
Specification Methods 09.01.2006 1

Specification Methods

Specifikationsmetodik

6559

Winter 2006

Specification Methods 09.01.2006 2

Specification Methods

• 3 credit course

• 09.01 – 20.02.2006 (13 lectures)

• exams on 20.03.2006 and 10.04.2006

• exercise sessions
supervised by Andreas Enbacka

• literature:

1. S.Schneider. “The B-Method. The Introduction”
2. K.Lano, H.Haughton. “Specifications in B”
3. Wordsworth. “Software Engineering with B”

• the course web page:
www.abo.fi/∼Linas.Laibinis/SpecMeth/index.html



Specification Methods 09.01.2006 3

The overview of the course

• we will see advantages of using (formal) specifications in

software development

• we will learn an industry-strong specification method

called “B” which has

- a language

- a tool called the B-Toolkit

• we will do a lot of exercises during this course using

B-Toolkit

Specification Methods 09.01.2006 4

Introduction to B

• The B Method (or simply B) – a formal approach for

industrial development of highly reliable software

• It covers the complete software lifecycle, from require-

ments (specification), through design (refinement) to im-

plementation and code generation

• In this course we will be concerned with the use of B for

specification



Specification Methods 09.01.2006 5

What do we mean by Formal Method?

• We mean the application of mathematics (set theory and

logic) to specify, design and implement software in a such

a way that the resulting code has been proved to be

consistent with the original specification

• In B, a specification is a mathematical (abstract) model

of the required behaviour of the system

• B specifications are transformed into concrete implemen-

tations by a sequence of formally defined refinement (i.e.

design) steps

Specification Methods 09.01.2006 6

Connection with “conventional” methods

• In conventional methods the requirements are usually ex-

pressed informally, in either natural language, or using

some structured notation (e.g. UML)

• Specifications are frequently expressed directly in pro-

gramming code (in the form of comments or annota-

tions)

• In contrast, using B, the specification is abstract de-

scription of the requirements, expressing what behaviour

is required, rather than how to produce that behaviour



Specification Methods 09.01.2006 7

Traditional engineering disciplines

• In the traditional engineering disciplines, designs are based on a

mathematical theory of the materials, components, structures to be

used in the implementation of ,e.g., bridges, buildings, electronic

circuits

• Testing consists of physical testing of implementation or its model

• This is succesful strategy because the domains can be described by

continuous mathematics: if a model conforms for some specific test

input, it will also conform for input that is ‘less than‘ that input

• This strategy does not work for discrete valued domains

Specification Methods 09.01.2006 8

Testing of software

• Software executes over discrete domains, and testing

usually consists of probing points within that space

• Thus testing only confirms conformance of behaviour

(e.g. correctness of execution) at specific points. Test-

ing is incapable, in general, to demonstrate conformance

over the the complete application domain

• Thus testing may confirm the presence of bugs, not their

absence



Specification Methods 09.01.2006 9

Advantages of formal software development

• We build a formal model using constructs that are defined by precise

mathematical theories. These models capture the behaviour in a

complete application domain

• As we develop our specifications into implementations, the formal

method produces proof obligations that basically describe the com-

plete set of tests. These tests confirm that the behaviours of the

specification and the design are consistent

• The formal proof validates behaviour in a complete domain, not

simply at a single point

Specification Methods 09.01.2006 10

Applications of formal methods

• Formal methods have been used in various mission critical applica-

tions, like train control systems and smart cards. In some countries

the use of formal methods is mandatory for certain critical systems

• The most famous use of B is for the control system of the Meteor

line (new driveless line of Paris metro) opened in October 1998. See

www.siemens-ts.com/pagesUS/realisations/Paris.htm

www.siemens-ts.com/pagesUS/produits/Meteor.htm

The distributed control system handled the critical parts of the cen-

tral control room, the equipment along the track, the onboard train

control. The Meteor system was developed by Mantra Transport,

now owned by Siemens

• For another application (smart cards by GEMPLUS) see

www.gemplus.com/smart/r d/trends/system model/b method/



Specification Methods 09.01.2006 11

Increase of formality

• The increase of the use of formality in software development has

been continuous, from formal grammars to specify programming

language syntax, to the semi-formal application of translator gener-

ators in compiler implementations

• High-level languages themselves are an instance of increased formal-

ity, over machine level (assembler) programming in this case

• Everywhere rigour and formality has been used, there has been an

increase in the reliability of implementations

• There is no reason to believe that this “progress” will not continue

Specification Methods 09.01.2006 12

Course Objectives

• The objective of the course is to get you to think more

carefully about the specification phase of software devel-

opment

• The objective of the use of a formal method (B) is to

encourage you to think more rigorously about specifica-

tion in particular, and to extend that to other phases of

software system development



Specification Methods 09.01.2006 13

Origins of B

The author of the B Method is Jean-Raymond Abrial.

However, B is built on the foundations established by

• Tony Hoare, Edsgar Dijkstra: Weakest preconditions

• Cliff Jones: Pre- and Post- conditions, VDM

• Ralph Back, Carroll Morgan: Refinement Calculus

• Jean-Raymond Abrial: Z specification notation and

mathematical toolkit

Specification Methods 09.01.2006 14

B Method and Toolkit

• As its name implies, B (the B Method) is a method, not

simply a notation. B is supported by a toolkit, which

should be regarded as essential requisite for using the

method. There are two toolkits:

– AtelierB (distributed by Steria):

http://www.atelierb.societe.com

– B-Toolkit (distributed by B-Core):

http://www.b-core.com

We will be using the B-Toolkit.



Specification Methods 09.01.2006 15

The B-Toolkit

The B-Toolkit is a project management tool that provides

the following facilities:

- syntax and type analysis of specifications

- animation of specifications

- support of design (refinement) transformations

- generation of proof obligations

- automatic and interactive proof

- code generation

- etc.

Specification Methods 09.01.2006 16

Abstract Machines

An unit of B specification is called an abstract machine. It

is a module that encapsulates

• state, consisting of a set of variables constrained by in-

variant property

• operations, that may change the state, while maintaining

the invariant, and may return a sequence of results



Specification Methods 09.01.2006 17

Object based

• Abstract machines are sometimes described as object-

based, rather than object-oriented

• An abstract machine can be compared with an object,

an instance of a class

• A machine does not behave as a class, although it is

possible to model a class

Specification Methods 09.01.2006 18

A simple specification

• We will model a “one-account” bank into which we can

put money and also take money out.

• In our model we will use a variable account whose value

is a natural number, representing the amount in cents.

• Also, we have 3 operations:

FeedBank(amount) – add amount to the bank

RobBank(amount) – take amount from the bank

money <-- CashLeft – en enquiry operation that

returns the amount of money left



Specification Methods 09.01.2006 19

A simple specification (cont.)

MACHINE OneAccountBank the name of a machine

VARIABLES account we need a variable

INVARIANT account:NAT account is a natural number

INITIALISATION account:=0 we start with zero account

OPERATIONS

FeedBank(amount)= putting money

PRE amount:NAT preconditioned operation

THEN

account := account + amount updating the account

END

Specification Methods 09.01.2006 20

A simple specification (cont.)

RobBank(amount)= withdrawing money

PRE amount:NAT preconditioned operation

THEN

account := account - amount updating the account

END;

money <-- CashLeft= how much money left?

BEGIN

money := account setting the return value

END


