
Specification Methods 06.02.2006
1

B structuring mechanisms

• Large specifications must be structured in order to

control inevitable complexity

• B-Method provides structuring mechanisms which enable

machines to be expressed as combinations of simpler

machines

• Structuring mechanisms allow distinct parts be described

and understood separately; Also, internal consistency

conditions can be verified independently

Specification Methods 06.02.2006
2

B structuring mechanisms (cont.)

• Machine state can be separated into different machines

which will be responsible for the operations on that part

of state

• B-Method allows us also to describe relationships

between different components (machines)

• The mechanisms that B provides to compose specifi-

cations are the INCLUDES, EXTENDS, USES, and

SEES access mechanisms



Specification Methods 06.02.2006
3

Inclusion

• MACHINE M2

INCLUDES M1

• M1 is considered to be part of the description of M2, and

its state is part of M2 state

• Sets, constants, and variables of M1 are visible in M2

(read access)

• Invariant of M1 is implicitly included in M2 invariant

• M1 variables can be updated only via M1 operations;

So M1 is responsible for preserving its own invariant

Specification Methods 06.02.2006
4

Inclusion (cont.)

• If M1 is a parameterised machine, then its parameters

should be instantiated in INCLUDES clause

• M2 initialisation first initialises all its included machines,

then executes its own initialisation

• M2 has complete control over M1 because M1 cannot be

included in any other machine

• M1 should be defined completely independently of M2;

No references to M2 sets, constants, variables, and

operations are allowed



Specification Methods 06.02.2006
5

Promotion

• Operations of M1 are available for M2, but NOT

for M2 environment, i.e. they are NOT part of M2

interface

• the PROMOTES clause lifts an operation from an

included machine to have the status of an operation of

the including machine

• If all operations of M1 are promoted, then M2 is really

extension of M1; Then we can write EXTENDS instead

of INCLUDES

Specification Methods 06.02.2006
6

Included operations

• The bodies of M2 operations can contain calls to

any operations of included machines

• The syntax of operation calls is

x1, x2, ... ← op(e1, e2, ...)

• e1, e2, ... are concrete value expressions, and

x1, x2, ... are distinct variables standing for actual

result parameters



Specification Methods 06.02.2006
7

Multiple inclusion

• A machine can include a number of other machines, and

those machines can themselves include machines

• Inclusion is transitive, i.e. sets, constants, and variables

of included machines are visible independently how deeply

included a machine is

• However, access to operations is not transitive

• A machine can call several operations of included ma-

chines in one step. However, those operations should be

from different machines

Specification Methods 06.02.2006
8

Example

Safes

¡
¡

¡
¡

¡
¡

¡¡ª

INCLUDES

@
@

@
@

@
@

@@R

INCLUDES

Keys Locks

@
@

@
@

@
@

@@R

INCLUDES

Doors



Specification Methods 06.02.2006
9

MACHINE Doors

SETS

DOOR;

POSITION = {open,closed}

VARIABLES position

INVARIANT

position ∈ DOOR → POSITION

INITIALISATION

position := DOOR × {closed}

OPERATIONS

opening(dd) =

PRE dd ∈ DOOR

THEN position(dd) := open

END;

closedoor(dd) =

PRE dd ∈ DOOR

THEN position(dd) := closed

END

END

Specification Methods 06.02.2006
10

MACHINE Locks

INCLUDES Doors

PROMOTES closedoor

SETS

STATUS = {locked, unlocked}

VARIABLES status

INVARIANT

status ∈ DOOR → STATUS ∧

∼position[{open}] ⊆ ∼status[{unlocked}]

INITIALISATION

status := DOOR × {locked}

OPERATIONS

opendoor(dd) =

PRE

dd ∈ DOOR ∧

status(dd)=unlocked

THEN

opening(dd)

END;

...



Specification Methods 06.02.2006
11

...

unlockdoor(dd) =

PRE

dd ∈ DOOR

THEN

status(dd) := unlocked

END;

lockdoor(dd) =

PRE

dd ∈ DOOR ∧

position(dd)=closed

THEN

status(dd) := locked

END

END

Specification Methods 06.02.2006
12

MACHINE Keys

SETS KEY

VARIABLES keys

INVARIANT

keys ⊆ KEY

INITIALISATION

keys := {}

OPERATIONS

insertkey(kk) =

PRE kk ∈ KEY

THEN keys := keys ∪ {kk}

END;

removekey(kk) =

PRE kk ∈ KEY

THEN keys := keys − {kk}

END

END



Specification Methods 06.02.2006
13

MACHINE Safes

INCLUDES Locks, Keys

PROMOTES

opendoor, closedoor, lockdoor

CONSTANTS unlocks

PROPERTIES

unlocks ∈ KEY >→→ DOOR

INVARIANT

∼status [{unlocked}] ⊆ unlocks [keys]

OPERATIONS

insert(kk,dd) =

PRE

kk ∈ KEY ∧ dd ∈ DOOR ∧

unlocks(kk)=dd

THEN

insertkey(kk)

END;

...

Specification Methods 06.02.2006
14

extract(kk,dd) =

PRE

kk ∈ KEY ∧ dd ∈ DOOR ∧

unlocks(kk)=dd ∧

status(dd)= locked

THEN removekey(kk)

END;

unlock(dd) =

PRE

dd ∈ DOOR ∧

∼unlocks(dd) ∈ keys

THEN unlockdoor(dd)

END;

quicklock(dd) =

PRE

dd ∈ DOOR ∧

position(dd)=closed

THEN lockdoor(dd) ‖

removekey(∼unlocks(dd))

END

END


