Functions

- Functions form a special class of relations that satisfy additional requirement: any element of the source set can be related to no more than 1 element of the target
- Functionality requirement mathematically:
$(x, y) \in R \wedge(x, z) \in R \Rightarrow y=z$
- Any operation applicable to a relation or a set is also applicable to a function. For example, we can talk about the domain and the range of a function.
- If f is a function, then $f(x)$ is the result of the function f for the argument x

Functions (cont.)

- Functions are called total if their domain is the whole source set.
- Functions are called partial if their domain is a subset of the source set.
- Functions are called injective or (one-to-one) if for every element y from their range exists only one element x from their domain such that $f(x)=y$.
- Functions are called surjective if their range is the whole target set.

Varieties of functions

Suppose we have a function f (from the source X to the target Y). Then it is called

Total function	\rightarrow	-->	$\operatorname{dom}(f)=X, \operatorname{ran}(f) \subseteq Y$
Partial function	\rightarrow	+->	if $\operatorname{dom}(f) \subseteq X, \operatorname{ran}(f) \subseteq Y$
Total injection	\longrightarrow	>->	if $\operatorname{dom}(f)=X, \operatorname{ran}(f) \subseteq Y$ and one-to-one function
Partial injection	$>\rightarrow$	>+>	if $\operatorname{dom}(f) \subseteq X, \operatorname{ran}(f) \subseteq Y$ and one-to-one function
Total surjection	\rightarrow	-->>	if $\operatorname{dom}(f)=X, \operatorname{ran}(f)=Y$
Partial surjection	+	+->>	if $\operatorname{dom}(f) \subseteq X, \operatorname{ran}(f)=Y$
Bijection	\longrightarrow	>->>	if $\operatorname{dom}(f)=X, \operatorname{ran}(f)=Y$ and one-to-one function

Lambda notation for functions

- In addition to defining functions as sets of pairs (relations), lambda notation can be used to introduce new functions.
- Lambda notation allows us to define a new function f by describing the result $f(x)$ for any given argument x.
- The general form of a function is then

$$
\lambda x \bullet(x \in T \mid E)
$$

"the function maps x, of type T, to the value E ".

- The corresponding ASCII notation - \%x. (x:T|E)

Sequences

- Sequences are used to describe finite ordered lists of elements of a given type.
- A sequence over a set S is a total function from an interval 1..n (for some $n \in N A T$) to S.
- In a sequence, elements are ordered and may appear more than once.
- Any operation applicable to a function, a relation, or a set is also applicable to a sequence.

Operations on Sequences

[$\left.e_{1}, \cdots, e_{n}\right] \quad$ The sequence containing elements e_{1}, \cdots, e_{n}
This is the same as $\left\{\left(1, e_{1}\right), \cdots,\left(n, e_{n}\right)\right\}$
[e] The singleton sequence with element e
[] ($<>$) The empty sequence
$\operatorname{seq}(S) \quad$ The set of finite sequences of elements from S
seq1 $(S) \quad$ The set of finite non-empty sequences of elements from S: seq1 $(S)=\operatorname{seq}(S)-\{[]\}$
iseq $(S) \quad$ The set of injective sequences of elements from S, i.e. sequences without repetitions
$\operatorname{perm}(S)$ Permutations of elements from a finite S, i.e. sequences that contain all elements from S without repetitions

Operations on Sequences (cont.)

$\operatorname{size}(s)$	The size of sequence s
$\operatorname{rev}(s)$	The reverse of s
$\operatorname{first(s)}$	The first element of non-empty s
$\operatorname{last}(s)$	The last element of non-empty s
$\operatorname{tail}(s)$	The sequence s, with its first element removed (for non-empty s)
$\operatorname{front(s)} \quad$The sequence s, with its last element removed (for non-empty s)	
$s \uparrow n(s / \backslash n)$	The sequence s with the first n elements retained, $n \leq \operatorname{size}(s)$
$s \downarrow n(s \backslash / n)$	The sequence s with the first n elements removed, $n \leq \operatorname{size}(s)$

Operations on Sequences (cont.)

$s^{\wedge} t$	The concatenation of sequences s and t
$e \rightarrow s \quad(e->s)$	The sequence formed by prepending e to s
$s \leftarrow e \quad(s<-e)$	The sequence formed by appending e to s
"normal text"	A sequence of characters

Arrays

- An array is a named, indexed collection of values of a given type.
- The array values can be accessed (read and updated) by using appropriate indexes.
- If we use $1 . . n$ (for some $n \in N A T$) as our index set, then an array (of type S) can be modelled as a sequence from $1 . . n$ to S.
- In fact, any set can be used as the index set for arrays. Therefore, arrays can be modelled as total functions from S (index set) to T (the type of array values).

Array assignment

- The abstract machine notation allows us to assign values to indexed elements of arrays:

$$
a(i):=E
$$

- This is the shorthand for the following assignment:

$$
a:=a<+\{(i, E)\}
$$

- The weakest precondition for the array assignment is calculated then as follows

$$
[a(i):=E] P=P[a<+\{(i, E)\} / a]
$$

```
MACHINE Hotel(sze)
CONSTRAINTS sze \in NAT1
SETS ROOM
CONSTANTS single, double
PROPERTIES
    card(ROOM) = sze ^
    single }\subseteqROOM ^
    double }\subseteq\mathrm{ ROOM ^
    single }\cap\mathrm{ double = {}^
    single }\cup\mathrm{ double = ROOM
VARIABLES guests
INVARIANT
    guests \in ROOM }->0..2
    guests[single] \subseteq0..1 ^
    guests[double] \subseteq0..2
INITIALISATION
    guests := ROOM }\times{0
OPERATIONS
```

$\operatorname{checkin}(r r, n n)=$
PRE rr \in ROOM $\wedge n n \in 1 . .2 \wedge$
guests(rr) $=0 \wedge$
($\mathrm{rr} \in$ single $\Rightarrow \mathrm{nn}=1$)
THEN guests(rr) := nn
END;
checkout(rr) $=$
PRE rr \in ROOM
THEN guests(rr) $:=0$
END;
change_room (rr1,rr2) $=$
PRE
$r r 1 \in R O O M \wedge r 2 \in R O O M \wedge$
$r r 1 \neq r r 2 \wedge$ guests $(r r 1)>0 \wedge$
guests $(r r 2)=0 \wedge$
(rr2 \in single \Rightarrow guests(rr1) $=1$)
THEN
guests := guests <+
$\{(r r 1,0),(r r 2$, guests(rr1)) $\}$
END;

A서 Specification Methods 25.01.2006

```
nn}\leftarrow\operatorname{roomquery(rr)=
    PRE rr E ROOM
    THEN nn := guests(rr)
    END;
    nn }\leftarrow\mathrm{ vacancies =
    BEGIN
        nn := card (guests |> {0})
    END;
END
```

