.0 cm) of a solar air-heater with a
uniform velocity of 10 m/s. The tube is 2.1 m long. The tube wall tempera-
ture is 90°C. Determine the exit bulk temperature and the pressure drop. Also
determine the length-averaged Nusselt number. Use the HRE model.

Repeat Exercise 22 assuming that the tube is rough with roughness height
/D = 0.01. Use the HRE model. For a rough surface, the velocity profile
near a wall is given by [65]

1
ut=ZIn [1}4—8.48.

K Vr
This equation can be cast in the form of Equation 5.86 so that
1 8.48
e e . Cla. L)
K v

Thus, the wall-function treatment remains valid with £ replaced by E;. Simi-
larly, PF (Equation 5.88) must be replaced by PF; = 5.19 Pr04 y+** — 8.48
with Pry = 1[22]. (Hint: You will need to modify the BOUND subroutine and
STAN function in the Library file in Appendix C to account for y;.)

Consider steady turbulent flow in a two-dimensional plane channel (see Fig-
ure 5.29) containing an array of rods (of diameter D). Flow enters at x; = 0
with uniform velocity u j,. It is of interest to determine the pressure drop
over length L. To reduce the computational effort in this densely filled flow
situation, model the flow as a porous-body flow in which it is assumed that the
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Figure 5.30. Idealised desert cooler.

channel contains no rods but the effect of their presence is captured through two
artifacts:

(1) The effective fluid density, viscosity, and pressure are taken as & W, where
® = p, (1 + 1), and p, respectively, where W is the porosity defined as

fluid volume

physical volume

(i1) The source terms in the u; and u, momentum equations are augmented
by including local flow resistance offered by the rods through experimentally
determined friction factors f,, and f,, defined as

A Sy S
fuf = P — = F <_L, —T’ ReD,tot) ,
0.5 pu;|Vietl D D

where Vioe = \/u? + u3 and u; are superficial velocities. Function F () is
assumed known but note that S; and Sy must be re-defined for the u»
velocity.

(a) Write the equations to be solved and choose an appropriate exit bound-
ary condition assuming L /(2B) = 10. Specify the inlet conditions for all
variables including the variables characterising turbulence.

(b) Discuss whether the effect of flow resistance terms could be accounted for
through source-term linearisation.

25. Figure 5.30 shows an idealised desert cooler in which hot air (40°C and 10%
relative humidity) enters the cooler inside through the 10-cm-wide gap with a
velocity of 40 m/s. The air picks up moisture at the wet pad, which is supplied
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with water at 25°C. The humidified air becomes cooler and leaves through the
front grill.

(a) State the equations governing the cooling process and identify the main

variables ®.

(b) Specify the appropriate exit boundary condition. Assume an equilibrium
condition at the wet pad. The wet pad is rough with roughness height 5
mm. The top and bottom walls are smooth and may be taken as insulated.

(c) Determine the average outflow temperature, relative humidity, humid-air
velocity, and the rate of moisture pickup.



6 2D Convection - Complex Domains

6.1 Introduction

In practical applications of CFD, one often encounters complex domains. A domain
is called complex when it cannot be elegantly described (or mapped) by a Cartesian
grid. By way of illustration, we consider a few examples.

Figure 6.1 shows the smallest symmetry sector of a nuclear rod bundle placed
inside a circular channel of radius R. There are nineteen rods: one rod at the channel
center, six rods (equally spaced) in the inner rod ring of radius b, and twelve rods in
the outer ring of radius b,. The rods are circumferentially equispaced. The radius of
eachrodisr,. The fluid (coolant) flow is in the x3 direction. The flow convects away
the heat generated by the rods and the channel wall is insulated. It is obvious that a
Cartesian grid will not fit the domain of interest because the lines of constant x; or x;
will intersect the domain boundaries in an arbitrary manner. In such circumstances,
it proves advantageous to adopt alternative means for mapping a complex domain.
These alternatives are to use

1. curvilinear grids or
2. finite-element-like unstructured grids.

6.1.1 Curvilinear Grids

It is possible to map a complex domain by means of curvilinear grids (£;, &) in
which directions of & and &, may change from point to point. Also, curvilinear
lines of constant &; and constant &, need not intersect orthogonally either within the
domain or at the boundaries. Figure 6.2 shows the nineteen-rod domain of Figure 6.1
mapped by curvilinear grids. The figure shows that curvilinear lines generate clearly
identifiable quadrilateral control volumes. When the IOCV method is used, the task
is to integrate the transport equations over a typical control volume. To facilitate this,
it becomes necessary to first transform the transport equations written in Cartesian
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Channel
Wall

Figure 6.1. Example of a complex domain.

coordinates to curvilinear coordinates via transformation relations

x1 = F1(61, %), x2 = F> (61, ). (6.1

In general, these functional relationships must be developed by numerical grid
generation techniques (see Chapter 8). The grids shown in Figure 6.2 are in fact
generated by numerical means. For simpler domains, however, the functional rela-
tionships can be specified by algebraic functions. The new set of transport equations
in curvilinear coordinates are developed in Section 6.2.

One advantage of mapping domains by curvilinear grids is that one can still
retain the familiar (/, J) structure to identify a node (or the corresponding control
volume) because, as can be seen from Figure 6.2, along any curvilinear line &, the
total number of intersections with constant-&, lines remains constant and vice versa.
Further advantages of this identifying structure will become clear in Section 6.2.

6.1.2 Unstructured Grids

Another alternative for a complex domain is to map the domain by triangles or any
n-sided polygons (including quadrilaterals) or any mix of triangles and polygons.
Figure 6.3 shows the mapping of a nineteen-rod bundle by triangles as an example.
In this case, the rods are arranged in such a way that the smallest symmetry sector

Figure 6.2. Nineteen-rod bundle — curvilinear grids.
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is a doubly connected domain. Such mapping can be generated by commercially
available grid generators such as ANSYS. Each triangle may now be viewed as a
control volume over which the transport equations are to be integrated to arrive at
the discretised equations. The process of generating the latter equations is described
in Section 6.3.

It will be recognized that a triangle is a very convenient elemental construct
because it can map any convex intrusion or concave extrusion at the domain bound-
aries. More importantly, triangles can also effectively skirt any blocked region within
the overall domain, as shown in Figure 6.3. Such skirting cannot be elegantly ac-
complished if curvilinear grids are used for mapping.

The flexibility offered by mapping by triangulation is thus obvious. Further, it is
not necessary that all triangles be of the same size or shape. In spite of this flexibility,
it becomes necessary to make a significant departure from curvilinear grid practise
with respect to node identification when unstructured grids are used. It is obvious
from Figure 6.3, for example, that one cannot readily identify elements (or nodes)
by employing the familiar (/, J) structure as was possible with curvilinear grids.
Elements, perforce, must be identified serially with a single identifier N (say). As
will be shown in Section 6.3, commercial codes such as ANSYS identify elements in
any arbitrary order. Thus, an element having identifier N will interact with elements
having arbitrary identifying numbers without any generalisable rules. This contrasts
with the case of curvilinear grids in which a control volume (/, J) will always
interact with control volumes identified by (/ + 1, J), ({ — 1, J), (I, J + 1), and
I, J —1).

This serial numbering has consequences for solution of discretised equations
evolved on an unstructured grid. This will become clearer in Section 6.3. In passing,
we note that there are a variety of methods for triangulation. Automatic triangulation
requires detailed considerations from the subject of computational geometry. In
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Chapter 8, some simpler approaches will be introduced. Most CFD practitioners,
however, employ commercially available packages such as ANSYS for unstructured
grid generation.

6.2 Curvilinear Grids

6.2.1 Coordinate Transformation

Our first task is to transform the transport equations in Cartesian coordinates to
those in curvilinear coordinates. Thus, employing the chain rule, we can write the
first-order derivatives as

o _ 9 0, 96 0

_ 952 ©° (6.2)
3X1 8)(?1 8%‘1 3X1 8%—2

0 0& 0 & 0
o0 %, (6.3)
Oxy  0xp 0&;  0x, 352
The next task is to determine derivatives of & and &, with respect to x; and x»

knowing functions (6.1). To do this, we note that

dx; = —d —d &, 6.4
X 08, & + 05 & (6.4)
0x X2 3)62
d —d —d 6.5
Xy = 0%, & + P &. (6.5)
These relations can be written in matrix form as |dx| = |A||d&]|, or

dx dx1/0& 0dx1/0& | |d& (6.6)

dx; dx2/0&1 0x2/0& | [d& | '

Now, manipulation of Equations 6.4 and 6.5 will show that
1 ox

d& = —— | cof d f d 6.7
&1 DetA[ (851) x1 +co ( 51) xz} (6.7)
dé ! f 0x1 d xy + cof d (6.8)

=—— |co co X .

27 DetA 28 )M agz 2

where cof denotes cofactor of and Det A stands for determinant of A. Thus, from
the last two equations, it is easy to deduce that

9 1 9 1 9 !
W _ L () 2 ) _ P 69)
0x1 Det A 0&; Det A \ 0%, Det A

9 1 9 1 9 2
%1 _ cof (22 = — iy _ A (6.10)
0x, DetA 0&; Det A \ 04, Det A




6.2 CURVILINEAR GRIDS

0 1 9 1 9 !

95 _ cof (22} = _ Y _ B , 6.11)
dx; Det A A&, Det A \ 8¢, Det A

3 1 3 1 9 2

0% _ cof (2 = y_ B (6.12)
dx, Det A A&, Det A \ 3§, Det A

where the fs are called the geometric coefficients and are given by

X7 5 0x | 0xy »  0x

—_—, IB :——, ﬂ :——’ ﬂ == —. (613)
06" T ae ?

i =
! 0, 0,
Further, it follows that

_ oM 942 941 942 _palp2  plp2
DetA =t o — To g = BIB — BBt = (6.14)

where symbol J stands for the Jacobian of the matrix A. We can now rewrite
Equations 6.2 and 6.3 as

d _i ;0 , 0
ax,  J [ﬂl og, TP 852]’ 19
0 0
ax2_7[ﬂ1 o5 P as} (©10)

6.2.2 Transport Equation

The first task is to transform the general transport equation (5.1) from the (x, x;)
coordinate system to the (1, &;) coordinate system using relations (6.15) and (6.16).
Thus,

. a(p ‘D) [ﬁ1 a(rq1) 1 0(rq)  ,0(rqa) 5, 0(r Q2):| S

+ B, + Bi + 83

ot &) &> 981 Gl
(6.17)
This equation can also be written as
p (B (8] 3 (B? 3 (B3
S0 3(irq) d(Prrq) 9(Birar) 0(Firqr)
ot & 38, 981 L)
Bl Ipi ] [8/81 8,32]
=rq | — 4+ 2| +r — + —=|+rJS. 6.18
{asl TS A FRT (©19

Using definitions (6.13), however, we can show that the terms in the square brackets
are identically zero. Hence, Equation 6.18 can be written as
a(p CD) d

J
T T og

(,321”611+,322”92)=FJS-

(6.19)

d
(/31”6114‘/31”‘12) 3—52
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Using Equation 5.2, it is now possible to replace Cartesian fluxes ¢ and ¢,. After
some algebra, it can be shown that

a(p @) o [ od
rJ —Q— | pr Uf] (o} 1
at 851 L 8&1
o I 0P
+ — | prUp® — aIA2 i|
e, [ 7 2 06,
o I F od 0 o0
= — dAlZ i|+— [ dAlz—]-i-VJS,
& | 05 06 J 08
(6.20)
where
2 2
d4i = (B)) + (B1)".
2 2
dA; = (B;)" +(63)
dAy, = B By + B B3 (6.21)
and the contravariant flow velocities are given by
0x X2 aXQ
U = B ZUpy = —— g — —— Up, 6.22
f=PBun + Piup = 05 uf 3, Uuf (6.22)
8x1 8X1
U = By us + B3 upp = % ugp — %, usi, (6.23)

where uys and uyp, are the Cartesian velocity components.

6.2.3 Interpretation of Terms

Several new terms appearing in Equation 6.20 can be interpreted using vector
mathematics.

Elemental Area
The elemental area d A; normal to the (§;, &) plane is given by

5 or or
A, = <ag, ask) dt; ;. (6.24)

where the position vector 7 = ix1 + j Xy + kX3. For our 2D case, if we seti =1,
j =2, and k =3 then 07 /0&; = 0x3/0&; = | because the x3 and &; directions
coincide and are normal to the (£, &) plane. Thus, taking unit dimension in the x3
direction gives

o7
13}

-d 8
R
KRR

(B + (B}) dt. (6.25)

QA — ‘ de = [ 1 + ] B2)des




6.2 CURVILINEAR GRIDS

Similarly, it can be shown that

dd, =/ (B)) + (B2) d&i. (6.26)

Comparison of the last two equations with Equations 6.21 shows that d 4| and
d A, represent areas with d&; = 