
Specification Methods 11.01.2006 1

The software development process with B

1. Requirement analysis
2. Specification development

• decompose spec into meaningful components and
formalize them into abstract machines

• animate to check spec againts requirements
• generate and prove consistency obligations

3. Design
• identify decomposition of system implementation,

including reusable components from libraries
• create refinements of selected components
• generate and prove refinement proof obligations

4. Coding/Integration
• apply code generator to lowest level design

Specification Methods 11.01.2006 2

Requirement Analysis – The Banking System

1. Customers are identified by their name and

the birth date

2. Customers can have any number of accounts

3. All accounts have a unique number

4. Each account has a unique owner

5. Accounts have a non-negative balance

6. ...

Specification Methods 11.01.2006 3

Abstract Machines

• A specification of a system can contain a significant

amount of information. Therefore, a structural approach

is needed

• In B, larger specifications can be constructed from

smaller ones, permitting hierarhical specification

• The basic block of a B specification is a so called

abstract machine

• An abstract machine is a specification of (a part of)

a system using an Abstract Machine Notation

Specification Methods 11.01.2006 4

Abstract Machines (cont.)

• An abstract machine is a module encapsulating data

and operations on that data. A machine is similar to a

C++ object or an Ada package

• Each machine “owns” some local data and provides the

essential operations to access and manipulate these data

• Variables of a machine can only be modified by operations

of this machine and not by operations of other machines

Specification Methods 11.01.2006 5

Abstract Machine Notation

• Abstract Machine Notation (AMN) is the notation used

to describe B abstract machines

• AMN gives B appearance and feel of a programming lan-

guage, although the level of abstraction is higher

• The notation for the specification source form will be

ascii. For example, account:ACCOUNT means that variable

account is an element of the set (type) ACCOUNT

• In textbooks, graphical mathematical notation is used.

The example above would look account ∈ ACCOUNT

Specification Methods 11.01.2006 6

Structure of an abstract machine

MACHINE(...) machine name and parameters

CONSTRAINTS conditions on parameters (predicate)

INCLUDES/SEES connection to other machines (names)

SETS local types (names)

CONSTANTS local constants (names)

PROPERTIES conditions on sets and constants

VARIABLES local variables (names)

INVARIANT invariant properties (predicate)

INITIALISATION assignment

OPERATIONS operations

END

Specification Methods 11.01.2006 7

Structure of an abstract machine (cont.)

• Note the hierarchy of constraints in the machine struc-

ture:

– CONSTRAINTS constrain the machine parameters

– PROPERTIES constrain the sets and constants

– INVARIANT constrain the machine variables

• Constants and variables are not typed at the point of

declaration, but their type must be constrained by the

corresponding constraining predicate

Specification Methods 11.01.2006 8

MACHINE

Booking

VARIABLES

seats

INVARIANT

seats ∈ NAT

INITIALISATION

seats := 1000

OPERATIONS

book = ...

cancel = ...

END

MACHINE

Name of the machine/module

(the length of the name is always > 1)

VARIABLES (,)

give the state of the machine

may be changed locally in the machine

INVARIANT (∧)

defines the types of the variables,

defines the constraints and the relations

between the variables

INITIALISATION (||)
assignments of initial values

should establish the invariant

OPERATIONS (;)

relevant instructions for the user

Specification Methods 11.01.2006 9

Machine Parameters

• Machine parameters enable the specification of generic

machines

• The parameters are either:

– sets (upper case identifiers): denote finite non empty

sets
– numeric: denote natural number constants

Specification Methods 11.01.2006 10

MACHINE

Booking (max seats)

CONSTRAINTS

max seats ∈ NAT ∧
max seats > 0

VARIABLES

seats

INVARIANT

seats ∈ NAT ∧
seats ≤ max seats

INITIALISATION

seats := max seats

OPERATIONS

...

Parameters (,)

values from outside

CONSTRAINTS (∧)

logical properties of the parameters

Specification Methods 11.01.2006 11

...

SETS

RES = {ok,fail}

CONSTANTS

Max tickets

PROPERTIES

Max tickets ∈ NAT ∧
Max tickets = 5

...

SETS (;)

local abstract types

(modeled by sets)

CONSTANTS (,)

- read-only

- cannot occur on the left of :=

PROPERTIES (∧)

- defines the types and logical properties

of the sets and constants

- can constrain accessed data

Specification Methods 11.01.2006 12

...

OPERATIONS

book =

BEGIN

seats := seats − 1

END;

cancel =

BEGIN

seats := seats + 1

END

END

Operations (;)

- change the state of the variables

- are executed in one step

(i.e. no sequential composition)

- v := e is an ordinary assignment

- v,w := e,f is a multiple assignment

Assignments in “book” and

“cancel” are not always possible!

We need more general operations.

Specification Methods 11.01.2006 13

...

OPERATIONS

book =

PRE 1 ≤ seats

THEN

seats := seats − 1

END;

cancel =

PRE seats < max seats

THEN

seats := seats + 1

END

END

Preconditioned operation

(PRE P THEN S END)

- gives reasonable result only if

the precondition is true

- if the precondition is false,

we can get any result, failed

execution, termination

Operation invoker should ensure

that the precondition is true

Specification Methods 11.01.2006 14

Invariant and Preconditions

• The invariant of a machine is an expression of safety or integrity

conditions. Satisfying the invariant should ensure the integrity and

consistency of the information modelled by the state of a machine

• It is an obligation that each operation maintains the invariant: it is

guranteed that the invariant is true before an operation is invoked

and it is the duty of operation to ensure that the invariant is true

after the operation

• The precondition of an operation should exclude all combinations of

state and operation arguments that would lead to the invariant to

be broken after the operation

• It is desirable that the invariant is as strong as possible, and the

precondition is as weak as possible

Specification Methods 11.01.2006 15

Operations may have value and result parameters

operation

operation(value)

result ← operation

result ← operation(value)

Specification Methods 11.01.2006 16

...

OPERATIONS

book(number) =

PRE number ∈ NAT ∧
number ≤ seats

THEN

seats := seats − number

END;

cancel(number) =

PRE number ∈ NAT ∧
seats+number ≤ max seats

THEN

seats := seats + number

END

END

Value parameters

- should be typed in the

precondition

- the precondition states

what conditions the

parameters should satisfy

Specification Methods 11.01.2006 17

...

res ← book(number) =

PRE number ∈ NAT

THEN

IF number ≤ seats ∧
number ≤ Max tickets

THEN

seats:=seats − number ‖
res := ok

ELSE

res := fail

END

END;

vacant ← vacant seats =

BEGIN vacant := seats END

END

Result parameters are used

- to inform outside world about

the success/failure of the op

- in the enquiry operations

enquiry operations

- are used to inform the outside

world about the local state

- give a result, but do not change

the state (only read the state)

in the example “book” checks

internally that a required condition

is true and returns an error code

Specification Methods 11.01.2006 18

Operation Preconditions

• If the operation precondition contains only the type(s) of its param-

eters, it is called trivial. Such (total) operation can be invoked in

any state of the machine, and for any values of it parameters

• Operations with non-trivial preconditions are partial operations: that

is the operation may not be defined outside of the precondition

• A precondition is an assumption that the operation makes about

calling environment. It is not a condition that is going to be tested

by the implementor of the operation

• It is the obligation of the invoker of the operation to ensure that

the precondition holds. The precondition is the part of the contract

that applies to the client of the operation

Specification Methods 11.01.2006 19

MACHINE

Booking (max seats)

CONSTRAINTS

max seats ∈ NAT ∧ max seats > 0

SETS

RES = {ok,fail}
CONSTANTS

Max tickets

PROPERTIES

Max tickets ∈ NAT ∧
Max tickets = 5

VARIABLES

seats

INVARIANT

seats ∈ NAT ∧ seats ≤ max seats

INITIALISATION

seats := max seats

...

Specification Methods 11.01.2006 20

res ← book(number) =

PRE number ∈ NAT

THEN

IF number ≤ seats ∧
number ≤ Max tickets

THEN

seats, res := seats − number, ok

ELSE

res := fail

END

END;

cancel(number) =

PRE number ∈ NAT ∧
seats+number ≤ max seats

THEN

seats := seats + number

END

vacant ← vacant seats =

BEGIN vacant := seats END

END

