Relations

- Relations allow us to express more complicated interconnections and relationships formally
- A relation R between sets S and T can be represented as a set of pairs (s,t) representing those elements of S and T that are related
- Therefore, a relation between sets S and T is a member of POW(S × T)
- Shorthand notation: $S \leftrightarrow T \equiv \mathsf{POW}(S \times T)$
- Relations are often called many-to-many mappings

A Specification Methods 23.01.2006

Relation domain and range

- The *domain* of a relation $R \in S \leftrightarrow T$ is the set of elements of S that are related to something in T
- Relation domain (denoted as dom(R)) is defined by $\{x \mid x \in S \land \exists y \bullet (y \in T \land (x, y) \in R)\}$
- The *range* of a relation $R \in S \leftrightarrow T$ is the set of elements of T that are related to something in S
- Relation range (denoted as ran(R)) is defined by $\{y \mid y \in T \land \exists x \bullet (x \in S \land (x, y) \in R)\}$

	Operations on domain and range	
$S < \mid R$	Restriction of R by S (domain restriction), keep only those pairs whose first element is in S	р
$S <<\mid R$	Anti-restriction of R by S (domain substraction keep only those pairs whose first element is NOT in S	ı),
$R \mathrel{\mid}> T$	Co-restriction of R by T (range restriction), kee only those pairs whose second element is in T	ер
$R \mid >> T$	Anti-co-restriction of R by T (range substraction keep only those pairs whose second element is NOT in T	on),
Å Specifi	ication Methods 23.01.2006	3

	Other operations on relations	
$\sim R$	Inverse of R . The set $\{(t,s) (s,t) \in R\}$.	
R[U]	Relational image of U by relation $R \in S \leftrightarrow T$ The set consisting of all elements of T related to some element of U by R .	
R ₁ ; R ₂	Composition of relations $R_1 \in S \leftrightarrow T$ and $R_2 \in T \leftrightarrow U$. The set $\{(s, u) \exists t \bullet (s, t) \in R_1 \land (t, u) \in R_2\}$.	
$R_1 <+ R_2$	Relational overriding. Relation R_1 is "updated" according to R_2 .	
Å Specificat	ion Methods 23.01.2006	4

	Relations on a single set	
id(S)	Identity relation The set $\{(s,s) s \in S\}$.	
iterate(R,n)	The nth iteration of R ($n \in NAT$), i.e. R composed with itself n times. Defined only for $R \in S \leftrightarrow S$. iterate(R,0) = id(S) iterate(R,n+1) = (R; iterate(R,n))	
closure(R)	The reflexive transitive closure of $R \in S \leftrightarrow S$ $closure(R) = id(S) \cup R \cup R; R \cup R; R; R \dots$,
A Specification	Methods 23.01.2006	5


```
MACHINE Access
SETS
  USER; PRINTER; OPTION;
  PERMISSION = \{ok, noaccess\}
CONSTANTS options
PROPERTIES
  options \in PRINTER \leftrightarrow OPTION \land
  dom(options) = PRINTER \land
  ran(options) = OPTION
VARIABLES access
INVARIANT
  access \in USER \leftrightarrow PRINTER
INITIALISATION access := {}
OPERATIONS
  add(uu,pp) =
    \mathsf{PRE} \ \mathsf{uu} \in \mathsf{USER} \ \land \ \mathsf{pp} \in \mathsf{PRINTER}
    THEN access := access \cup {(uu,pp)}
    END;
```

7

```
A Specification Methods 23.01.2006
```

block(uu,pp) =PRE uu \in USER \land pp \in PRINTER THEN access := access $- \{(uu,pp)\}$ END: ban(uu) =PRE uu ∈ USER THEN access := $\{uu\} \ll access$ END: ans \leftarrow optionquery(uu,oo) = PRE $uu \in USER \land oo \in OPTION$ THEN IF $(uu, oo) \in (access; options)$ THEN ans := ok ELSE ans := noaccess END END; nn \leftarrow printquery(pp) = PRE pp \in PRINTER THEN nn := card (access $|> \{pp\}$) END END Å Specification Methods 23.01.2006

Deferred sets

- Deferred sets are sets the definitions of which are not yet given
- Deferred sets can be used as machine parameters or as local sets (types) of a machine
- The behaviour of a machine with deferred sets can be described even though the precise form (implementation) of such sets will be decided later

Specification Methods 23.01.2006

9

Deferred sets as parameters

```
MACHINE Store(ITEM)
VARIABLES elements
INVARIANT elements \subseteq ITEM
INITIALISATION elements := {}
OPERATIONS
input(ii)=
PRE ii \in ITEM
THEN elements := elements \cup {ii}
END;
...
```

The exact definition (implementation) of ITEM is not yet known

Specification Methods 23.01.2006

Deferred sets as local types MACHINE Bank SETS NAMES; ACCOUNTS VARIABLES accounts, customers INVARIANT accounts \subseteq ACCOUNTS \land customers \subseteq NAMES \land ... INITIALISATION accounts, customers := $\{\}, \{\}$ **OPERATIONS** . . . END The exact definitions (implementations) of NAMES and ACCOUNTS will be decided later

Å Specification Methods 23.01.2006