
Specification Methods 13.02.2006
1

Refinement

• Refinement is the process of moving from abstract

specifications to less abstract specifications while

preserving the behaviour of the former

• Refinement is based on data or operation transformation

which allows the behaviour of the abstract system to be

simulated by the more refined (concrete, detailed) system

• Two kinds of refinement:

– data refinement

– refinement of nondeterminism

Specification Methods 13.02.2006
2

Refinement (cont.)

• Intermediate specifications are presented in

REFINEMENT components

• A REFINES clause identifies the component that this

refinement is refining

• The abstract component M and the concrete component

N are two alternative descriptions of the same system,

with the same external interface, but with different

internal implementations



Specification Methods 13.02.2006
3

Refinement (cont.)

• The states of the abstract machine M and the concrete

refinement N must be composed of distinct sets of

variables

• These states are linked by a refinement relation which

expresses the correspondence between the abstract and

concrete states

• This correspondence must be

- established as a result of corresponding initialisations

- preserved by each of the operations

Specification Methods 13.02.2006
4

Sequential composition

• In addition to the AMN statements introduced so far,

in refinements we are allowed to use sequential compo-

sition of several statements

• The syntax: S; T

• The standard meaning – the statement T is executed

after the statement S (if the latter terminates)

• The weakest precondition rule:

[S; T ]P = [S] ([T ]P )



Specification Methods 13.02.2006
5

Data refinement

• In data refinement we represent abstract data by data

that is more concrete:

– sets by sequences

– sequences by arrays

– relations by two arrays

– ...

Specification Methods 13.02.2006
6

Refinement of nondeterminism

• In refinement of nondeterminism we resolve nondeter-

minism presented in a specification by describing how

the choice is to be made.

Examples:

– e :∈ S ⊑ (is refined by) e := min(S)

– CHOICE S1 OR S2 END ⊑ S1

– PRE P THEN S END ⊑

IF P THEN S ELSE skip END

– ANY zz WHERE P THEN S END ⊑

ANY zz WHERE P ∧ Q THEN S END



Specification Methods 13.02.2006
7

MACHINE Team

SETS ANSWER = {in, out}

VARIABLES team

INVARIANT team ⊆ 1..22 ∧ card(team) = 11

INITIALISATION team := 1..11

OPERATIONS

substitute(pp, rr) =

PRE

pp ∈ team ∧ rr ∈ 1..22 ∧ rr 6∈ team

THEN

team := (team ∪ {rr}) − {pp}

END;

aa ← query(pp) =

PRE pp ∈ 1..22

THEN

IF pp ∈ team THEN aa := in

ELSE aa := out END

END;

END

Specification Methods 13.02.2006
8

REFINEMENT TeamR

REFINES Team

VARIABLES teamr

INVARIANT

teamr ∈ 1..11 >→1..22 ∧

ran(teamr) = team

INITIALISATION teamr := id(1..11)

OPERATIONS

substitute(pp, rr) =

BEGIN

teamr (∼teamr(pp)) := rr

END;

aa ← query =

IF pp ∈ ran(teamr)

THEN aa := in

ELSE aa := out

END

END



Specification Methods 13.02.2006
9

REFINEMENT TeamR

REFINES Team

VARIABLES teama

INVARIANT

teama ∈ 1..22 → ANSWER ∧

team = ∼teama [{in}]

INITIALISATION

teama := (1..11)×{in} ∪ (12..22)×{out}

OPERATIONS

substitute(pp, rr) =

BEGIN

teama(pp) := out;

teama(rr) := in

END;

aa ← query =

BEGIN

aa := teama(pp)

END

END

Specification Methods 13.02.2006
10

REFINEMENT JukeboxR

REFINES Jukebox

CONSTANTS freefreq

PROPERTIES freefreq ∈ NAT1

VARIABLES creditr, playlist, free

INVARIANT

creditr ∈ NAT ∧ creditr = credit ∧

playlist ∈ iseq(TRACK) ∧

ran(playlist) = playset ∧

free ∈ 0..freefreq

INITIALISATION

creditr, playlist := 0, {}

OPERATIONS

pay(cc) =

BEGIN

creditr := creditr + cc

END;

...



Specification Methods 13.02.2006
11

select(tt) =

BEGIN

IF tt 6∈ ran(playlist)

THEN playlist := playlist ← tt

END;

IF free = freefreq

THEN

free := 0

ELSE

free := free + 1;

creditr := creditr − 1

END

END;

tt ← play =

BEGIN

tt := first(playlist);

playlist := tail(playlist)

END

END


