Refinement

e Refinement is the process of moving from abstract

specifications to less abstract specifications while

preserving the behaviour of the former

e Refinement is based on data or operation transformation
which allows the behaviour of the abstract system to be

simulated by the more refined (concrete, detailed) system

e Two Kinds of refinement:
— data refinement
— refinement of nondeterminism

M\ Specification Methods 13.02.2006

Refinement (cont.)

e Intermediate specifications are presented in

REFINEMENT components

e A REFINES clause identifies the component that this

refinement is refining

e [he abstract component M and the concrete component
N are two alternative descriptions of the same system,

with the same external interface, but with different

internal implementations

A\ Specification Methods 13.02.2006

Refinement (cont.)

e T he states of the abstract machine M and the concrete
refinement N must be composed of distinct sets of

variables

e T hese states are linked by a refinement relation which

expresses the correspondence between the abstract and

concrete states

e T his correspondence must be
- established as a result of corresponding initialisations

- preserved by each of the operations

M\ Specification Methods 13.02.2006

Sequential composition

In addition to the AMN statements introduced so far,

in refinements we are allowed to use sequential compo-

sition of several statements

The syntax: S: T

The standard meaning — the statement T is executed

after the statement S (if the latter terminates)

The weakest precondition rule:
[S; T1P = [S]I([T]P)

A\ Specification Methods 13.02.2006

Data refinement
e In data refinement we represent abstract data by data
that is more concrete:

— sets by sequences
— sequences by arrays

— relations by two arrays

M\ Specification Methods 13.02.2006

Refinement of nondeterminism

e In refinement of nondeterminism we resolve nondeter-
minism presented in a specification by describing how
the choice is to be made.

Examples:
—e € S LC (isrefined by) e := min(S)
— CHOICE S1 OR S2 END [C S1
— PRE P THEN S END LC
IF P THEN S ELSE skip END
— ANY zz WHERE P THEN S END LC

ANY zz WHERE P A Q THEN S END

A\ Specification Methods 13.02.2006 6

MACHINE Team

SETS ANSWER = {in, out}

VARIABLES team

INVARIANT team C 1..22 A card(team) = 11
INITIALISATION team := 1..11

OPERATIONS
substitute(pp, rr) =
PRE
pp € team A rr € 1..22 A rr € team
THEN
team = (team U {rr}) — {pp}
END;

aa «— query(pp) =
PRE pp € 1..22
THEN
IF pp € team THEN aa := in
ELSE aa := out END
END;
END

REFINEMENT TeamR
REFINES Team
VARIABLES teamr
INVARIANT
teamr € 1..11>-1..22 A
ran(teamr) = team
INITIALISATION teamr := id(1..11)

OPERATIONS
substitute(pp, rr) =
BEGIN
teamr (~teamr(pp)) := rr
END;

aa < query =
IF pp € ran(teamr)
THEN aa := in
ELSE aa := out
END

/)A Specification Methods 13.02.2006

END

,96 Specification Methods 13.02.2006

REFINEMENT TeamR
REFINES Team
VARIABLES teama
INVARIANT
teama € 1..22 — ANSWER A
team = ~teama [{in}]
INITIALISATION
teama = (1..11)x{in} U (12..22)x{out}

OPERATIONS
substitute(pp, rr) =
BEGIN
teama(pp) := out;
teama(rr) :=in
END:;
aa «— query =
BEGIN
aa := teama(pp)
END

END

/)A Specification Methods 13.02.2006

REFINEMENT JukeboxR
REFINES Jukebox
CONSTANTS freefreq
PROPERTIES freefreq € NAT1

VARIABLES creditr, playlist, free
INVARIANT
creditr € NAT A creditr = credit A
playlist € iseq(TRACK) A
ran(playlist) = playset A
free € 0O..freefreq

INITIALISATION
creditr, playlist := 0, {}

OPERATIONS
pay(cc) =
BEGIN
creditr := creditr + cc
END;

,96 Specification Methods 13.02.2006

10

select(tt) =
BEGIN
IF tt ¢ ran(playlist)
THEN playlist := playlist «— tt

END;
IF free = freefreq
THEN
free :== 0
ELSE

free := free + 1;
creditr ;= creditr — 1
END
END;

tt «— play =
BEGIN
tt := first(playlist);
playlist := tail(playlist)
END
END

/)A Specification Methods 13.02.2006

