Relations

- Relations allow us to express more complicated interconnections and relationships formally
- A relation R between sets S and T can be represented as a set of pairs (s, t) representing those elements of S and T that are related
- Therefore, a relation between sets S and T is a member of POW $(S \times T)$
- Shorthand notation: $S \leftrightarrow T \equiv \operatorname{POW}(S \times T)$
- Relations are often called many-to-many mappings

Relation domain and range

- The domain of a relation $R \in S \leftrightarrow T$ is the set of elements of S that are related to something in T
- Relation domain (denoted as $\operatorname{dom}(R)$) is defined by $\{x \mid x \in S \wedge \exists y \bullet(y \in T \wedge(x, y) \in R)\}$
- The range of a relation $R \in S \leftrightarrow T$ is the set of elements of T that are related to something in S
- Relation range (denoted as $\operatorname{ran}(R)$) is defined by $\{y \mid y \in T \wedge \exists x \bullet(x \in S \wedge(x, y) \in R)\}$

Operations on domain and range

$$
\begin{array}{ll}
S<\mid R & \begin{array}{l}
\text { Restriction of } R \text { by } S \text { (domain restriction), keep } \\
\text { only those pairs whose first element is in } S
\end{array} \\
S \ll \mid R & \begin{array}{l}
\text { Anti-restriction of } R \text { by } S \text { (domain substraction), } \\
\text { keep only those pairs whose first element is } \\
\text { NOT in } S
\end{array} \\
R \mid>T & \begin{array}{l}
\text { Co-restriction of } R \text { by } T \text { (range restriction), keep } \\
\text { only those pairs whose second element is in } T
\end{array} \\
R \mid \gg T & \begin{array}{l}
\text { Anti-co-restriction of } R \text { by } T \text { (range substraction), } \\
\text { keep only those pairs whose second element is } \\
\text { NOT in } T
\end{array}
\end{array}
$$

Other operations on relations

$\sim R \quad$ Inverse of R.
The set $\{(t, s) \mid(s, t) \in R\}$.
$R[U] \quad$ Relational image of U by relation $R \in S \leftrightarrow T$.
The set consisting of all elements of T related to some element of U by R.
$R_{1} ; R_{2} \quad$ Composition of relations $R_{1} \in S \leftrightarrow T$ and $R_{2} \in T \leftrightarrow U$.
The set $\left\{(s, u) \mid \exists t \bullet(s, t) \in R_{1} \wedge(t, u) \in R_{2}\right\}$.
$R_{1}<+R_{2} \quad$ Relational overriding.
Relation R_{1} is "updated" according to R_{2}.

Relations on a single set

$$
\begin{array}{ll}
i d(S) & \text { Identity relation } \\
& \text { The set }\{(s, s) \mid s \in S\} . \\
\text { iterate }(R, n) \quad & \text { The nth iteration of } \mathrm{R}(\mathrm{n} \in N A T), \text { i.e. } \\
& \mathrm{R} \text { composed with itself } \mathrm{n} \text { times. } \\
& \text { Defined only for } R \in S \leftrightarrow S . \\
& \text { iterate }(R, 0)=\operatorname{id}(S) \\
& i \operatorname{terate}(R, n+1)=(R ; \operatorname{iterate}(R, n))
\end{array}
$$

closure $(R) \quad$ The reflexive transitive closure of $R \in S \leftrightarrow S$. $\operatorname{closure}(R)=i d(S) \cup R \cup R ; R \cup R ; R ; R \ldots$

Relations in abstract machines

- Abstract machine notation allows us to declare variables and constants of a relation type
- Relation variables can be assigned in assignments, though the value assigned must be a relation
- The weakest preconditions for such assignments are calculated in exactly the same way as it is done for simpler types

```
MACHINE Access
SETS
    USER; PRINTER; OPTION;
    PERMISSION = {ok, noaccess}
CONSTANTS options
PROPERTIES
    options \in PRINTER ↔ OPTION ^
    dom(options) = PRINTER ^
    ran(options) = OPTION
VARIABLES access
INVARIANT
    access \in USER ↔ PRINTER
INITIALISATION access := {}
OPERATIONS
    add(uu,pp) =
    PRE uu \in USER ^ pp \in PRINTER
    THEN access := access \cup{(uu,pp)}
    END;
```

 \(\operatorname{block}(u u, p p)=\)
 PRE uu \(\in\) USER \(\wedge p p \in\) PRINTER
 THEN access \(:=\) access \(-\{(u u, p p)\}\)
 END;
 \(\operatorname{ban}(u u)=\)
 PRE uu \(\in\) USER
 THEN access \(:=\{u u\} \ll \mid\) access
 END;
 ans \(\leftarrow \operatorname{optionquery(uu,oo)}=\)
 PRE uu \(\in\) USER \(\wedge\) oo \(\in\) OPTION
 THEN
 IF (uu,oo) \(\in\) (access; options)
 THEN ans := ok
 ELSE ans := noaccess
 END
 END;
 \(\mathrm{nn} \leftarrow \operatorname{printquery}(\mathrm{pp})=\)
 PRE pp \(\in\) PRINTER
 THEN nn \(:=\) card (access \(1>\{p p\})\)
 END
 END

ÅA Specification Methods 23.01.2006

Deferred sets

- Deferred sets are sets the definitions of which are not yet given
- Deferred sets can be used as machine parameters or as local sets (types) of a machine
- The behaviour of a machine with deferred sets can be described even though the precise form (implementation) of such sets will be decided Iater

Deferred sets as parameters

```
MACHINE Store(ITEM)
VARIABLES elements
INVARIANT elements \subseteqITEM
INITIALISATION elements := {}
OPERATIONS
    input(ii)=
        PRE ii \in ITEM
        THEN elements := elements \cup{ii}
        END;
END
```

The exact definition (implementation) of ITEM is not yet known

Deferred sets as local types

```
MACHINE Bank
SETS
    NAMES; ACCOUNTS
VARIABLES
    accounts, customers
INVARIANT
    accounts \subseteqACCOUNTS ^
    customers \subseteqNAMES ^ ...
INITIALISATION
    accounts,customers:= {}, {}
OPERATIONS
END
```

The exact definitions (implementations) of NAMES and ACCOUNTS will be decided later

AA Specification Methods 23.01.2006

