Mathematical basis

- The B Method is based on two well-known mathematical theories:
- (first order) predicate calculus
- set theory

Predicate Logic

- B uses the logic of the first order predicate calculus
- A predicate is a logical expression, i.e. a function from some set \times to set BOOL ($=\{$ TRUE,FALSE $\}$)
- Standard operations:

$$
\begin{array}{lll}
\wedge & \& & \text { conjunction } \\
\vee & \text { or } & \text { disjunction } \\
\Rightarrow & => & \text { implication } \\
\Leftrightarrow & <=> & \text { equivalence } \\
\neg & \text { not } & \text { negation }
\end{array}
$$

Constraining Predicates

- There some contexts where it is stated that a predicate P must constrain some list of variables z
- To constrain the variable x, P must contain predicates of the form: $x \in S, x \subseteq S, x \subset S$, or $x=E$ for some expression E

Universal Quantification

- Publication $\forall z .(P \Rightarrow Q)$

ASCII ! (z). (P => Q)

- For all values of z satisfying constraining predicate P, Q is true
- Notice that, if P is false (there are no values satisfying $P)$, then $\forall z .(P \Rightarrow Q)$ is true - everything in the empty set can be assigned any property
- In a room that does not contain any elephants, you may assert that all the elephants in the room are pink!

Existential Quantification

- Publication $\exists z .(P \wedge Q)$ ASCII \#(z).(P \& Q)
- There exist some values of z satisfying constraining predicate P for which Q is true
- Notice that, if P is false (there are no values satisfying $P)$, then $\exists z .(P \wedge Q)$ is false - nothing in the empty set can be assigned any property
- In a room that does not contain any elephants, you cannot assert that any of elephants in the room is pink!

Set Theory

- B uses the mathematics of set theory
- A set is a collection of entities of some sort
- A set is completely defined by its elements
- Sets can be given
- by listing their elements
- by specifying properties that characterize their members

Set Theory (cont.)

- Sets have neither ordering or multiplicity, so $\{1,2\},\{2,1\}$, and $\{2,1,2\}$ denote the same set
- Sets in B must be well typed. That is all the elements of a set must be of the same type
- Thus $\{1,\{1\}\}$ is not valid set in $B ; 1$ is a number, but $\{1\}$ is a set of numbers

Assertions about Sets

$e \in S \quad e: S \quad$ Set membership: "e belongs to S " or "e is an element of S"
$e \notin S \quad e /: S \quad$ "e does not belong to S ", i.e.
$\neg(e \in S)$
$S \subseteq T \quad S<: T \quad$ Set inclusion: " S is included in T"
$S \nsubseteq T \quad S /<: T \quad$ " S is not included in T ", i.e.
$\neg(S \subseteq T)$
$S \subset T \quad S \ll: T \quad$ Strict set inclusion: " S is included in T, but not equal to \top
$S \not \subset T \quad S / \ll: T$ " S is not strictly included in T",
i.e. $\neg(S \subset T)$

Some Sets

- Empty set $\}$. The set that contains no elements
- Singleton set $\{E\}$. The singleton set contains a single element, which itself may be a set. $\{1\},\{\operatorname{dog}\},\{\{2\}\}$
- Enumerated set $\{E 1, E 2, \cdots\}$. The set contains some fixed number of given elements. $\{1,2,3\},\{c a t, d o g\},\{\{1\},\{1,2\}\}$
- Interval set $n_{1} . . n_{2}$, where n_{1}, n_{2} are natural numbers
- Predefined sets like NAT (natural numbers), NAT1 (positive natural numbers), BOOL (truth values) etc.

Set Expressions

$\{z \mid P\}$	$\{z \mid P\}$	Set comprehension: "set contains elements z satisfying P". P must contain constraining predicates, i.e. predicates of the form $x \in S$, $x=E, x \subset S$ or $x \subseteq S$, where x is a variable in z
$\{z \mid z \in R \wedge P\}$		"the subset of R such that P "
$S \times T$	$S * T$	Cartesian product
		$S \times T=\{x, y \mid x \in S \wedge x \in T\}$
$\operatorname{card}(S)$	$\operatorname{card}(S)$	Cardinality of a (finite) set, i.e the number of elements

Set Expressions (cont.)

$S \cup T$	$S \backslash / T$	Set union: the set of elements that are elements of S or T
$S \cap T$	$S / \backslash T$	Set intersection: the set of elements that are elements of both S and T
$S-T$	$S-T$	Set difference: the set of elements that are elements of S, but not of T
$\mathcal{P}(\mathcal{S})$	$P O W(S)$	Power set: the set of all subsets of S $\mathcal{P}_{1}(S)$$\operatorname{POW1(S)}$The set of all non-empty subsets of $S, \mathcal{P}_{1}(S)=\mathcal{P}(\mathcal{S})-\{\emptyset\}$
$\mathcal{F}(\mathcal{S})$	$F I N(S)$	The set of all finite subsets of S $\mathcal{F}_{1}(S)$ $F I N 1(S)$
The set of all non-empty finite subsets of $S, \mathcal{F}_{1}(S)=\mathcal{F}(\mathcal{S})-\{\emptyset\}$		

Substitution

- widely used in B Method
- expression E can be substituted for free variable x in predicate P, which is denoted

$$
P[E / x]
$$

- A variable x is free in an expression if it is not bound by quantifier
- Restriction: no free variable can become bound
- generalized (multiple) substitution:

$$
P\left[E_{1}, \ldots E_{n} / x_{1}, \ldots x_{n}\right]
$$

