
Specification Methods 18.01.2006
1

Semantics of machine operations

• To be able to check formally that operations work as

they supposed to, we have to assign precise mathematical

meaning (semantics) to them

• Operations in general are concerned with changing the

local state and setting output variables

• A specification of an operation basically describes the re-

lationship between initial (before) and final (after) states

Specification Methods 18.01.2006
2

Machine states

• Machine states include the combinations of all possible

values of (input, output, local) machine variables

• Machine states can be modelled as values of cartesian

product on machine variable types, for example,

NAT × NAT for two variables of natural numbers

• An operation is then state transformation described using

Abstract Machine Notation



Specification Methods 18.01.2006
3

Different kinds of state transformation

• Functional (deterministic) execution —

one-to-one relationship between initial and final states

• Non-deterministic execution — one-to-many relationship

• Aborting execution — one-to-zero relationship

• Infeasible execution — execution is in “waiting mode”

or “hybernation”

Specification Methods 18.01.2006
4

Weakest preconditions

• We are often interested only in certain “expected” or

“acceptable” final states

• A predicate P describing a set of “acceptable” final states

is called a postcondition

• [S]P denotes all initial states from which execution of S

is guaranteed to achieve P . [S]P – weakest precondition

• The B Method provides rules for calculating weakest pre-

conditions for different statements



Specification Methods 18.01.2006
5

Weakest precondition rules for some B Statements

[x := e]P ≡ P[e/x]
[x,y := e1,e2]P ≡ P[e1,e2/x,y]
[skip]P ≡ P
[PRE E THEN S END]P ≡ E ∧ [S]P
[IF E THEN S1 ELSE S2 END]P ≡ (E ⇒ [S1]P) ∧

(¬E ⇒ [S2]P)
[CASE E OF
EITHER e1 THEN S1 (E=e1 ⇒ [S1]P) ∧
OR e2 THEN S2 (E=e2 ⇒ [S2]P) ∧
OR ... ≡ ...

OR en THEN Sn (E=en ⇒ [Sn]P) ∧
ELSE T (E 6= e1 ∧ ...E 6= en ⇒

END] P [T]P)

Specification Methods 18.01.2006
6

Need for consistent specifications

• Software development using B is based on mathematical

(logical) proof

• In logics,

false ⇒ any statement

i.e. anything can be proved from false assumptions

• Analogously, an inconsistent (contradictory) specification

can be implemented by any program

• To prevent this, B Method forces us to check consistency

of an initial specification



Specification Methods 18.01.2006
7

Machine consistency conditions

• To check machine consistency, B generates four sets of

proof obligations:

– Constraint POs – to check that sets and constants given as ma-

chine parameters exist

– Context POs – to check that local sets and constants satisfying

given properties exist

– Initialisation POs – to prove that initialisation assignment estab-

lishes a state satisfying the machine invariant

– Operation POs (for each operation) – to prove that the opera-

tions maintain (preserve) the invariant.

Specification Methods 18.01.2006
8

Inconsistency of operations

Operations can be inconsistent because

• Operation precondition is too weak

• Operation body is not correct

• Invariant is too strong

• Invariant is too weak

• Invariant is simply wrong



Specification Methods 18.01.2006
9

Full machine consistency

Consistency conditions for a machine

MACHINE M(p)

CONSTRAINTS C

SETS St

CONSTANTS k

PROPERTIES B

VARIABLES v

INVARIANT I

INITIALISATION T

OPERATIONS

y ← op(x) =

PRE P

THEN S

END;

...

END

Specification Methods 18.01.2006
10

Full machine consistency (cont.)

• Consistency of constraints C:

∃p • C

• Consistency of properties B:

C ⇒ ∃St, k • B

• Consistency of invariant I:

C ∧ B ⇒ ∃v • I

• Consistency of initialisation T :

C ∧ B ⇒ [T ] I

• Consistency of operations:

C ∧ B ∧ P ∧ I ⇒ [S] I


