
Specification Methods 25.01.2006
1

Functions

• Functions form a special class of relations that satisfy

additional requirement: any element of the source set

can be related to no more than 1 element of the target

• Functionality requirement mathematically:

(x, y) ∈ R ∧ (x, z) ∈ R ⇒ y = z

• Any operation applicable to a relation or a set is also

applicable to a function. For example, we can talk about

the domain and the range of a function.

• If f is a function, then f(x) is the result of the function

f for the argument x

Specification Methods 25.01.2006
2

Functions (cont.)

• Functions are called total if their domain is the whole

source set.

• Functions are called partial if their domain is a subset of

the source set.

• Functions are called injective or (one-to-one) if for every

element y from their range exists only one element x from

their domain such that f(x) = y.

• Functions are called surjective if their range is the whole

target set.



Specification Methods 25.01.2006
3

Varieties of functions

Suppose we have a function f (from the source X to

the target Y ). Then it is called

Total function → −−> if dom(f) = X, ran(f) ⊆ Y
Partial function →⊢ +−> if dom(f) ⊆ X, ran(f) ⊆ Y
Total injection >→ >−> if dom(f) = X, ran(f) ⊆ Y

and one-to-one function
Partial injection >→⊢ >+> if dom(f) ⊆ X, ran(f) ⊆ Y

and one-to-one function
Total surjection →→ −−>> if dom(f) = X, ran(f) = Y
Partial surjection →→⊢ +−>> if dom(f) ⊆ X, ran(f) = Y
Bijection >→→ >−>> if dom(f) = X, ran(f) = Y

and one-to-one function

Specification Methods 25.01.2006
4

Lambda notation for functions

• In addition to defining functions as sets of pairs

(relations), lambda notation can be used to introduce

new functions.

• Lambda notation allows us to define a new function f by

describing the result f(x) for any given argument x.

• The general form of a function is then

λx • (x ∈ T |E)

“the function maps x, of type T , to the value E”.

• The corresponding ASCII notation – %x. (x:T |E)



Specification Methods 25.01.2006
5

Sequences

• Sequences are used to describe finite ordered lists of

elements of a given type.

• A sequence over a set S is a total function from an

interval 1..n (for some n ∈ NAT ) to S.

• In a sequence, elements are ordered and may appear more

than once.

• Any operation applicable to a function, a relation, or a

set is also applicable to a sequence.

Specification Methods 25.01.2006
6

Operations on Sequences

[e1, · · · , en] The sequence containing elements e1, · · · , en

This is the same as {(1, e1), · · · , (n, en)}
[e] The singleton sequence with element e
[] (<>) The empty sequence
seq(S) The set of finite sequences of elements

from S
seq1(S) The set of finite non-empty sequences of

elements from S: seq1(S) = seq(S) − {[]}
iseq(S) The set of injective sequences of elements

from S, i.e. sequences without repetitions
perm(S) Permutations of elements from a finite S,

i.e. sequences that contain all elements
from S without repetitions



Specification Methods 25.01.2006
7

Operations on Sequences (cont.)

size(s) The size of sequence s
rev(s) The reverse of s
first(s) The first element of non-empty s
last(s) The last element of non-empty s
tail(s) The sequence s, with its first element

removed (for non-empty s)
front(s) The sequence s, with its last element

removed (for non-empty s)
s ↑ n (s/|\n) The sequence s with the first n elements

retained, n ≤ size(s)
s ↓ n (s\|/n) The sequence s with the first n elements

removed, n ≤ size(s)

Specification Methods 25.01.2006
8

Operations on Sequences (cont.)

s ∧ t The concatenation of sequences
s and t

e → s (e −> s) The sequence formed by prepending
e to s

s ← e (s <− e) The sequence formed by appending
e to s

“normal text′′ A sequence of characters



Specification Methods 25.01.2006
9

Arrays

• An array is a named, indexed collection of values of

a given type.

• The array values can be accessed (read and updated) by

using appropriate indexes.

• If we use 1..n (for some n ∈ NAT ) as our index set, then

an array (of type S) can be modelled as a sequence from

1..n to S.

• In fact, any set can be used as the index set for arrays.

Therefore, arrays can be modelled as total functions from

S (index set) to T (the type of array values).

Specification Methods 25.01.2006
10

Array assignment

• The abstract machine notation allows us to assign values

to indexed elements of arrays:

a(i) := E

• This is the shorthand for the following assignment:

a := a <+ {(i, E)}

• The weakest precondition for the array assignment is

calculated then as follows

[a(i) := E]P = P [a <+ {(i, E)} / a]



Specification Methods 25.01.2006
11

MACHINE Hotel(sze)

CONSTRAINTS sze ∈ NAT1

SETS ROOM

CONSTANTS single, double

PROPERTIES

card(ROOM) = sze ∧

single ⊆ ROOM ∧

double ⊆ ROOM ∧

single ∩ double = {} ∧

single ∪ double = ROOM

VARIABLES guests

INVARIANT

guests ∈ ROOM→0..2 ∧

guests[single] ⊆ 0..1 ∧

guests[double] ⊆ 0..2

INITIALISATION

guests := ROOM × {0}

OPERATIONS

...

Specification Methods 25.01.2006
12

...

checkin(rr,nn) =

PRE rr ∈ ROOM ∧ nn ∈ 1..2 ∧

guests(rr) = 0 ∧

(rr ∈ single ⇒ nn=1)

THEN guests(rr) := nn

END;

checkout(rr) =

PRE rr ∈ ROOM

THEN guests(rr) := 0

END;

change room(rr1,rr2) =

PRE

rr1 ∈ ROOM ∧ rr2 ∈ ROOM ∧

rr1 6=rr2 ∧ guests(rr1)>0 ∧

guests(rr2)=0 ∧

(rr2∈ single ⇒ guests(rr1) = 1)

THEN

guests := guests <+

{(rr1,0), (rr2,guests(rr1))}

END;



Specification Methods 25.01.2006
13

...

nn ← roomquery(rr) =

PRE rr ∈ ROOM

THEN nn := guests(rr)

END;

nn ← vacancies =

BEGIN

nn := card (guests |> {0})

END;

END


