

Energy requirements for recovery of (metallic) nanoparticulate material from waste

Ron Zevenhoven

Åbo Akademi University Process and Energy Technology Åbo/Turku, Finland

Process and Energy Engineering | Åbo Akademi University | Turku 20500 Finland

20.10.2019 1/6

- Increased use of nanoparticulate (NP) material will (or already does) give increased amounts of these in end-of-life products
- Energy requirements for producing NP material are significant or high and the same will hold for NP recovery from wastes
- Exergy analysis, normalizing all energy to "the capacity to work" without quality decriptions (like temperature of heat) is a useful and proper tool for energy use (efficiency) assessment
- Here, three products containing metallic NPs are addressed:
 - Silver (Ag) in textile (cotton) giving anti-bacterial properties
 - Zinc (Zn) in plastics (PP) as flame retardant
 - Copper (Cu) in water to give a nano-fluid coolant
- Goal: recovery as metal (preferably NP), avoiding oxidation!

 Energy needed to separate a material at (molar) fraction x from a mixture can be calculated as exergy of "unmixing" using

Exergy of unmixing $(J/kg) = T^o \cdot R \cdot \frac{x \cdot \ln(x) + (1-x) \cdot \ln(1-x)}{x} \cdot M$

with gas constant R, surroundings temperature T° (K) and molar mass M for the material to be separated.

Here, activity coefficients are = I for material in different (solid) phases.

- This can be used to calculate the thermodynamic minimum energy requirements for producing (or recovering) a pure (here: metallic) species from ore, a waste stream, or sea water.
- This work addresses three metals and nanoparticles of these.

Three metals and products with NP

	Concentration in ocean water kg/kg	Concentration in earth upper crust kg/kg	Concentration in typical ore kg/kg	Concentration as NP in product kg/kg	Description of product containing NP	
Silver, Ag	3 × 10 ⁻¹²	1.2 × 10 ⁻⁹	0.0043 × 10 ⁻³	0.013 × 10 ⁻³	Antibacterial textile	
Copper, Cu	120 × 10 ⁻¹²	4.1 × 10 ⁻⁹	5.8 × 10 ⁻³	0.27	Nanofluid coolant	
Zinc, Zn	390 × 10 ⁻¹²	0.47 × 10 ⁻⁹	41 × 10 ⁻³	5 × 10 ⁻³	Flame redardant for polymer	
	BUONAPART • E Better Upscaling and Optimization of Nanoparticle a Nanostructure Production by Means of Electrical Dis					

Nanostructure Production by Means of Electrical Discharges

EU FP7 2012-2016

Sources: Zevenhoven and Beyene (2014) doi:10.5541/ijot.5000070194 (open source) Slotte et al. (2015) doi: 10.1007/s40095-015-0171-3 (open source) Slotte and Zevenhoven (2017) doi: 10.1016/j.jclepro.2017.01.083 Slotte and Zevenhoven (2017) doi: 10.3390/en10101605 (open source) Valero Capilla and Valero Delgado (2015) ISBN 978-9814273930

Exergy of "unmixing": Ag NP, cotton

Molar mass Ag, cotton, sea water, earth crust, "ore" = 107.9, 162.1, 18, 155.2, 131.5 kg/kmol

Exergy of "unmixing": Zn NP, PP

Molar mass Zn, PP, sea water, earth crust, "ore" = 65.4, 42.1, 18, 155.2, 110.3 kg/kmol

Exergy of "unmixing": Cu NP, water

Molar mass Cu, water, sea water, earth crust, "ore" = 63.7, 18, 18, 155.2, 109.4 kg/kmol

- Exergy analysis allows for quantifying minimum "unmixing" energy requirement for species such as (metal) nanoparticles (NP) in wastes / end-of-life products containing these
- Dilution to levels similar to concentrations in ore can make metal production from ore + NP production more attractive
- For silver NP in cotton, concentrations are similar to ores: NP recovery is motivated by energy needed for NP production from pure silver. Cotton + NP waste dilution should be avoided!
- For zinc NP in PP plastic, production of metal NP from ore can be motivated by relatively low zinc (and NP) production energy
- For copper NP in cooling water, recovery as NP is motivated until high levels of dilution
- This theoretical assessment gives guidelines for future technology