
JRIALTO
AN IMPLEMENTATION OF THE

HETEROGENEOUS RIALTO MODELLING

LANGUAGE

Andreas Dahlin

Master’s Thesis on Embedded Systems
Supervisor: Johan Lilius

Embedded Systems Laboratory
Faculty of Technology

Åbo Akademi University
March 2007



I

ABSTRACT

The importance of software in embedded products is continuously increasing.
Programmable processors are nowadays integrated into every System-on-Chip
(SoC), which provides developers with new possibilities and also challenges. New
and improved design theories, methods and tools for designing and verifying these
embedded systems are necessary in order to benefit from the rapidly improving
fabrication processes for the hardware used in the systems. This Master’s thesis
presents an implementation of the second version of the Rialto language and de-
scribes the translation of models specified in the Unified Modeling Language to
Rialto. Rialto is a small heterogeneous kernel language, with a sound mathemat-
ical definition, that can be used for expressing computations in several models
of computation. Our implementation, called JRialto, is being developed in the
Embedded Systems Laboratory at Åbo Akademi University. JRialto can be used
for interpretation and simulation of Rialto 2.0 programs. A case study of a JPEG
encoder modelled in UML 2.0 and simulated using JRialto will be presented.

Keywords: Models of Computation, Rialto Language, Heterogeneous Embed-
ded Systems, Interpreter, UML, Simulation



II

Sammandrag

Introduktion

Under de senaste 20 åren har inbyggda datorsystem blivit allt mer utbredda i
samhället i takt med att deras popularitet har ökat. Tidigare förknippades in-
byggda system mest med bilarnas l̊asningsfria bromsar, flygplanselektronik och
kontrollsystem för produktionsanläggningar medan man numera kan p̊aträffa
inbyggda system inom många olika omr̊aden. De nya användningsomr̊adena
har inneburit att vanliga konsumenter har blivit en ny och viktig m̊algrupp.
Konsumentmarknaden är kostnadskänslig och ställer även annorlunda krav vad
beträffar utveckling och underh̊all.

Utveckling av inbyggda system innebär alltid en avvägning mellan vilka delar
av systemet som skall utföras med hjälp av effektiva men dyra h̊ardvarukretsar
och vilken funktionalitet som med fördel kan skötas av mjukvara. Under de
senaste årtiondena har h̊ardvarukretsarna utvecklats avsevärt, medan de metoder
som används för att planera och integrera mjukvaran i systemen är i stort sett
oförändrade. Nya metoder för att beskriva inbyggda system är nödvändiga för
att effektivt dra nytta av förbättrade h̊ardvarukretsar. I synnerhet finns ett be-
hov av spr̊ak som kan beskriva s̊a kallade heterogena system, dvs. system som
kännetecknas av att de beskrivs av flera olika beräkningsmodeller. En mobiltele-
fon är ett bra exempel p̊a ett heterogent system. Rialto är ett av de spr̊ak som
klarar av att beskriva heterogena system. Spr̊aket kan även användas som ett
mellanspr̊ak vid kodgenerering fr̊an modeller skapade i diverse grafiska modeller-
ingsspr̊ak.

Syftet med det här diplomarbetet är att ge en introduktion till Rialto-spr̊aket,
samt att visa hur UML 2.0-modeller kan översättas till Rialto och även att skapa
en implementering av spr̊aket. Implementeringen, som heter JRialto, utgör den
praktiska delen av diplomarbetet. För att p̊avisa JRialtos funktionalitet modell-
erade vi en JPEG-omkodare i Rialto och genomförde en simulering av omkodaren
i v̊art program.

Rialto

Rialto är ett heterogent spr̊ak som utvecklas vid laboratoriet för inbyggda system
vid Åbo Akademi. Spr̊aket har en matematiskt solid semantik för att representera
olika beräkningsmodeller, vilket samtidigt gör det möjligt att använda formella
metoder för att verifiera att programmen är korrekta. Rialto använder sig av



III

ändliga tillst̊andsmaskiner för att tolka och kompilera program. Effektiva algo-
ritmer används för att optimera de ändliga tillst̊andsmaskinerna.

Dag Björklund presenterade Rialto i sin doktorsavhandling i januari 2005.
Doktorsavhandlingen omfattar endast en liten del av den l̊angsiktiga målsätt-
ningen för spr̊aket, t.ex. har endast s̊adana modeller som saknar tidsnotation
studerats. Hans forskning visar att Rialto kan användas som ett mellanspr̊ak
för kodgenerering fr̊an s̊aväl UML-modeller som SDF-modeller. Den l̊angsiktiga
målsättningen med Rialto är att effektivt kunna beskriva heterogena system som
omfattas av flera hierarkiska beräkningsmodeller.

Rialto 2.0

Man har p̊apekat att vissa brister existerar i den första versionen av Rialto. Därför
är en ny version av spr̊aket, Rialto 2.0, under utveckling. De grundläggande
koncepten är fortfarande de samma, men flera förbättringar och förändringar
har gjorts i den nya versionen. Den viktigaste förändringen gäller hanteringen
av schemaläggningspolicyn i Rialto. En schemaläggningspolicy är Rialtos sätt
att beskriva och kapsla in en beräkningsmodell. I Rialto 2.0 är det möjligt, till
skillnad fr̊an i Rialto 1.0, att lägga till nya policyn utan att modifiera spr̊akets
implementering. An annan väsentlig skillnad är ocks̊a att den underliggande
beräkningsmodellen för Rialto har ändrats fr̊an att vara en entr̊adig maskin som
driver programkörningen till att nu utgöras av en procedur i tv̊a steg.

Schemaläggningspolicyn

Som ovan nämnt, är schemaläggningspolicyn en mekanism för att kapsla in olika
beräkningsmodeller och lösa de schemaläggningsbeslut som beräkningsmodellerna
ger upphov till. I en situation d̊a t.ex. tv̊a samtidiga p̊ast̊aenden kan utföras,
är det inte p̊ast̊aendena själva som hanterar parallellismen mellan dem; den
uppgiften tar en schemaläggningspolicy hand om. I Rialto 2.0 kan en schema-
läggningspolicy skrivas direkt i spr̊aket, vilket medför att alla syntaktiska element
som finns i Rialto kan användas även i en policy. Nackdelen är att programhögen
blir relativt komplex att hantera. För närvarande har ett f̊atal policyn för sekv-
entiell, interfolierad samt stegbaserad körning implementerats.

Syntax och semantik

Rialto har en syntax och semantik som har p̊averkats av diverse specifikations-
spr̊ak. En del gemensamma koncept, s̊asom tillst̊and och avbrott, förekommer
i de flesta specifikationsspr̊ak. Tillst̊and spelar en mycket central roll i Rialto
eftersom de kan användas för att kapsla in delsystem som använder sig av olika
beräkningsmodeller. Rialto har en formell semantik som definierar ett programs
exakta betydelse och därmed gör det möjligt att bevisa de egenskaper som ett
program har. Den formella semantiken ger samtidigt ett regelverk för kompilering
av program till olika l̊agniv̊aspr̊ak.



IV

JRialto – en implementering av Rialto

JRialto är en javabaserad implementering av Rialto som har utvecklats som en
del av diplomarbetet. JRialto kan användas för att tolka, simulera och avlusa
program skrivna i Rialto 2.0. Observera att nuvarande version av JRialto enbart
är avsedd för att användas för forskning och utveckling av Rialto-spr̊aket. Av den
orsaken har tolkningshastigheten inte prioriterats, inte heller har kodgenererings-
och optimeringsmodulerna inkluderats i programmet.

Den metod för mjukvarudesign som har använts under utvecklingen av
JRialto kan bäst beskrivas som en kombination av Agile-metoden och den vatten-
fallsbaserade metoden. Stor vikt har fästs vid att göra implementeringen s̊a
modularised som möjligt, eftersom det är viktigt att enkelt kunna byta ut och
återanvända moduler under programmets hela livslängd. En fördel med pro-
gramvaruutveckling i Java är att modulariseringen underlättas genom att man
kan gruppera källkoden i paket.

I varje programmerings- och modelleringsspr̊ak är det viktigt att ha möjlig-
heten att representera data p̊a flera olika sätt. Rialto är dock ett s̊adant spr̊ak som
enbart behöver inkludera och definiera de mest elementära datatyperna, medan
mera avancerade datatyper endast deklareras i Rialto. Den deklarerade datatypen
måste d̊a finnas implementerad i det valda målspr̊aket. Elementära datatyper som
booleska variabler, flyttal, heltal, etiketter och strängar finns implementerade i
JRialto, liksom beh̊allartyper för köer och mängder.

Tolken

Den del av JRialto som tar hand om själva programkörningen kallas tolk. Tolken
har som uppgift att tolka de p̊ast̊aenden som finns i programmet i enlighet
med spr̊akets semantik. För att underlätta tolkens arbete byggs ett abstrakt
syntaxträd först upp fr̊an programmets källkod med hjälp av lexikalanalys och
spr̊akparsning. Tolken i JRialto har, förutom tolkningen, även som uppgift att
hantera s̊adana externa händelser som kan p̊averka tolkningen av programmet.

Kärnan i tolken utgörs av den s̊a kallade huvudslingan. Huvudslingan är en
oändlig slinga som ansvarar för uppdateringen av programräknaren och utför de
p̊ast̊aenden som finns i programmet. Programräknaren inneh̊aller en referens
till det följande p̊ast̊aendet som skall utföras. Att schemaläggningspolicyna skall
p̊averka programkörningen medför att det inte är helt trivialt att uppdatera pro-
gramräknarens värde. I det fall att programräknaren har antagit ett specialvärde
schemaläggs en policy för körning; policyn avgör utifr̊an programhögens inneh̊all
vilket p̊ast̊aende som skall utföras. Rialto har med andra ord en komplicerad
programhög som hanterar b̊ade körningen av schemaläggningspolicyn och van-
liga p̊ast̊aenden.

JRialto kan inte enbart användas till att tolka program i syfte att undersöka
programmets körning. Man kan även utföra mera verklighetstrogna simulationer
genom att fr̊an programmet anropa specifika funktioner som har implementerats
i n̊agot annat spr̊ak. P̊a det här sättet kan man skapa realistisk utdata fr̊an det
modellerade systemet. Den metod som används för att komma åt de externa



V

funktionerna bygger p̊a gränssnittet Java Native Interface (JNI). En annan form
av kommunikation mellan ett Rialto-program och dess omgivning utgörs av ex-
terna händelser. Med extern händelse avses en s̊adan händelse som kan p̊averka
det system som har modellerats i programmet men som har sitt ursprung i pro-
grammets omgivning. De externa händelserna måste definieras i en fil innan
simuleringen startas. I filen specificeras ett namn och en tidpunkt för händelsen
samt vilken del av det modellerade systemet den berör.

Tolkning av ett steg

Konceptet med steg är väsentligt i Rialto eftersom spr̊aket bygger p̊a stegbaserade
beräkningar. Vad är d̊a ett steg? Ett steg är ett antal beräkningar som tar sys-
temet fr̊an ett observerbart tillst̊and till ett annat observerbart tillst̊and. Det är
viktigt att poängtera att systemet inte befinner sig i observerbara tillst̊and under
tiden steget utförs. Den schemaläggningspolicy som används för att schemalägga
systemet i det aktuella tillst̊andet definierar även beräkningsstegets kornighet.
Med kornighet avses här de enskilda arbetsuppgifterna storlek. Ett steg best̊ar
av tre egentliga faser: beräkning av stegets inneh̊all, utförande av delstegen och
manipulering av programhögen för att samla ihop systemets nya observerbara
tillst̊and.

Grafiska användargränssnittet

JRialto kan köras i b̊ade konsolläge och fönsterläge. Det senare erbjuder använda-
ren ett lättanvänt grafiskt användargränssnitt. Det kan först te sig onödigt att
inkludera ett grafiskt användargränssnitt för en tolk, eftersom programtolkning
vanligen utförs fr̊an ett kommandoskal. Fördelen med ett grafiskt gränssnitt
är att det ger en betydligt klarare överblick över den massiva information som
presenteras i avlusningssyfte. Det grafiska användargränssnittet är utvecklat som
en löstagbar modul, med andra ord kan modulen exkluderas fr̊an en specifik
version utan att JRialto blir funktionsodugligt.

JRialtos användargränssnitt baserar sig p̊a ett flertal fönster, vilka visar olika
typ av information. I ett fönster presenteras det abstrakta syntaxträdet, medan
trädet som inneh̊aller programmets metamodell är tillgängligt i ett annat fönster.
Det mest intressanta fönstret är dock det fönster som visar detaljerad informa-
tion om tolkningen. Där finns information, i tabellform, om vilken policy som
använts, värdet p̊a programräknaren och inneh̊allet i högen samt programmiljön.
Varje p̊ast̊aende presenteras p̊a tv̊a tabellrader; den första raden visar information
om systemtillst̊andet innan tolkningen av p̊ast̊aendet, medan den andra raden
berättar om systemtillst̊andet efter tolkningen av p̊ast̊aendet. För att se hur
ett specifikt p̊ast̊aende p̊averkar systemet kan man allts̊a enkelt jämföra de tv̊a
tabellraderna. Samtliga information som finns i tabellen kan exporteras till bl.a.
HTML och LaTeX.



VI

Användningen av UML-modeller i Rialto

Istället för att skriva Rialto-programmen manuellt i n̊agot textediteringsprogram
kan man använda UML-modeller som utg̊angspunkt. Det faktum att UML-
modeller har underliggande beräkningsmodeller utgör inget hinder eftersom
beräkningsmodellerna kan beskrivas med en schemaläggningspolicy. UML-modell-
erna kan översättas automatiskt till Rialto-program, vilket innebär att Rialto kan
användas som ett mellanspr̊ak för m̊alspecifik kodgenerering fr̊an UML-modeller.

Unified Modeling Language

Unified Modeling Language (UML) är som namnet antyder ett enhetligt modeller-
ingsspr̊ak, vilket kan användas för effektiv design, körning och underh̊all av mjuk-
varuprocesser. UML har en grafisk representation för de flesta modellelement som
kan användas för modellering i spr̊aket. UML utvecklas av det internationella och
ideella konsortiet Object Management Group. Den nuvarande versionen, UML
2.0, inneh̊aller 13 olika diagramtyper som används för att beskriva modellens be-
teende och växelverkan mellan olika delar av modellen samt modellens statiska
struktur. Det är främst de diagram som beskriver beteende och växelverkan som
är intressanta ur Rialtos synvinkel.

Översättning av enskilda diagramtyper

De element som de olika diagramtyperna inneh̊aller kan oftast enkelt översättas
till ett relativt kort kodblock i Rialto. Riktlinjer för översättningen av de en-
skilda elementen har utarbetats i det här diplomarbetet. De diagramtyper som
beaktas är kommunikationsdiagram, klassdiagram, tillst̊andsmaskindiagram och
aktivitetsdiagram.

Kommunikationsdiagram beskriver kommunikationsflödet mellan systemets
olika delar, eller mer specifikt kommunikationsflödet mellan olika objekt i sys-
temet. Kommunikationsdiagram används i Rialto för närvarande till att ge en
bild av sambandet mellan olika objekt och samtidigt skapa de kommunikation-
skanaler som är nödvändiga för att objekten sinsemellan skall kunna utbyta
information. I kommunikationsdiagram representeras objekt av s̊a kallade liv-
linor, vilka enbart har en etikett och inget inneh̊all. Livlinornas inneh̊all och
beteende kan specificeras med hjälp av andra diagramtyper, t.ex. klassdiagram
eller tillst̊andsmaskindiagram. Klassdiagram beskriver objektens statiska struk-
tur och används därmed i Rialto främst för att deklarera variabler.

Tillst̊andsmaskindiagram beskriver allts̊a en del av det modellerade systemet
i detalj. Ett tillst̊andsmaskindiagram best̊ar av en eller flera tillst̊andsmaskiner
som beskriver delsystemets olika tillst̊and samt överg̊angen fr̊an ett tillst̊and till
ett annat. Tillst̊andsmaskiner är ytterst lämpliga för att beskriva inbyggda sys-
tem, d̊a dessa oftast reagerar p̊a stimuli som leder till en förändring av systemets
tillst̊and. Översättningen av tillst̊andsmaskindiagram fr̊an UML till Rialto är
intuitiv, eftersom tillst̊and är grundläggande element i b̊ada spr̊aken. När sys-
temet befinner sig i ett tillst̊and är det möjligt att n̊agot arbete eller n̊agon process



VII

utförs s̊a länge systemet befinner sig i det tillst̊andet; det arbetet kan i sin tur
beskrivas av en annan tillst̊andsmaskin eller som en aktivitet.

Aktiviteter beskrivs av aktivitetsdiagram. Aktivitetsdiagram är besläktade
med tillst̊andsmaskindiagram och b̊ada kan beskriva det detaljerade beteendet
hos delsystem och effekter. Skillnaden mellan aktiviteter och tillst̊andsmaskiner
ligger i typen av flöde de beskriver. Aktiviteter beskriver arbetsflöden medan
tillst̊andsmaskiner beskriver flöden mellan olika tillst̊and. För närvarande är det
endast de kontrollrelaterade elementen i aktivitetsdiagram som är relevanta och
beaktas vid översättningen till Rialto.

Simulering av externa händelser

Ibland är det användbart att se hur det modellerade systemet reagerar p̊a händ-
elser som inträffar under en simulering av systemet. Händelser syftar i det här
fallet p̊a händelser som har sitt ursprung i systemets omgivning men som systemet
förväntas reagera p̊a. S̊adana externa händelser kan som bekant specificeras i en
fil, som sedan beaktas under simuleringen av programmet. Filen behöver inte
skapas manuellt, utan kan istället genereras fr̊an användningsfalls- och sekvens-
diagram. JRialto utg̊ar fr̊an användningsfallsdiagram i vilka olika aktörer är
associerade med användningsfall. Ett användningsfall specificeras med hjälp
av ett sekvensdiagram som inneh̊aller en grafisk representation över de externa
händelser som skall beaktas.

Automatisk översättning fr̊an UML till Rialto

En komplett systemmodell kan f̊as genom att kombinera de ovan beskrivna
diagramtyperna. Den kompletta modellen kan d̊a översättas som en helhet till
Rialto. Översättningen kan göras automatiskt, även om det är en betydligt mer
besvärlig process än att enbart översätta diagram enskilt. En modell som om-
fattar flera olika diagramtyper best̊ar oftast av ett kommunikationsdiagram som
beskriver systemet p̊a en hög niv̊a, medan kommunikationsdiagrammets livlinor
beskrivs av ett klassdiagram. Klassens beteende beskrivs sedan i detalj av ett
aktivitetsdiagram eller ett tillst̊andsmaskindiagram. Resultatet av översättningen
är ett korrekt och direkt körbart Rialto-program som inte kräver n̊agon manuell
modifikation.

Fallstudie av en JPEG-omkodare

Diplomarbetet omfattar även en fallstudie. Syftet med fallstudien är att visa hur
en JPEG-omkodare kan modelleras i Rialto och simuleras i JRialto. Önskade ut-
data är en korrekt JPEG-omkodad bild som har skapats fr̊an den okomprimerade
bitkarta som används som indata. JPEG (Joint Photographic Expert Group) är
en standard för bildkompression som utvecklades år 1992 av standardiserings-
organen ISO och ITU-T. JPEG lämpar sig särskilt bra för komprimering av
färgfoton, eftersom de förluster i kvalitet som orsakas av JPEG-komprimeringen



VIII

inte är speciellt märkbara för den typen av bilder. JPEG-komprimering kan
utföras p̊a flera olika sätt.

Den variant av JPEG som användes i fallstudien är standard-JPEG (baslinje
JPEG). Standard-JPEG-algoritmen valdes eftersom den används p̊a en stor
mängd plattformar och samtidigt är lätt att först̊a. Omkodaren modellerades
som ett UML 2.0-aktivitetsdiagram. Aktivitetsdiagrammet har som uppgift att
schemalägga omkodningen och anropa externa funktioner i ett JPEG-bibliotek
för att utföra algoritmens delsteg rent konkret. Resultatet av simuleringen är en
korrekt JPEG-omkodad bild, vilket b̊ade kan verifieras matematiskt och
visuellt. Rialto kan därmed anses vara ett lämpligt spr̊ak för att modellera den
här typen av schemaläggningsproblem, medan JRialto är kapabelt att tolka och
ansluta modellen till externa funktionsbibliotek.

Slutsatser

Det här diplomarbetet har beskrivit hur UML-modeller kan översättas till
Rialto samt presenterat en första implementering av Rialto 2.0. Rialto 2.0 är
en vidareutvecklad version som bygger p̊a samma grundläggande principer som
Rialto 1.0. Rialto strävar p̊a l̊ang sikt till att kunna beskriva system som best̊ar
av flera hierarkiska beräkningsmodeller genom att kapsla in delsystem med en
specifik beräkningsmodell i tillst̊and. De schemaläggningspolicyn som present-
eras i arbetet visar p̊a att Rialto för närvarande klarar av att korrekt beskriva
olika beräkningsmodeller. Genom att jag har presenterat hur UML-modeller kan
översättas till Rialto, har jag därmed ocks̊a visat att Rialto kan användas som
ett mellanspr̊ak för kodgenerering fr̊an visuella modellspr̊ak.

Ett omfattande arbete behövs ännu i framtiden för uppn̊a de l̊angsiktiga mål
har satts upp för Rialto. Ytterligare funktionalitet m̊aste inkluderas i själva
spr̊aket s̊aväl som i dess implementering. Ett abstraktionslager för schema-
läggningspolicyn borde definieras för att underlätta skapandet av nya policyn,
vilket för tillfället är mycket arbetskrävande. Abstraktionslagret kunde dölja
implementationsspecifika detaljer och förse utvecklaren med ett standardiserat
och intuitivt gränssnitt för skapandet av policyn. Vad JRialto beträffar kunde
översättningen fr̊an UML-modeller skötas av ett externt verktyg eller bibliotek.
Slutligen borde även optimerings- och kodgenereringsmodulerna som finns i im-
plementeringen av Rialto 1.0 implementeras.



IX

TABLE OF CONTENTS

Abstract I

Sammandrag II

Table of contents IX

Abbreviations XI

List of figures XII

1 Introduction 1
1.1 Aim of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Rialto Language 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Rialto 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Scheduling Policies . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . 10

3 JRialto - A Rialto Implementation 15
3.1 Introduction to JRialto . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Software Design Overview . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Lexical Analyzer and Parser . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Metamodel Tree Generator . . . . . . . . . . . . . . . . . . 19
3.4 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Main Interpreter Loop . . . . . . . . . . . . . . . . . . . . 20
3.4.2 The Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 External Function Calls . . . . . . . . . . . . . . . . . . . 24
3.4.4 External Event Simulation . . . . . . . . . . . . . . . . . . 24

3.5 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Execution of a Step . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . 29

4 Translating UML Models to Rialto 34
4.1 The Unified Modeling Language . . . . . . . . . . . . . . . . . . . 34
4.2 Communication Diagrams . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Class Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 State Machine Diagrams . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Activity Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Simulation of Events using Use Case Diagrams . . . . . . . . . . . 48
4.7 Automated UML to Rialto Translation . . . . . . . . . . . . . . . 50



X

5 Case Study - JPEG Encoder 54
5.1 JPEG Encoder Theory . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Baseline JPEG Compression . . . . . . . . . . . . . . . . . 55
5.1.2 JPEG File Interchange Format . . . . . . . . . . . . . . . 56

5.2 Modelling the Encoder using Rialto . . . . . . . . . . . . . . . . . 57
5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusions and Future Work 62
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A Usage of Documentation Comments in JRialto 64
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.2 Complexity Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.3 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B Listing of Policies 69
B.1 Default Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2 Interleaving Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.3 Step Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.4 Synchronous Dataflow Policy . . . . . . . . . . . . . . . . . . . . . 73

C Source Code Listing 75
C.1 Step Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.2 Dining Philosophers Example . . . . . . . . . . . . . . . . . . . . 76
C.3 JPEG Encoder Example . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 86



XI

Abbreviations

API Application Programming Interface
AST Abstract Syntax Tree
DCT Discrete Cosine Transform
FIFO First In, First Out
FSM Finite State Machine
GUI Graphical User Interface
HTML HyperText Markup Language
ISO International Organization for Standardization
ITU International Telecommunication Union
JFIF JPEG File Interchange Format
JNI Java Native Interface
JPEG Joint Photographic Experts Group
LIFO Last In, First Out
MCU Minimum Coded Unit
MDA Model-Driven Architecture
MOC Models of Computation
OMG Object Management Group
PC Program Counter
RLE Run-Length Encoding
RTC Run to Completion
SDF Synchronous Dataflow
SOS Structured Operational Semantics
UML Unified Modeling Language
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
XMI XML Metadata Interchange
XML Extensible Markup Language



XII

List of Figures

1.1 Classification of MOCs according to the abstraction of time . . . 2
1.2 Rialto as an intermediate language . . . . . . . . . . . . . . . . . 3

2.1 A model of a Rialto policy . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Rialto Syntactic Categories . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The Rialto 2.0 Grammar . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Structural overview of the packages . . . . . . . . . . . . . . . . . 16
3.2 The Treenode packages implement the operational rules for exe-

cuting a Rialto program . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Expression packages . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 JRialto’s main interpreter loop . . . . . . . . . . . . . . . . . . . . 21
3.5 A detailed flow chart of Update Progam Counter . . . . . . . . . 22
3.6 Stack implementation in JRialto . . . . . . . . . . . . . . . . . . . 22
3.7 The different parts of the stack . . . . . . . . . . . . . . . . . . . 23
3.8 Overview of the data types available in JRialto . . . . . . . . . . 25
3.9 A state machine representing parallel execution scheduled by dif-

ferent policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 Stack trace from the execution of a step . . . . . . . . . . . . . . 28
3.11 The open file dialog box in JRialto . . . . . . . . . . . . . . . . . 29
3.12 Interrupt interpretation dialog box . . . . . . . . . . . . . . . . . 30
3.13 The windows for the a) Abstract Syntax Tree and b) Metamodel

Tree Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.14 The interpretation table . . . . . . . . . . . . . . . . . . . . . . . 32
3.15 Environment popup presenting the Rialto program’s environment 32
3.16 The graphical output console . . . . . . . . . . . . . . . . . . . . 33

4.1 Rialto as an intermediate language for code synthesis from UML
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 The diagrams of UML 2.0 and their structure (from [12]). . . . . . 35
4.3 Translation of communication diagram elements to Rialto. . . . . 37
4.4 Translation of class diagram elements to Rialto. . . . . . . . . . . 39
4.5 Translation of state machine elements to Rialto. . . . . . . . . . . 42
4.6 More translations of state machine elements to Rialto. . . . . . . 44
4.7 Translation of activity diagram elements to Rialto. . . . . . . . . 46
4.8 A use case diagram describing event simulation . . . . . . . . . . 48
4.9 A sequence diagram describing the details of a certain use case . . 49



XIII

4.10 Dining philosophers problem overview and the corresponding UML
communication diagram . . . . . . . . . . . . . . . . . . . . . . . 50

4.11 Classes and state machines describing the dining philosophers . . 52

5.1 Baseline JPEG compression . . . . . . . . . . . . . . . . . . . . . 56
5.2 JPEG Encoder simulation inputs and output . . . . . . . . . . . . 58
5.3 Activity diagram describing the encoding of an image . . . . . . . 59
5.4 Original and compressed test image . . . . . . . . . . . . . . . . . 61

A.1 API documentation generated from the example class . . . . . . . 68



1

1. Introduction

Embedded systems have become increasingly popular and wide spread during the
last 20 years. From the situation in earlier years, when embedded systems mostly
were associated with anti-braking systems for cars, aircraft electronics and plant
control systems we have now moved towards a situation where embedded systems
can found anywhere. Embedded systems are now used in all kinds of consumer
electronics, as well as in smart buildings [13]. In smart buildings embedded
systems can be used to increase comfort level, reduce energy consumption and
improve safety and security. The new application areas for embedded systems
have also implied new requirements on the systems. Modern embedded systems
must not only be stable and reliable, they must also be able to interact with other
embedded systems.

Because of the market demand for embedded systems to be used in new ap-
plication areas, the customer base has undergone a significant change. Usual
consumers have become an important customer group for embedded systems,
which demands for instance new approaches for handling the maintenance of the
end product during its entire lifetime. The consumer market is also very cost
sensitive, requiring an efficient use of the hardware components available. As a
consumer product often has a market window less than a year, during which time
the product would have highest sales, the demand for a shorter development time
is always present. A delay of only one month can in some cases result in a 20-30
percent loss in profits [3].

When designing an embedded system there is always a trade-off between im-
plementing the desired functionality in hardware or in software. Functionality
implemented in hardware is efficient, but unfortunately the functionality cannot
be changed to match market demand after the component has been manufac-
tured. This may lead to a situation where expensive hardware components in
stock, become useless after the production of the product they were designed for
has been stopped. Instead of using specially designed hardware to implement
the desired functionality, it is possible to implement the same functionality in
software running on more general-purpose hardware. Software has the advantage
that it is usually easy to adapt to changing requirements concerning the function-
ality of the system. The drawback is that software calculations are less efficient.
We can conclude, based on the above-mentioned facts that a proper mix between
the amount of functionality implemented in software and hardware results in no-
ticeable improvements to the entire embedded system. Unfortunately the design
theories, methods and tools used to design, verify and integrate the software com-
ponents in these complex systems have not developed as much as the hardware
components. Hardware components have become faster and more reliable, but
still their physical size has been reduced due to more advanced semiconductor
fabrication processes. The situation is quite different in the field of design theory,
where the lack of new and efficient design methods at the system-level is obvious.

System designers are today forced to design the entire system using one tech-



2

Figure 1.1: Classification of MOCs according to the abstraction of time (from
[3])

nique instead of several. One often used technique is to write a functional specifi-
cation of the system in C++ or another high-level language. Later in the design
phase, some parts of the functional specification are decided to be realized in
hardware, which means that these parts are described in a hardware description
language (HDL) instead of C++. Because the system now is described in more
than one language, the comprehensive system model is lost and thereby the abil-
ity to evaluate and simulate the entire system becomes very cumbersome. On the
one hand, the situation described above is a clear problem to system designers
today, especially to a designer without extensive experience and knowledge about
certain pitfalls that must be avoided. On the other hand, the fact that modern
embedded systems [3] require several different description techniques to describe
the system in an efficient manner cannot be ignored. A mobile phone is an ex-
ample of an embedded system that illustrates this requirement quite well. The
mobile phone has a radio-frequency part, which consists of some analogue com-
ponents; hence, it is best designed using analogue design techniques. The signal
processing part is efficiently described by synchronous dataflow (SDF) techniques,
while some other part of the mobile phone could be best described by a finite
state machine.

All systems are described using some kind of model of the system. A model
is a simplification of the real system or even a simplification of another model
[2]. The fact that a model can be defined as a simplification of another model is
important, since it means that we can have a sequence of models, each simpler
than the previous one, that all together describes a complex model. A model
of computation (MoC) is a model, which describes the computational aspects of
a model. Communication, synchronization and timing of concurrent processes
belong to that category of aspects. The domain specific description of a model of
computation implies that the MoC decides the abstraction level for concurrency,
time and communication. A classification of different models of computation



3

Figure 1.2: Rialto as an intermediate language

according to the abstraction of time is presented in figure 1.1. We can see that
there are both models without and models with a notation of time. Esterel, VHDL
and Occam are not actually models of computation, but they are categorized
according to their underlying computational model.

When several models of computation are used to describe a system, the system
is called heterogeneous. A heterogeneous system, where different components in
the system are modelled using different models of computation is able to describe
complex systems in a more efficient way since each model of computation do only
need to solve the problem at its own abstraction level. Unfortunately, it is not easy
to support heterogeneity. According to [3], there are essentially two approaches
to dealing with heterogeneous systems. One approach is to create a framework,
which defines interfaces that can handle the interaction between different existing
models of computation and their respective description technique. The second
approach, to create a language that can represent all models of computation, is
to some extent the aim of the Rialto language.

Rialto is a small heterogeneous kernel language that is being developed in the
Embedded Systems Laboratory at Åbo Akademi University. Rialto has sound
mathematical semantics for representing different models of computation; hence,
it provides a path to formal reasoning and verification. The language cannot
only be used as a simulation engine by an implementation of the operational
semantics, but it can also be compiled into a target language. Rialto programs
can automatically be translated and generated from several visual front-end mod-
elling languages such as the commonly used Unified Modeling Language. In figure
1.2, Rialto is used as an intermediate language between models described in the
unified modeling language (UML) and a target language, for instance VHDL.
It should be pointed out that Rialto still is under development and therefore it
currently should only be used in a research environment. In a long-term perspec-
tive, Rialto will hopefully be able to contribute to the design and verification of
embedded systems. The shorter development cycles of embedded systems makes
it increasingly more important to be able to evaluate the effect of implementing
functionality in software or hardware already in early stages of the design process.

1.1 Aim of Thesis

The aim of the thesis is to introduce the second version of the Rialto language,
show how UML 2.0 models can be translated to Rialto and present an implemen-
tation of the language. The thesis also comprises a practical part. In the practical
part an initial implementation of Rialto 2.0 was developed. The development of
the implementation, named JRialto, was performed in a two person team consist-
ing of undersigned and thesis worker Markus Dahlg̊ard. My focus in the team has
been on the development of the interpreter engine, the stack and the graphical



4

user interface. The support for using scheduling policies in the interpreter and
writing the policies in Rialto 2.0 were the most challenging parts. In order to
show on the capabilities of JRialto, we modelled a JPEG encoder in UML and
simulated the execution of the model in JRialto, producing a valid JPEG image
as output.

1.2 Structure of Thesis

This thesis presents the implementation of the second version of the Rialto lan-
guage and describes some of its uses for design, modelling and simulation.

An introduction to the Rialto language is given in Chapter 2, where also the
background of Rialto is discussed. The structured-operational-semantics type
semantics and syntax of Rialto is presented here together with the scheduling
policies. The scheduling policies allow us to explore different models of compu-
tation.

Chapter3, JRialto - A Rialto Implementation, covers the implementation of
the second version of the Rialto kernel language. JRialto is java-based implemen-
tation featuring interpretation of Rialto programs, code generation from UML
diagrams and simulation of external events.

In Chapter 4, the translation from the Unified Modeling Language (UML) to
Rialto is discussed in detail. The different diagrams of UML 2.0 represent different
models of computation that requires translation to a corresponding Rialto model.
An automated implementation of the translation process is presented.

In Chapter 5, a case study using JRialto for simulation is looked at. In
order to test the functionality of our Rialto implementation we modelled a JPEG
Encoder in UML and performed automated translation of this model into Rialto.
The results from the simulation are presented.

Finally, some conclusions are given and future work suggested in Chapter 6.



5

2. The Rialto Language

In this chapter the Rialto kernel language is presented. The background of the
language, including the fundamental ideas, is covered. The differences between
the initial version of Rialto and the current version of the language, Rialto 2.0,
are discussed. In the final section will give you a presentation of the syntax and
semantics used in Rialto 2.0. A complete overview of the allowed syntax is here,
as well as more general coding guidelines and short examples.

2.1 Introduction

Rialto is a small heterogeneous language developed in the Embedded Systems
Laboratory at Åbo Akademi University. A heterogeneous language is a language
that can describe heterogeneous systems; systems that is described using several
models of computation [3]. Currently, the heterogeneity is a challenge to the
design of embedded systems in general, because it is not possible to obtain com-
prehensive system models using the existing techniques. The long-term goal of
Rialto is to be able to use it for efficiently describing systems that include several
hierarchical levels of computational models.

Rialto has a formal semantics, which means that the language is formalized
using structured-operational-semantics (SOS) rules. The formal semantics makes
verification by formal methods possible and thereby the numbers of errors a de-
signer can commit are reduced. The notion of a model of computation is central in
Rialto. Models of computation are encapsulated into so-called scheduling policies,
which makes it possible to separates the syntactic elements of the language from
its semantic. Another feature of Rialto is the efficient implementation algorithms
that make it possible to flatten hierarchical and complex Rialto programs.

Rialto is intended to be used as an intermediate language for code synthesis
from visual modelling languages and their respective models of computation. Up
to now, the unified modeling language (UML) has been used for visual modelling
and the models created in UML have been translated into Rialto. Rialto can
also be used for the execution of certain code blocks that have been written in
different target languages. In that case, the execution is performed according to
the computational model chosen.

The second version of the language, Rialto 2.0, is an evolution of Rialto 1.0.
The most important improvement is the generic support for scheduling policies.
It is only possible to use a number of predefined policies in Rialto 1.0, while it is
possible to express new scheduling policies using Rialto 2.0 syntax.

2.2 Background

The Rialto language was presented in Dag Björklund’s dissertation [3] in January
2005. The work he presented should be seen as initial work towards a greater



6

goal. The long-term goal for Rialto is to create a small kernel language for the
representation of many different models of computation. The lack of efficient
modelling languages that can be used for modelling of heterogeneous systems is
an large and well-identified problem in the area of system design for embedded
systems. Rialto aims to contribute to the research in embedded systems design
and provide a language, which supports efficient modelling and code synthesis
from heterogeneous models. The ambitious long-term goals of Rialto cannot fit
in a single thesis; therefore, the goals were narrowed down to cover only a slice
of the existing categories of models of computation.

Rialto has a sound mathematical semantics; hence, it can be used as a math-
ematical operational framework. The framework can be extended to represent
different models of computation and provide a path to formal reasoning, verifi-
cation and code synthesis. Rialto can also be seen as an intermediate language
between high-level graphical modelling languages and low-level platform specific
target languages. Björklund states that his thesis is a study in code synthesis
more than a study of models of computations and their combinations. The work
on code generation, using Rialto as an intermediate language, shows that the
Rialto approach provides a viable path to code generation. Models created in,
for instance, the unified modeling language (UML) can be translated to Rialto,
where an optimized finite state machine is created. Finally, source code in any
selected target language can be synthesized from the state machine.

The optimization approach used for code synthesis in Rialto involves con-
struction of finite state machines. The finite state machines are constructed from
Rialto programs using the operation semantics. The finite state machines are
reduced using S-GRAPHs. It should be pointed out that the current finite state
machine approach assumes that two concurrent state blocks, which are compiled
into separate finite state machines, are completely independent of each other.
Synchronization between the states must be implemented trough communication
mechanisms only. A software graph, S-GRAPH, is a directed acyclic graph used
to describe a decision tree with assignments [3]. S-GRAPHs can be reduced by
removing redundancies in the graph. Another important property of S-GRAPHs
is that they are very suitable for code-size and performance estimation in embed-
ded systems. Some additional optimizations are further applied to the reduced
S-GRAPH, since a reduced S-GRAPH is not necessarily an optimal one. The
optimized S-GRAPHs can now easily be compiled into different target languages.

The optimization steps makes the generated code less readable, but since
the aim is to create a compiler that can generate complete and executable code
directly from the model, the reduced readability can not be considered a clear
disadvantage. Besides the UML models, synchronous dataflow (SDF) models
were studied in Björklund’s thesis. The conclusion from the study is that SDF
models can be used for code synthesis from Rialto. An advantage is that the
generated code does not contain any single appearance schedules, in which some
elements only are scheduled for execution once, but on the other hand more
control overhead cannot be avoided using the Rialto approach.



7

2.3 Rialto 2.0

Rialto 2.0 is the second version of the Rialto language. It features several im-
provements to address the issues pointed out in version 1.0. However, the basic
conceptual ideas are still the same. An initial implementation of Rialto 2.0 has
been implemented during the year. The implementation is still under contin-
uous development and should therefore only be used for research of the Rialto
language. The implementation is described in detail in chapter 3.

Several areas of work and differences between Rialto 1.0 and Rialto 2.0 are de-
scribed in [10]. The perhaps most important improvement in Rialto 2.0 concerns
the scheduling policies. As mentioned earlier in this thesis, scheduling policies are
used to encapsulate different models of computation in the Rialto language. The
idea of policies is not only used in Rialto, it exists also in the Ptolemy modelling
environment and most operating systems. The novelty is the formalization of
policies into Rialto, which makes it possible to reason formally about a program
and apply formal methods to it. A number of scheduling policies is built into
the Rialto 1.0 implementation, but there is no way to add new policies without
changing the implementation. In Rialto 2.0, scheduling policies are expressed
using the syntax and semantics of the Rialto language. This means that new
policies can be created and existing policies can be modified without modifying
the Rialto implementation itself. The relatively advanced execution stack defined
in Rialto 2.0 is a direct consequence of the new way to express scheduling policies.
The stack is still not completely defined in the language and therefore a detailed
description of the stack can be found in the implementation chapter.

The underlying model of computation for Rialto has changed between version
1.0 and version 2.0. The computational model in Rialto 1.0 is a single threaded
machine that stores the current state of the machine, while a program counter
indicates which statement to execute. In the second version of the language, we
first use a policy for the selection of a statement to execute. The execution of
the selected statement is done according to the structured operational semantics
of the statement. The formal semantics of Rialto makes it possible to verify
programs. The approach used in [3] was to formalize the language semantics in
the B language. The B language was originally developed in the 1980’s and it is
based on set theory and weakest precondition calculus. The problem with the B
approach is that the language has its own model of computation, which makes
it hard to define the scheduling policies. Rialto 2.0 will instead be formalized
through the theorem-proving environment HOL.

Communication is another relevant aspect in modelling of heterogeneous sys-
tems. In order to keep things simple, communication models and timed models
has been left out of design in Rialto 1.0. The communication aspects have not
been considered yet in Rialto 2.0 either, but they will be considered later in
the development process. Architectural mappings are sorely missing in Rialto
currently, since the Rialto 1.0 compiler compiles everything into one finite state
machine. As it is not desirable in the end to exclude support for architectural
mappings, they have to be studied and supported in Rialto at some point of time.



8

Figure 2.1: A model of a Rialto policy

2.3.1 Scheduling Policies

Scheduling policies are used as a mechanism to encapsulate different models of
computation and solve the scheduling decisions they give rise to. For instance,
in a situation where concurrent statements or code blocks exist in the program,
they are not responsible of handling the parallelism between them. Instead we
have scheduling policies, representing different models of computation, on top of
the semantics of the statements that schedule the concurrent elements and thus
resolves the nondeterminism left by the statements. Each state block can be
assigned its own scheduling policy or more precisely an instance of a scheduling
policy.

A major improvement in Rialto 2.0 is the support for writing policies in the
Rialto language itself. This means that new policies can be added and existing
policies can be modified without modifying the Rialto implementation used for
interpretation of programs. All syntactic elements available in Rialto can also be
used in a policy and since the operational semantics used for policies are the same
as in normal programs, policies and normal programs are interpreted in the same
manner. A policy can be seen as a subprogram of a Rialto program. Because
policies are expressed in the mentioned manner, it is natural to use the same
stack structure to represent the state of a policy as well as the state of the entire
model. This approach is not completely straightforward to implement; several
special functions are needed to distinguish between policy elements and elements
in the model. When a policy is executing, labels of statements in the policy are
on top of the stack. The policy must therefore modify stack elements below its
own stack level to be able to schedule the execution of the Rialto model properly.

Even if a policy can be structured in many different ways, a particular struc-
ture is recommended to support the step based execution model. The policy
protocol defines three possible states a policy can be in during execution. In
figure 2.1, we can see an illustration of the Rialto policy protocol. We can see



9

that there is an initialisation state (init step), a running state (continue step)
and finally an exit state (end step). The policy entry point symbolizes a situa-
tion where a policy is called upon to schedule the current program state, while
the exit point symbolizes that the policy has completed its execution and decided
which statement is next to be executed. In the initialisation state, the policy
calculates the contents of the execution step and moves on to the running state,
where one of the labels that should be executed during the step is selected. The
policy returns the selected label, which implies that it is executed immediately
after the policy execution is finished. After the selected label has been executed,
the policy is called upon again. The difference is that the policy this time only
will select the next label from the set of labels that should be executed during
the step. Once again the policy returns the label to be executed and then the
label is executed before the policy is called upon again. This procedure continues
until there are no more labels to be executed in the step. When there are no
more labels to execute the policy moves to the exit state, in which the policy
manipulates the stack and collects the new state of the system. The policy has
now moved the system from one observable state to another observable state.

A few policies have been implemented or taken into consideration in Rialto
so far. Below is a short description of these policies. A code listing for the Rialto
implementation of each policy (except rtc) can be found in Appendix B.

Default The default policy is used for simple and completely sequential execu-
tions. As the name suggests, the policy is used as the default choice of
policy for state blocks. Scheduling decisions cannot be made by this pol-
icy, implying that it should only be used in situations where only one label
exists in the active of the topmost stack element.

Interleaving The policy called interleaving represents a loose execution model,
which means that its scheduling choice is undeterministic. The policy is
suitable for scheduling concurrency in a loose manner. UML Interactions
(found in communication diagrams) are scheduled by the interleaving policy.
The lifelines in an interaction can be seen as objects that are running in
separate threads and the interleaving policy is responsible to select, on a
random basis, an object that should be scheduled for execution.

Step The scheduling policy named step is used when we want to allow the com-
putation to proceed in steps. A statement is executed in each concurrent
thread at each step. The step policy is suitable to use in situations where
real parallelism should be allowed, regardless of the chosen model of com-
putation. The policy can be seen, to some extent, as a replacement for the
interleaving policy. UML Activities are scheduled by this policy in Rialto.

RTC The run-to-completion (RTC) policy is based on an assumption, which
states that an event can only be dequeued and dispatched if the processing
of the previous event is fully completed. In Rialto, the RTC policy runs
until no more active labels exist in its scope. The RTC policy is used as
the default policy for scheduling UML state machines. There is no Rialto
2.0 implementation of the RTC policy yet.



10

SDF The SDF policy implements a policy for handling static dataflow. Dataflow
is a natural paradigm that can be used to describe digital signal process-
ing (DSP) applications with concurrent implementations. Although SDF is
an abbreviation for synchronous dataflow, its underlying model is not syn-
chronous so it can rather be described as an untimed model of computation
[3]. Synchronous dataflow is a special case of dataflow, which requires that
the scheduling decisions for the system can be taken already at compile
time. The SDF policy currently implemented in Rialto 2.0 can only handle
predefined data sequences.

2.3.2 Syntax and Semantics

In this section, the syntax and semantics of Rialto 2.0 are covered. The underlying
ideas for the Rialto syntax and semantics are first discussed in general. The syntax
and semantics are then covered separately and more in detail. Some short code
segments that exemplify the syntax of the language are presented in the end of
this section. This section is based on theory from [3] and [10].

Rialto is a small language, originally designed for the description of UML state
charts. The concept of states is essential in Rialto as well as in UML state charts.
Labels are another important concept in Rialto. Each statement in a program
must have a unique label, because the stack and execution of statements are
dependent of labels. A label acts as an instruction address to a certain statement.
The label can be specified in the Rialto program and if it is omitted a pre-
processor generates a unique label for the statement. The syntax and semantics
of Rialto has been influenced by other languages used for system specification.
By looking at the different languages, a number of concepts that are common to
most specification languages have been identified.

States, interrupts, concurrency, atomicity, communication policy and data are
all concepts that exists in specification languages. As already mentioned, the no-
tion of a state is central in Rialto. States are represented by a state block and a
corresponding end state block. The state blocks can be hierarchical and concur-
rent. Interrupts (high priority events) that should be reacted upon immediately
must be handled in some way in every programming language. In Rialto, the
trap statement is used to monitor interrupts. Concurrency is a concept that can
be interpreted in a number of ways. In our language, concurrent activity is de-
noted using the par statement, but the interpretation of the parallelism depends
on the scheduling policy used.

It is often necessary to be able to define the level of atomicity in a programming
language. Atomicity defines the smallest observable state change, in other words:
several statements or actions that are executed as part of an atomic unit are
observed as one single execution. In Rialto, atomicity is made explicit by a
syntactic entity, namely the brackets [ ]. Communication is another important
part of a model of computation. A communication policy states how different
parts of a system should communicate with each other. Currently, communication
is modelled with channels that for instance can represent the global event queue
in a state machine. Handling of data has not been put in focus in Rialto; thus



11

n ∈ Num numerals
a ∈ Alph alpha
z ∈ ANum alphanumericals
i ∈ Ident identifier
x ∈ Var variables
b ∈ Bexp boolean expressions
e ∈ Aexp arithmetic expressions
r ∈ Rexp relational expressions
S ∈ Stmt statements
T ∈ Types data types
opb ∈ OpB boolean operators
opa ∈ OpA arithmetic operators
opr ∈ OpR relational operators
l ∈ Labels labels

Stmt = {null, if, goto, trap, state, suspend, resume, par, print, re-
turn, assign}

Types = {Boolean, Label, Integer, String, Float, SetOfBoolean,
SetOfLabel, SetOfInteger, SetOfString, FifoQueueOf-
Boolean, FifoQueueOfLabel, FifoQueueOfInteger, Fi-
foQueueOfString, LifoQueueOfBoolean, LifoQueueOfLa-
bel, LifoQueueOfInteger, LifoQueueOfString, StateConfig,
SetOfFloat, FifoQueueOfFloat, LifoQueueOfFloat}

OpB = {∩, ∪, ¬}
OpA = {+, -, ∗, /, %, ˆ}
OpR = {≡, 6=, <, >, ≤, ≥}
Ident = (a | | $) (z | | $)*

Figure 2.2: Rialto Syntactic Categories

far, we have mostly concentrated on control. Only the most necessary primitive
data types are currently defined in the language. All the mentioned syntactic
elements are given by the grammar in figure 2.3. The defined syntactic categories
are presented in figure 2.2.

It is often possible to get an intuitive understanding and meaning of a program
by inspecting examples and syntactic elements. However, the exact meaning of
a program is defined by its semantics. The assignment of a formal meaning to
programs is called program semantics. An advantage of language that has a for-
mal semantics is that it gives us the possibility to prove properties of programs in
the language. The formal semantics of Rialto does not only validate the intuitive
semantics, but more important, it gives precise rules for compiling Rialto pro-
grams into a low-level representation. The low-level representation can then be
optimized and translated into a target language. The exact operational semantics
of statements is defined in [10].



12

program ::= program name
decbody
begin
body
end;

decbody ::= (externmetdec | externvardec | vardec | owndec |
policdec)*

externmetdec ::= externmethod name();
externvardec ::= (l :)? externvariable name: T ;
vardec ::= (l :)? var name: T ;
owndec ::= (l :)? own name: T ;
policydec ::= policy name decbody begin body end;
body ::= ((l :)? (S | expr);)*

nullstmt ::= null
gotostmt ::= goto l
ifstmt ::= if boolexpr then

body
else
body
endif

parstmt ::= par
body
||
body
endpar

statestmt ::= state
policy name;
decbody
begin
body
endstate

trapstmt ::= trap boolexpr do S body endtrap
atomicstmt ::= [ body ]
returnstmt ::= return l
printstmt ::= print (n | a | z ) ((, (n | a | z ))*)?
suspendstmt ::= suspend l
resumestmt ::= resume l
assignstmt ::= i := expr

expr ::= atomicexpr | boolexpr | arithexpr | relexpr | n
atomicexpr ::= i (( (arglist)? ))? (.atomicexpr)?
arglist ::= (i | n) (( (arglist)? ))? ( (,arglist) | (.arglist) )?
boolexpr ::= expr OpB expr
relexpr ::= expr OpR expr
arithexpr ::= expr OpA expr
name ::= i

Figure 2.3: The Rialto 2.0 Grammar



13

The syntax and semantics of Rialto have now been described, but often a
programming language is easier to understand from examples than from the the-
oretical rules. We will now present a few short Rialto program examples that
might give a more intuitive understanding of the Rialto syntax. The program be-
low is a very simple Rialto program; it does only write out a text to the console.

program myProgram
begin
print Hello;

end;

The program begins with the mandatory program statement, followed by
a program name. The only statement used in this program is print, which
writes the text Hello to the console. The following code is an example of a
more realistic and useful program containing variable declarations, states and
transitions between states.

program myProgram
begin
s1: state
own counter : Integer;
var tmpCounter : Integer;
begin
counter := counter + 1;
tmpCounter := tmpCounter + 1;
goto s2;

endstate;
s2: state
begin
goto s1;

endstate;
end;

The program defines two states, s1 and s2. Two variables are declared in the
first state, while we can see that the declaration section is empty in the second
state. Both variables are integers, but their scopes are different as specified by the
own and var keywords. The value of the variable counter is not affected by state
transitions. For instance, if both variables contain the value 2 when a transition
to s2 is performed, and followed by an immediate transition back to state s1. The
value of the variable counter is still 2, while the value of tmpCounter has been
reset to 0. Assignment of a value to a variable is also exemplified in the program
above; counter := counter + 1 results in an increment of the value stored in
the variable counter. Variable types available in the JRialto implementation are
described in section 3.5. The goto statements at the bottom of each state move
the program from one state to the other; hence, this program never terminates. As
mentioned several times in the thesis, a new feature in Rialto 2.0 is the possibility
to define new policies using the syntax and semantics of the Rialto language.



14

program myProgram

policy myPolicy
var l : Label;
begin
...
return l;

end;

begin
s: state
policy myPolicy;
begin
goto s2;

endstate;
end;

The program above defines and declares the policy myPolicy in the declaration
section of the program. We can see that a variable is declared inside the policy to
illustrate the fact that normal declarations and statements can be used in policies
as well. return is a statement that only can be used in the body of a policy,
because it returns the label to be executed next in the program. The policy

statement is used to select the defined policy to be the scheduling policy of state
s. The three programs presented can be used in combination with the complete
grammar in figure 2.3 as a starting point for the creation of more advanced Rialto
programs.



15

3. JRialto - A Rialto
Implementation

In this chapter, the Rialto implementation developed as a part of this thesis work
will be presented. The goal with the implementation, JRialto, was to create
an initial implementation of Rialto 2.0. The implementation can be used for
executing and debugging both Rialto programs and the Rialto language itself.
The overall software design of JRialto will be presented, as well as more detailed
descriptions of the interpreter engine, the stack, the data types included, external
function calls and the simulation of external events. A guide to JRialto’s graphical
user interface is available in the last section of the chapter.

3.1 Introduction to JRialto

JRialto is a java-based implementation of the Rialto kernel language. JRialto can
be used for interpretation, simulation and debugging of Rialto 2.0 programs on
all java-enabled platforms. The development of JRialto has been carried out in
the Embedded Systems Laboratory at Åbo Akademi University since April 2006.
The development team consisted of two master’s thesis workers, undersigned and
Markus Dahlg̊ard, who where supervised by professor Johan Lilius.

It is possible to use and invoke JRialto in two different ways. By invoking
JRialto in console mode, it is possible to let the Rialto program interpret with-
out any user interaction. The only output shown in the console is the output
that origins from certain print statements in the program and the interpretation
is only terminated if a termination request is sent from within the model. The
other, currently more useful, way to use JRialto is to enable the built-in graphical
user interface. The graphical user interface enables the user to terminate the in-
terpretation and inspect the interpretation results in detail, which includes traces
from the execution of every single statement. The traces contain information on
the value of the scheduling policy used, the program counter and the stack both
before and after the execution of a statement. Additionally, the content of the
environment at a point of time, including all declared variables and policies, can
also be easily viewed and compared to the environment at another point of time.

It is important to point out that the current version of JRialto should only
be used for research purposes and further development of the language. As a
direct consequence of this, the efficiency in terms of execution speed has not been
prioritized. The optimization and code writer modules, which would perform the
flattening of the state machine and produce code for a selected target language
have not been implemented yet. For the time being, the only way to produce
target specific code is to convert the Rialto 2.0 program to a Rialto 1.0 program
and execute the program using the Rialto 1.0 implementation.



16

Figure 3.1: Structural overview of the packages

3.2 Software Design Overview

The software design process is often very crucial to the outcome of a software
project. The design model chosen will most likely be reflected in the software
produced. A great number of well-documented software design models exist and
several of them are usually suitable for your specific project from a theoretical
point of view. Nevertheless, the choice of an appropriate design model is not
that simple in practice. The software method used in the JRialto project is best
described as a combination of the Agile software development and the waterfall
development model. The Agile software development method attempts to mini-
mize risk by developing the software in short iterations, which last from one to
four weeks. The waterfall model describes each of the development iterations
in a sequential manner, including everything between the initial specification of
requirements to testing and debugging the implemented functionality. It is very
common in a long-term research project like Rialto that several different develop-
ers will improve the implementation during a number of years. This means that it
is important to create a modular and easily extensible software solution, so that
a new developer can utilize the existing code base instead of always implementing
new features from scratch.

Despite the tight teamwork and instant information exchange within the team,
we have tried to divide the development of JRialto into different modules and re-
sponsibility areas. The different modules are clearly reflected in the package
structure. My focus has been on the implementation of the interpreter loop,
including the scheduling policies, the UML translation framework and the graph-
ical user interface. The debugging has been performed by executing small Rialto
unit test-files and examining the interpretation results using the graphical user
interface in JRialto.

The Java language encourages the developer to structure the software in sev-
eral major building blocks, which are known as packages in Java. The classifica-
tion of classes in different packages is not exactly defined; it is up to the developer
to decide which classes that should be grouped together in a package. As a rule
of thumb, the package structure should be based on the functionality and scope
of the classes, i.e. classes that implement similar functionality or that implement
functionality to the same part of the software should be grouped in the same
package. From figure 3.1, we can see that the high-level packages in JRialto are



17

Figure 3.2: The Treenode packages implement the operational rules for executing
a Rialto program

Datatypes, DebugGUI, Exceptions, Treenodes and UMLtoRialto. Each data type
is implemented by its own class in the Datatypes package, while all exceptions
are in the Exceptions package and so on and so forth.

The Treenode package is very essential to the whole implementation, as it
contains the classes that implement the operational semantics of the Rialto lan-
guage. The approach to use a class to represent each grammar rule is known as
the Interpreter pattern. The Interpreter pattern should be used when the lan-
guage to be interpreted is quite simple, can be represented by a syntax tree and
efficiency is not a critical concern [8], both of these statements hold for the Rialto
language. A tree node is a node in the syntax tree, in JRialto the super class
RialtoMetamodelObject implements the general functionality of a tree node. The
interpreter will call upon the functionality by visiting a tree node during inter-
pretation (visitor pattern). In practice, this means that the interpreter executes
the method execute(), available in all tree nodes, in the visited tree node.

From figure 3.1, we can see that tree nodes have been grouped in three different
packages based on the type of grammar rule they implement. The Declarations
package includes the classes that implement declarations of native Rialto vari-
ables, external variables, scheduling policies and external methods. The second
tree node category consists of various expressions that are grouped together in the
JRialto.Treenodes.Expressions package, which is further split into the packages
JRialto.Treenodes.Expressions.Boolean and JRialto.Treenodes.Expressions.Math.
As the package name indicates, the first package contains all expressions that give
a boolean as their result while the Math package contains those expressions that
return an integer or a float as their result. An overview of all expressions available



18

Figure 3.3: Expression packages

in Rialto is available in the package diagram in figure 3.2.
The final tree node type represents the normal statements in Rialto. The

statements are listed in figure 3.3. An instance of the class that represents the
appropriate statement is created when a statement is found during the creation
of the Rialto metamodel tree. Most of the information necessary to include in the
metamodel representation of the statement can be gathered already at this stage,
however some information cannot be added until the statement is executed during
the interpretation. Further implementation details on declarations, expressions
and statements are available in [5].

Finally, a short description on the software design of the graphical user inter-
face is provided in this paragraph. The DebugGUI package includes all classes
that implements and contributes to the user interface. In fact, the modular de-
sign of JRialto would allow an exclusion of the DebugGUI package from a release
without breaking the interpreter engine in JRialto. JRialto uses Swing for the im-
plementation of the graphical user interface. Swing is a Java GUI toolkit, which
provides sophisticated GUI components that still run the same on all platforms.
Each window in JRialto is implemented as a separate class, while another class
manages the invocation of the windows. The possibility to export the interpre-
tation table to various file formats relies on an export plugin framework, which
makes it easy to create new plugin modules for whatever file format needed.



19

3.3 Lexical Analyzer and Parser

A program cannot be interpreted directly from the file that contains the source
code for a particular language, or at least it would be very inefficient and cumber-
some to do so. It is also hard to guarantee that the content of the file conforms
to the syntactic rules of the language if the file is interpreted directly. The solu-
tion is to initially check that the file contains correct syntax and then create an
Abstract Syntax Tree (AST) that represents the file content in a hierarchical tree
level. The modules used for this purpose are called lexical analyzer and parser
[6].

The lexical analyzer and parser in JRialto are implemented in the ANTLR
language. ANTLR is a script language that combines the use of regular expres-
sions with Java native code. The lexical analyzer defines the vocabulary of the
language, based on the Rialto language specifications. If the lexical analyzer does
not accept the content of the file an error message, including the line number it
originated from, is reported to the user and the execution process is terminated.
Once the lexical analyzer has accepted the syntax, it will call upon the parser
module. The parser extracts the content accepted by the lexer and creates a
tree structure according to some defined parser rules. Additionally some simple
type checking is performed, duplicated variable names are detected and the des-
tinations of all goto statements are validated. In our parser implementation, no
information from the original file is excluded from the AST, which means that
the original file could be recreated by simply iterating the AST.

The implementation of the lexical analyser and the parser are described more
in detail in Dahlg̊ard’s thesis [5, Chapter 5]. In some cases, the AST contains
all the information necessary for the interpretation, but to be able to interpret a
Rialto program correctly more information must be added to the AST.

3.3.1 Metamodel Tree Generator

The metamodel tree generator is responsible for the creation of the Rialto meta-
model tree from the AST delivered by the parser. If we recall the fact that each
statement in Rialto is implemented as an class in JRialto, a nice way to create
the metamodel is to let the metamodel tree generator walk through the AST and
call upon a static method in the corresponding statement class when it finds an
node (identified by an id) which matches a Rialto statement. This arrangement
supports our implementation approach, according to which each Rialto statement
should be responsible for the creation and execution of itself.

Additionally, labels are checked for their uniqueness when the metamodel is
generated and statements without a user specified label are assigned a unique
label. These automatically assigned labels reflect the position of the statement
in the Rialto program file. Once the complete metamodel tree is generated, the
interpreter can interpret the Rialto program based on the information in the tree.



20

3.4 Interpreter

In this section, the interpreter part of JRialto is covered. The interpreter is the
most important part of JRialto, as it is responsible for the interpretation of Rialto
programs. The interpreter does not interpret the rialto code directly; instead, it
uses the Rialto metamodel tree as the starting point for the interpretation. The
core in the interpreter is the main interpreter loop, which is described more in
detail in the next section. Besides the main loop, the interpreter must take care
of several other tasks. The helper methods specified in the Rialto 2.0 technical
report [10] are implemented as methods in the interpreter. These helper methods
implements metamodel tree related functionality needed by the main interpreter
loop and some of the statements in Rialto. Details about the helper methods are
available in [10]. There is also one helper method that is of great importance in
Rialto policies, namely calculateStep. calculateStep is called upon when a
policy wants to receive a partitioned set of active labels, based on the state of
the system. The policy can use the partitioned set to execute some or all of the
partitions returned from calculateStep; the purpose of the policy decides which
of the partitions should be executed.

The support for external events is a special feature in JRialto (see section
3.4.4). The loading of the event files and insertion of the event into the modelled
system at an appropriate time is also taken care of by the interpreter. During
the interpretation, all information about the state of the model, the value of
the program counter and environmental information are saved into a data struc-
ture. In order to avoid a reduced interpretation speed and increased memory
consumption, the information is only stored if JRialto’s graphical user interface
is enabled.

3.4.1 Main Interpreter Loop

The main loop is the core of the interpreter. The loop is an infinite loop that is
responsible for updating the program counter and executing Rialto statements.
The program counter, pc, is a reference to the label of the rialto statement that
should be executed next. In figure 3.4, the main loop is represented as an activity
diagram. We can see from the diagram that the infinite main loop can only be
interrupted and eventually terminated by the method interruptInterpreter(),
which is called upon before each iteration of the main loop. The behaviour
of interruptInterpreter() depends on if the graphical user interface (GUI)
is enabled or not; if the GUI is enabled a dialog box will ask the user every
thousand iteration if the interpretation should be terminated or continued, while
the method never will force termination of the interpretation in console mode.
The maximum number of interpretation steps has been restricted to 15000 in GUI
mode in order to avoid excessive memory consumption due to the interpretation
table statistics that are stored.

If the interpretation is decided to be continued, the next step is to update
the program counter. It is not a trivial task to update the program counter in
the Rialto language, because the execution order of the statements is affected by



21

Figure 3.4: JRialto’s main interpreter loop

the scheduling policies. The action Update Program Counter is illustrated more
thorough in figure 3.5. The first decision regarding the program counter is based
on the current value of the program counter. If the program counter is assigned
the special value ⊥, several steps must be performed in order to decide the new
value of the program counter, otherwise the program counter has already been
updated by the previously executed statement and no update is necessary.

The interpreter will now make eventual external events visible to the system.
The next step is that the interpreter checks if the system currently is in an atomic
unit. An atomic unit consists of several statements included in an Rialto atomic
statement. An atomic unit is characterized by the fact that the statement within
it should be executed sequentially without asking any policy for the execution
order. This means that the program counter is updated so that it refers to the
next statement in the metamodel tree. In the normal case when the interpreter is
not in an atomic unit, the helper method policy() is called upon. This method
returns the label to the scheduling policy that is responsible for scheduling the
system in the current state. As the program counter now is set to refer to the
label of the scheduling policy, the next executed statement will naturally be the
first statement in the policy. This illustrates the fact that the interpreter is able to
schedule normal execution of statements and execution of statements in a policy
using the same routine.

The final remaining action of a main loop iteration is the execution of the
statement associated with the label to which the program counter currently is
referring. Each statement is responsible for its own execution implementation
and when the execution returns the control to the interpreter, the interpreter will
begin the next iteration by checking if the interpretation should continue.



22

Figure 3.5: A detailed flow chart of Update Progam Counter

3.4.2 The Stack

The interpreter engine in JRialto is tightly related to an execution stack. The
stack decides together with the program counter which statement is about to be
executed next. The Rialto execution stack is presented in this implementation
chapter, because the stack is not completely defined in the Rialto 2.0 language
yet. The stack might be further developed in future implementations of Rialto,
but the fundamental principles will probably remain unchanged.

The stack is more complex than most execution stacks since it must be able to
describe the state of the system completely. The execution of statements in the
program as well as in the policies uses the same stack. A stack element consists
of an entire state configuration instead of only a single statement label as we can
see in figure 3.6. A state configuration consist of an active set and a suspend set.
Both sets can contain labels; labels in the active set are eligible for execution,

Figure 3.6: Stack implementation in JRialto



23

Figure 3.7: The different parts of the stack

while labels in the suspended set are not eligible for execution [10]. To be able
to modify the stack in various ways a number of stack operations are available.
These operations are used for the implementation of the operational semantics
in every Rialto statement, but they are also accessible from Rialto code. The
ability to access the stack operations from Rialto code is not important when we
want to create a normal Rialto program, but it is crucial when we want to write
a scheduling policy.

The execution stack in Rialto is named sc. We can see from figure 3.7 that
the active and suspended set of the top-most state configuration can be accessed
by shortcuts. The shortcut sc.active always points to the active set in that
particular state configuration, while the sc.suspend points to the suspend set.
In the case we want to access the entire state configuration instead of one of the
sets the operation sc.top() can be used. The second element from the top of the
stack is frequently accessed from most policies and therefore it can be accessed
easily by using the sc.prevprogCtx shortcut. It is recommended to access the
element by the shortcut instead of performing sc.pop(), accessing the element
by sc.active or sc.suspended and finally performing a sc.push() to recover
the stack.

The following stack operations are available in JRialto:

• bottom()

• pop()

• popFromBottom()

• popFromPrevProgCtx()

• push()

• pushAbovePrevProgCtx()

• pushToBottom()

• top()



24

3.4.3 External Function Calls

External function calls become necessary when the purpose of using JRialto is not
only to examine the execution of the model without producing any real output
from the system, but also to create concrete and correct output from the model.
External function calls in this context, refers to the execution of functions im-
plemented in some native language on the simulation platform. For instance,
public functions in a library belong to that category. In JRialto, calls to external
functions are supported through the Java Native Interface (JNI).

The Java Native Interface is a native programming interface specified by Sun
Microsystems [22]. JNI can be used when an application cannot be written en-
tirely in Java or when we want to call upon an already existing native procedure.
Often a library that supplies you with the needed functionality already has been
written in some native language; JNI is then a good method to make the library
accessible from Java.

The loading of a native library should be performed in a java class file with
a file name similar to the name of the Rialto file that contains the modelled
system. If the modelled system is in the file example.jr, then the native library
loading should be performed in a file named example.class. A detailed guide
to writing a library loader can be found in [22]. JRialto will automatically search
for a java class file named according to the above-mentioned convention. The
external functions must also be declared in the Rialto program, before they can be
used. The keyword externmethod is used for this purpose. An external function
my_function is declared in the declaration section of the Rialto program by
the code externmethod my_function();. The method can now be called upon
anywhere in the rialto program by the statement my_function();. Currently the
only functions supported are those that only return void and take no arguments.
The case study presented in chapter 5 is an example of a situation where the need
for supporting external function calls arises.

3.4.4 External Event Simulation

JRialto includes support for stimuli from external events during the simulations.
In this context, an external event is defined as an event that is generated outside
the modelled system, but to which the modelled system can react. No support
is available for simulation of those events, which are intended to be consumed by
an external system but still generated inside the modelled system. The external
events must be defined in a file prior to the start of the simulation of the Rialto
program. The file must have the same name as the Rialto program name. For
instance, the external events that should be used during the simulation of the Ri-
alto program example.jr should be defined in the event file example.ev. Once
an event defined in the file is inserted into a part of the modelled system, it is
treated according to the same rules as an internal event. On the implementation
level, the insertion of an event to a part of the system is performed by adding the
event to a queue defined in the Rialto program. Event files are actually plain text
files with a simple notation convention for the representation of external events.
Each event is defined in the following notation:



25

{ time , event , queue };

As Rialto has no real notion of time, the time field here is basically the number
of interpretation steps executed by the interpreter. An event can occur each time
the interpreter asks a policy to decide which statement is about to be executed
next, but not between the execution of statements in an atomic unit. An external
event cannot occur between the statements included in an atomic statement. If
one or several external events are specified to occur at some point of time when
the interpreter is executing an atomic unit, the events will occur to the system
after the execution of the atomic unit is completed. The time field must be an
integer greater or equal to zero. Several events can be specified to use the same
time value; in that case, all events will occur at the same interpretation time.
The exact order in which the events are inserted into their respective queues is
not defined. The event field defines the name of the event to be generated, while
the last field queue specifies into which queue the event should be added. The
name of the queue must be equal to the name of a queue defined in the Rialto
program. A complete event file can for instance have the following content:

{0, eventStartCounter, externalEventQueue};

{80, eventTogglePause, externalEventQueue};

{120, eventTogglePause, externalEventQueue};

Instead of writing the event file manually in a text editor, the events can be de-
scribed graphically in an UML editor by the use of use case diagrams and sequence
diagrams. The event information included in the UML model is automatically
extracted by JRialto and used for the generation of an event file. The modelling
of external events in UML is described in detail in section 4.6.

3.5 Data Types

Figure 3.8: Overview of the data types available in JRialto



26

In every programming and modelling language it is important to be able to
represent data in various ways. A large number of data types are necessary to
represent different types of data in an efficient way in a concrete programming
language, such as C++ or Java. To an intermediate language, as Rialto, the
implementation of a complete set of data types is less important. Rialto should
only include a few primitive data types like integers, floats and other data types
necessary for controlling the flow and execution of the model. Types that are
more complex are only declared in Rialto, while their implementation is deferred
to a target language [3]. This is the same approach as in the ESTEREL language.

In figure 3.8, the data types implemented in JRialto is presented. We can
see that they are structured into different categories depending on their char-
acteristics. There are basic elementary types such as booleans, floats, integers,
labels and strings but also container types. The Label data type is only used
to represent the unique labels that can be associated to each Rialto statement.
String is another data type that has a special intended use in Rialto. Obviously,
it can be used to contain normal textual strings, but this data type is also used
for representing events in Rialto 2.0. The container data types are data types
that can contain several of the elementary data types. The container data types
are divided into sets and queues, which both are necessary in order to be able to
write a scheduling policy.

The structure among the data types in figure 3.8 does also reflect how the
data types are implemented. Each data type is represented by a class in java.
Each class implements a certain interface to ensure that at least a certain set
of methods and operations are available to all data types. Some data types
do also inherit features from the category they belong to, SetOfBoolean is for
instance inherited from the super class Set. A more detailed presentation of
the data type implementation in JRialto is available in Dahlg̊ard’s thesis [5].
Variable declarations, variable scope and the general usage of variables in Rialto
are covered in the syntax and semantics section in chapter 2.

3.6 Execution of a Step

This section contains a small example that illustrates how a step is executed in
JRialto. A step is a number of computations that takes the system from one
observable state to another observable state. It is important to observe that
the state of the system is not observable during the execution of a step. The
granularity of the computation step is decided by the scheduling policy that
represents the computational model of the current system state.

The state machine in figure 3.9 is used to illustrate the step based computa-
tional model in Rialto. The state machine consists of simple states and orthogonal
composite states in different hierarchical levels. The parent state s is composed
by two sub-states, sp1 and sp2 that exist in parallel. The state s is scheduled by
an instance of the step policy and sp1 is scheduled by another instance of the
step policy, while an instance of the interleaving policy schedules sp2. All the
simple states (s2, s3, s4, s5, s6 and s7) are scheduled by the completely sequential
policy default.



27

Figure 3.9: A state machine representing parallel execution scheduled by different
policies

In the initial state, the state machine will be in the states s2, s4 and s6. The
policy that each of these states share is the policy associated with s, resulting in an
execution of that policy. The step policy is defined to execute each orthogonal
region; in this case both, the region containing sp1 and the region containing
sp2 should be executed during the step. The policy must be able to arrange
the current state {s2, s4, s6} in partitions that reflect to which region they
belong, in this case the partitions will be {s2} and {s4, s6}. The execution of
s2 in the first part of the step is straightforward and it will result in a transition
to the state s3. The next part of the step is to let the policy associated with
{s4, s6} decide the execution of their region, namely the interleaving policy.
The interleaving policy is defined to randomly execute one of the orthogonal
regions of the state it is scheduling. This means that either s4 or s6 is executed,
but never both during the same step. In the scenario where s4 is executed the
result of the interleaving would move the region into the state {s5, s6}, while the
other scenario (execution of s6) would move the region into the state {s4, s7}.
The step is completed by collecting the new state of the system. The instance of
the step policy, which is scheduling s is responsible to collect the new observable
state of the system. This state is either {s3, s5, s6} or {s3, s4, s7}. The
next step will also be initiated by the policy of s, since the new state of the
system also has s as its parent state.

The detailed stack trace table in figure 3.10 shows the stack content during a
single execution step. The table should be read from left to right row by row. As
we can see, the step moved the system during this particular execution from the
initial state {s2, s4, s6} to the state {s3, s6, s5}. Code listings of all the
three polices used in this example is available in Appendix B.



28

Figure 3.10: Stack trace from the execution of a step



29

Figure 3.11: The open file dialog box in JRialto

3.7 Graphical User Interface

JRialto is equipped with a graphical user interface (GUI). The reason to include
a graphical user interface in a software product like JRialto is perhaps not too
obvious at first sight, since interpretation is a task that usually is performed
from command line. Concerning JRialto, the graphical user interface has been
necessary for the debugging of the interpreter and the Rialto language itself.
Sometimes it is also useful to be able to track the interpretation of a program in
order to see that the program actually executes as intended. Even if the extensive
information available through the graphical user interface would be possible to
present on the command line, it would be nearly impossible to present it in a
user-friendly manner.

The user interface is developed as a detachable module of JRialto. This means
that the GUI can be omitted from a certain JRialto release, without breaking any
other feature. The GUI has not been developed with efficiency in focus, which
might result in a less responsive interface on slow computers. However, it should
also be pointed out that the overhead caused by the GUI during interpretation
is only present if the GUI is enabled, otherwise no overhead and reduction in
interpretation speed should be noticeable. The graphical user interface is built
on the Java Swing GUI toolkit, which provides a powerful user interface that
appears uniformly on all java-enabled platforms. So far, the GUI has been tested
on machines running the Sun Java Runtime Environment on Linux, Mac and
Windows operating systems.

In the rest of this section, a description of the user interface and its features
will be given. The GUI consists of several windows, which can be moved and
resized as needed. The open file dialog box (figure 3.11) is the first window
that appears when JRialto is launched with the GUI enabled. It is a completely
normal dialog box from which the user can choose a file to be opened, in this
case a Rialto program file can be selected (.jr file name extension). If the cancel
button is pushed, an informational message about the possible usage parameters
in Rialto is shown and JRialto is terminated. Naturally, if a file is selected and



30

Figure 3.12: Interrupt interpretation dialog box

a) b)

Figure 3.13: The windows for the a) Abstract Syntax Tree and b) Metamodel
Tree Window

the open button is clicked, the selected file will be opened for interpretation. If
the file chosen is a valid Rialto 2.0 program, it will be interpreted immediately
without any interaction from the user. The dialog box in figure 3.12 will popup
if the interpretation of the program is not completed after 1 000 steps of the
program have been interpreted. The user can interrupt the interpretation or he
can choose to let the interpretation continue for another 1 000 steps. However,
the interpretation will finally be interrupted after 15 000 steps even if the user
does not choose to stop the interpretation. The limit of 15 000 steps in GUI mode
is motivated because the table would otherwise consume very much memory and
become unusable.

Now when the interpretation has been either interrupted or completed, five
different JRialto windows are visible on the screen. A window for the representa-
tion of the abstract syntax tree, another window in which the Rialto metamodel
tree is shown, a third window that is intended to show the detailed information
collected during the interpretation and finally a window that represents a redi-
rected console. The AST window in figure 3.13a shows all tree nodes that exist in
the abstract syntax tree. Nodes in both the AST window and the metamodel tree
window can be expanded or collapsed by clicking on the nodes. The metamodel
tree presented in the latter mentioned window shows the name of the objects,
which are contained in each node. By moving the pointer over a node, informa-
tion on that particular node becomes available in a tooltip box as we can see in
figure 3.13b. The information available depends on the type of the object, but



31

indepent of the object type a label and type is always shown. An option to
expand or collapse all nodes in the abstract syntax tree or in the metamodel tree
can be found in the View menu in respective window. The trees can be printed
by selecting File - Print.

The Interpreter output table window found below the two tree windows is
perhaps the most interesting, since it is possible to see detailed interpretation
information in that window. It features the possibility to see the entire interpre-
tation table at once or gradually. The window does not contain any information
from the interpretation before the Show Interpretation Table button has been
pressed. The name of the above-mentioned button does not indicate that the
program should be interpreted, but rather only that the details from the inter-
pretation should be shown. This reflects the fact that the Rialto program is
interpreted already before the GUI is available. This does also explain why the
dialog box in figure 3.12 asks if the user wants to interrupt the interpretation,
already before the GUI is available. The conclusion here is that pressing the
Show Interpretation Table button does not result in re-interpretation of the pro-
gram; the information available from the initial information is only shown when
the button is pressed. The entire table is shown immediately if the Use stepping
checkbox is not checked, while only one interpretation step is shown if the box is
checked. Repeated button presses causes more interpretation steps to be shown.
The available interpretation data can be cleared from the table by pressing the
Reset button. Another useful checkbox is placed to the right of the use stepping
checkbox, namely the Show policy execution checkbox. By checking this box,
information about the execution of the policies that is hidden by default will be
shown in the table. All labels defined in the program can be searched for by
using the Find label dropdown box. The search is performed only in the program
counter column and the stack column.

JRialto’s interpreter output table (figure 3.14) has five columns and two rows
per executed statement, the first row shows the state of the system before the
execution of the statement and the second row shows the state of the system
after the execution of the statement. The first column, Policy, shows the name of
the policy that is assigned to the state in which the executed statement resides.
The value of the program counter is available in the PC column, while the con-
tents of all active sets in the execution stack can be found in the third column.
A Rialto program does also have its own execution environment, but since the
environmental information is impossible to fit in a single cell only a brief status
of the environment is shown in the Environment column. A detailed overview
on the contents of the environment is made visible in a separate window when
an environment cell is clicked. The second mouse button can be used to show
several separate environment windows at once. The rightmost column contains
the name, indented to reflect its hierarchical level, of the executed statement. All
information available in the interpretation table can be printed or exported to
a file. Currently, it is possible to export the table to a comma separated values
(csv) file, a HTML file and to a LaTeX file. Since the export routine relies on a
framework it should be easy to add new modules for exporting the table to any
file format.



32

Figure 3.14: The interpretation table

Figure 3.15: Environment popup presenting the Rialto program’s environment

We previously mentioned that a window containing environmental information
could be brought up by a mouse click in the interpretation table. An example of an
environment window is shown in figure 3.15. The contents are presented in a table
in which scopes, types, names and values of variables are visible. Environment
windows are most useful when several of them are aligned side by side on the
screen. For instance, it is easy to compare the content of the environment before
and after the execution of a statement by using a multiple window setup. Please
note that the title of the window reflects from which row in the interpretation
table the information originates.

The only window still not presented is the Redirected console window. From
figure 3.16, we can see that the window contains two areas. Output that normally
would have been sent to standard output (stdout) in console mode is presented
in the upper area, while the lower area shows the output from standard error
(stderr). The redirected console window is particularly useful when JRialto is
launched from an integrated development environment or from the Java web
start, which might imply that a normal text based console for viewing the output
is not available.



33

Figure 3.16: The graphical output console



34

4. Translating UML Models to
Rialto

In this chapter, the translation process from UML models to Rialto is described.
The translation to Rialto includes translation of models represented by a single
diagram type, as well as models consisting of several different UML diagrams that
together describe the model.

As shown in Figure 4.1, Rialto can be seen as an intermediate language for
code synthesis from UML models. The automated translation process is able to
capture the different models of computation represented inside a UML model, by
using different scheduling policies in Rialto. When the model has been translated
into a Rialto model, it can be optimized and source code can be generated for
any target language supported by the code generator module.

4.1 The Unified Modeling Language

The Unified Modeling Language (UML) is a visual language that enables powerful
design, execution and maintenance of software processes. It has become the
standard in object-oriented modelling among software developers [24]. UML is
developed by the Object Management Group (OMG), which is an international
and non-profit computer industry consortium founded in 1989. Its hundreds of
member organizations are representing almost every large organization in the
computer industry and many smaller ones. Continuous work on developing the
language and adapting it to today’s needs is carried out.

The thought of a unified language for designing software systems arose in the
late 1980s. At that time several different analysis and design techniques were
used, each of them was using their own notation. UML was designed to bring
together the best features of those existing analysis and design techniques in one
language. As a result, the many diverse object-oriented notations and methods
could also be eliminated.

Although most of the elements in UML are graphical, it is possible to create a
UML model purely in a simple text editor. This is possible because the underlying

Figure 4.1: Rialto as an intermediate language for code synthesis from UML
models.



35

Figure 4.2: The diagrams of UML 2.0 and their structure (from [12]).

notation of UML is textual. The graphical elements are only a graphical represen-
tation of the model, making the model more intuitive and easier to understand. A
modelling tool must conform to the XMI Schema in order to be conformant with
UML. The exchange of models between different modelling tools can be guaran-
teed, as the XMI Schema is expressed in the extensible markup language (XML)
instead of in a proprietary language. UML is not a programming language. How-
ever, UML is an excellent modelling language for creating platform independent
models and by being able to translate these models into (platform specific) ex-
ecutable code, UML can in one sense be used as a programming language. The
current release of UML is Version 2.0. UML 2.0 contains thirteen (13) diagrams
classified as Behavior diagrams, Interaction diagrams and Structure diagrams
[14]. Both behavior and interaction diagrams depict the behavioural features of
a system, but interaction diagrams also describe the interaction between objects.
Structure diagrams depict the time independent structure of the system. The
most used structure diagram is the class diagram. UML diagrams are overlap-
ping and sometimes a diagram can be totally synthesizable from another [3].

In this chapter the translation from six (6) of the UML 2.0 diagrams is covered.
Communication diagrams, Activity diagrams, State Machine diagrams and Class
diagrams are used for the translation of the UML model to Rialto 2.0 source code.
Additionally Use Case diagrams and Sequence diagrams describe the external
events that the JRialto interpreter can utilize for simulation of external events.
The different elements and their translations will be presented one by one, but also
the problems occuring in certain combinations of the elements will be discussed.



36

4.2 Communication Diagrams

Communication diagrams show how the communication (messages) flows between
different parts of the system, more specifically between objects in an object ori-
ented application. The basic relationships between classes are also implied. Ev-
ery communication diagram contains at least one interaction. Interactions are a
mechanism for describing the interactions between different elements in a system
[17]. Communication diagrams were known as collaboration diagrams in UML
1.x.

In Rialto, we currently use communication diagrams in order to resolve rela-
tionships between instances and generate the appropriate communication chan-
nels between these instances. A UML model containing solely communication
diagrams is only useful for generating Rialto code stubs. For complete code
generation the model must also contain at least an activity diagram or a state
machine diagram that models the detailed behaviour of each lifeline. A lifeline
is most often representing an instance of a class (an object), but other classifier
instances can also be represented by a lifeline. A Communication diagram is al-
ways the starting point when translating UML models to Rialto. The interaction,
inside any of the communication diagrams, with the same name as the name of
the entire model will be chosen as the starting point for the translation process.
If a model contains only one interaction, that interaction is chosen regardless of
its name. The necessary Rialto program header including a program name is
generated by the starting point interaction. The program name is equal to the
name of the UML model. The default scheduling policy used for interactions is
the interleaving policy, which is described in chapter 2. It is used because we
consider interactions to have a loose underlying model of computation, similar to
threads in programming languages. By specifying a custom interaction property
rialtoPolicy = policy_name, any policy can be used for scheduling the inter-
action. Interactions are translated to states in Rialto as will be seen from the
translation of an interaction in figure 4.3.

Lifelines are, as mentioned in the previous paragraph, an element representing
a classifier instance inside an interaction. Interactions can involve an arbitrary
number of lifelines that is representing the different components taking part in
the interaction. In Rialto, each lifeline is represented as a state with a label equal
to the name of the lifeline. Both lifelines with and without a classifier are allowed
in UML, but are seldom useful since non-classified lifelines are translated into
empty states in Rialto. Lifelines associated with a classifier or in other words
lifelines of a certain type, are more interesting from a Rialto point of view. These
lifelines are also translated to states in Rialto, but instead of creating an empty
state, the state content will depend on the translation of the classifier associated
with the lifeline. Classes, state machines and activities are all valid classifiers
for the translation to Rialto. So far, the translation of each lifeline seen as a
separate independent part of the interaction has been covered. In order to create
a useful rialto model, the interaction between the lifelines must also be taken into
account.

The interaction between lifelines is described using links. Links may be in-



37

Interaction

program
begin
myInteraction: state
policy interleaving;
begin

endstate;
end;

Lifeline

LifelineA: state
begin

endstate;

Lifeline of a
certain type

LifelineA: state
// Type specific code

endstate;

Communication
channel

own LifelineAq : FifoQueueOfString;
own LifelineBq : FifoQueueOfString;
par
LifelineA: state
begin

endstate;
||
LifelineB: state
begin

endstate;
endpar;

Message

own LifelineAq : FifoQueueOfString;
own LifelineBq : FifoQueueOfString;
par
LifelineA: state
begin
LifelineBq.add(startCounter);

endstate;
||
LifelineB: state
begin
LifelineAq.add(completed);

endstate;
endpar;

Figure 4.3: Translation of communication diagram elements to Rialto.



38

stances of the associations between classes in a class diagram, or temporary links
between lifelines that enable them to send messages to each other. A link can
be seen as communication channel between two lifelines as shown in figure 4.3.
Lifelines in an interaction are considered to exist in parallel. To reflect the paral-
lelism between the lifelines, the parallel statement in the Rialto language can be
used. The communication channel itself is realized using one queue per lifeline.
For instance, the end of a link connected to a lifeline LifelineA will be modelled
as a FIFO queue with the name LifelineAq. The sending of a certain message
is performed by adding the message to the appropriate queue. The queue to
which the message should be added is the queue representing the lifeline that is
the receiver of the message, while a statement in the state body of the sender
is adding it to the mentioned queue. A message in UML consists of a sequence
number and a name, as well as optional attributes, arguments and return values.
Currently only the name and the sequence number (to some extent) are consid-
ered in Rialto. The string that is added to a queue is equal to the name of the
message, while the sequence number decides in which order multiple messages are
added to that queue. For instance, if LifelineA would like to send the message
start to LifelineB, the statement LifelineBq.add(start) in the state body
of LifelineA would be created.

4.3 Class Diagrams

A UML Class diagram shows a static view of the classes in a model. Class dia-
grams is the perhaps most often used diagram type in UML. Software developers
use class diagrams in order to create a design model containing all classes to be
included in the software project. As the project moves on from the design phase
to the implementation phase, code stubs for several programming languages can
be generated from the class diagrams. This is a fast and effective way to generate
code and as a result, the code will also be more conformant to the design, but
a major drawback is the lack of synchronization between the class diagram and
the generated source code. If the design evolves during the implementation of
the software, the risk of a gap between the real implementation and the design
is imminent. The possibility for collaboration among classes, through message
passing, is shown as relationships between the classes [19].

In Rialto, class diagrams are not emphasized as much as the other diagram
types described in this chapter. The simple reason for this is the fact that class
diagrams describes the static structure among classes, while we in Rialto are more
interested in the behavioural properties of a model. A class diagram alone can-
not be used for generating Rialto code; however, class diagrams can be used to
produce a more complete Rialto model, when used in combination with communi-
cation diagrams, activity diagrams and state machine diagrams. The model of the
Dining Philosophers problem presented in section 4.7 should give an idea about
the benefit of including class diagrams as part of a model. In figure 4.4, the UML
class features supported by Rialto are listed together with their corresponding
translations.

Class attributes are useful for declaring variables in a Rialto program. The



39

Class attributes

C: state
own q : FifoQueueOfLabel;
own l : Label;
var s : String;
begin

endstate;

Class attributes
with default value

C: state
own counter_def : Boolean;
own counter : Integer;
var tmp_def : Boolean;
var tmp : Integer;
begin
if counter_def == false then
counter := 5;
counter_def := true;

else endif;

if tmp_def == false then
tmp := 2;
tmp_def := true;

else endif;
endstate;

Class methods

externmethod function_a();
externmethod function_b();
...
C: state
begin

endstate;

Association

A: state
begin
...
senderq.doSomething();
...

endstate;

B: state
begin
...
receiverq.doSomething();
...

endstate;

Figure 4.4: Translation of class diagram elements to Rialto.



40

type property of an attribute is used to determine the type of the Rialto variable
to be created. The name of the Rialto label will be decided by the attribute
name. The attribute name does also indicate if the Rialto variable is of type var

or of type own according to the following rule. If the attribute name begins with
the string var or own followed by a space a variable of the corresponding type is
created. If var/own is omitted a variable of type own will be created. The scope of
an attribute (package, public, protected or private) is not taken into consideration
in the translation to Rialto. It is possible to specify a default value for each
attribute in UML. The translation of default values are more complicated, as
Rialto currently does not have support for user specified initial values of variables.
The workaround necessary for supporting default value translations can be found
in figure 4.4.

The only intended use for class methods in Rialto are declarations of external
methods. External methods are methods residing in a native library. They are
explained more in detail in section 3.4.3. Currently only external methods without
parameters and no return value are supported in Rialto. The name of a method
specified, as a class member will be directly used as the name for the external
method declared in Rialto. The scope of a method is ignored.

4.4 State Machine Diagrams

In the two previous sections of this chapter, we focused on the possibility to
describe the high-level behaviour of a model with communication diagrams, as
well as the possibility to use class diagrams for describing the static structure
of a part in the modelled system. In this section, we will focus on how the
detailed behaviour of a part in the system can be modelled with UML state
machine diagrams. States are fundamental elements in both UML state machine
diagrams and in the Rialto language, hence the translation of states machine
diagrams to Rialto are important, but relatively easy. The translation of states
and other elements used in state machine diagrams will be presented.

UML state machine diagrams are a diagram type that can be used to describe
the behaviour of a model element such as an object or an interaction. A state
machine diagram contains state machines that describe the flow between states.
State machines are suitable for describing embedded systems, since embedded
systems often reacts on stimuli that change the state of the system [3]. While
the system is in a certain state, work may or may not be going on. For instance,
when a traditional phone is in the hung up state no activity is going on, but
when the phone is in another state because it is engaged in a call, there is lots
of activity in the phone. State machines can contain three fundamental building
blocks: state, transition and event. A state represents a possible state of the
system at some point in time. From figure 4.5, we can see that several types
of states exist. Each type will be explained more in detail together with their
corresponding Rialto translation. Systems that are modelled with state machines
are driven by events, both external and internal. The systems respond to the
events and quite often, the response results in a transition to another state of
the system. Transitions are defined as the movement from one state to another,



41

whereas events are responsible for triggering the transitions.
State machine diagrams can be combined with communication diagrams, class

diagrams and activity diagrams in a model. By combining the diagram types, it
is possible to describe complex systems in an intuitive way and still be able to
translate the UML model automatically to a Rialto model. A state machine can
for instance describe the behaviour of an instance (lifeline) in a communication
diagram or in a more hierarchical model, describe the behaviour of a class. When
the system enters a state, some activity can take place or even when the system
is in a state, there can be continuous activity in the state. Activity diagrams
can be used to specify the behaviour of the activity to be executed. Models that
consist of only state machine diagrams can also be used for modelling in Rialto.

Events are dispatched and processed one at a time in a UML state machine.
The semantics of event processing is based on the run-to-completion assumption
according to [3]. The run-to-completion (RTC) assumption says that an event can
only be dequeued and dispatched if the processing of the previous event is fully
completed. It is possible to use different dequeueing orders for the events, because
no order of dequeueing is defined in the UML standard. Events are dequeued in
a first in - first out order in Rialto by default. The reason for this is that all
events are stored in FIFO queues; hence could a different type of queue provide
another order of dequeueing. A state machine is translated to a state scheduled
by the rtc policy in Rialto (figure 4.5). By specifying the custom state machine
property rialtoPolicy = policy_name, any policy can be used for scheduling
the state machine.

Earlier in this section, we mentioned that different types of states exist in
UML. The simplest type of state is called a simple state and it is naturally
represented by a state statement in Rialto, whose label is equal to the name of
the simple state. A simple state cannot be broken down further into states. A
composite state on the other hand, can be further broken down into substates. If
a composite state S is broken down to two substates S1 and S2, the corresponding
Rialto code will contain two states labelled S1 and S2 inside the state S. In order to
model states that exist in parallel, orthogonal regions are used in UML. The Rialto
par statement is suitable for describing orthogonal regions in Rialto. However, if
one or several of the orthogonal regions contain more than one state it is necessary
two create an additional Rialto state block since the par statement syntax does
only allow one state block per parallel section. An example of translation of
orthogonal regions can be found in figure 4.5. The last state machine element
presented in the mentioned figure is a termination point. The interpretation
of the entire model is terminated whenever a termination point is reached. In
Rialto, such behaviour can be achieved by inserting a null statement as the last
statement in the program. The transition from a state to a termination point will
result in a jump to the null statement and since the statement does not reside
inside a state, the interpretation will stop after the execution of the statement.

Before we continue with the translation of events and normal transitions,
we will cover a special type of transition, namely the unconditional transition.
An unconditional transition, also known as triggerless transition, is a transition
without any triggering event. It is normally used between actions in activity



42

State Machine

StateMachine: state
policy rtc;
begin

endstate;

State

S: state
begin

endstate;

Composite
state

S: state
begin
S1: state
begin

endstate;
S2: state
begin

endstate;
endstate;

Parallel state
(Orthogonal
regions)

S: state
begin
par
S1: state begin endstate;

||
S2: state begin endstate;

endpar;
endstate;

Parallel state
(multiple states
in a region)

S: state
begin
par
state
begin
S1: state begin endstate;
S2: state begin endstate;

endstate;
||
S3: state begin endstate;

endpar;
endstate;

Termination
point

program myProgram
...
S: state
begin
goto myProgram_terminate:

endstate;
...
myProgram_terminate: null;
end;

Figure 4.5: Translation of state machine elements to Rialto.



43

diagrams and not in state machines. However, it is relevant to include a Rialto
translation of unconditional transitions in state machines since a state machine
could be scheduled by a custom policy instead of the rtc policy. Unconditional
transitions should never be used in a state machine scheduled by the rtc policy.
The unconditional transition from a state S to another state S2 is represented in
Rialto by the statement goto S2; in the body of state S.

Normal transitions, as opposite to unconditional transitions, contain a trig-
gering event. A triggering event is an event that fires the transition when the
event occurs. A transition can also contain an optional guard that must be sat-
isfied before the transition can be fired. When a transition is fired, an optional
effect can be executed. The effect can be a call to a procedure, but it can also
be a more complex effect described by an activity diagram. As we can see in the
second translation from the top in figure 4.6, a transition is represented in Rialto
by the trap statement. The trap contains an expression and an actions section.
The expression represents the event and the optional guards associated with the
transition, hence the expression must hold in order to execute the actions section.
The actions section contains the transition effect followed by a goto statement,
which does the actual state transition in Rialto, encapsulated in an atomic unit.
The transition should be executed immediately after the effect execution is com-
pleted and this can be guaranteed by the atomic unit, since no policy is let in
between the execution of statements in an atomic unit.

An initial state and a final state are also included in the previously mentioned
translation. They are two special pseudostates in the UML. Initial states are
the start of a flow, while final states represent a normal completion of the state
machine. An initial node is taken into consideration in Rialto by placing the
state, which the initial node is pointing at, as the first state in the Rialto model.
The final state is replaced by a goto statement in the end of the state pointing
at the final state. The destination of the goto statement depends on the model;
the goto will result in a termination of the program if the model only contains
one state machine, otherwise it will result in a transition to a state in the model
that resides in a higher hierarchical level.

Forks and joins are elements to be used to split a transition into multiple
paths and later combine the transition into a single transition. The need for a
splitted transition arises if the transition should move the system into two or
more concurrent states. The join element is useful if the system moves into a
single state from the three concurrent states. For instance in a situation where
the system is in three concurrent states performing a parallel computation, and
the system should move into one single state after each of the computations are
performed, the join element will wait until all concurrent states has requested an
transition and then fire the outgoing transition from the join element. The last
element to be covered is the history state. History states are useful to re-enter a
composite state at the same point at which is was last left. If the history element
is not used for a certain composite state and a transition moves the system out of
that state, all information about the internal state of the composite state is lost.



44

Unconditional
transition

S: state
begin
goto S2;

endstate;
S2: state begin endstate;

Intial Node,
Final State
and Transition

var S1queue : FifoQueueOfString;
S1: state
begin
trap S1queue.peek() == e
do [S1queue.poll(); goto S2;]

endtrap;
endstate;
S2: state
begin
goto SMachine_final;

endstate;

Fork

S: state begin goto S2; endstate;
S2: state
begin
Fork: par
S2_a: state begin endstate;

||
S2_b: state begin endstate;

endpar;
endstate;

Join

S2: state
begin
par
S2_a: state begin endstate;

||
S2_b: state begin endstate;

endpar;
Join: goto S;

endstate;
S: state begin endstate;

History

S: state begin
trap q.peek() == off do
[q.poll();suspend S;goto S2;]

endtrap;
S_a: state ... endstate;
S_b: state ... endstate;

endstate;
S2: state begin

trap q.peek() == on do
[q.poll();resume S;goto S;]

endtrap;
endstate;

Figure 4.6: More translations of state machine elements to Rialto.



45

4.5 Activity Diagrams

After describing the translation of state machine diagrams in the previous section,
we will now cover another diagram type that is related to state machine diagrams,
namely activity diagrams. Activity diagrams can be used for a great variety
of problems from business process modelling to primitive assembly instruction
modelling, since activity diagrams can describe the detailed behaviour of an effect
or a part of the system. A description of the translation of various activity
diagram components to Rialto is presented in this section.

Activity diagrams are a UML diagram type to be used to describe flow in a
variety of ways. Activity diagrams contain activities. We remember that state
machines (presented in section 4.5) also describes flow in a system, however state
machines and activities differs on the type of flow they describe. Whereas activ-
ities describe flow between areas of work, state machines describe flow between
states. The purpose of activities is to model flows driven by internal processing
rather than external events. An activity contains action nodes, object nodes,
data stores, control nodes, control edges and a number of other elements [15].

Only a subset of the activity elements has a Rialto translation. The elements
related to objects and their flows are not taken into consideration currently. In-
stead, we focus on the flow of control between actions. Models consisting of only
activities can be used for translation to valid and executable Rialto programs.
An example of this is the model of a JPEG encoder presented in Chapter 5. Ac-
tivities can also be used as a part of a more complex model, in which they for
instance describe an effect associated with a transition in a state machine. The
behavioural specification for an instance (lifeline) in a communication diagram is
another possible area of use for activities.

The translation of an activity to Rialto is demonstrated in figure 4.7. We can
see that an activity is represented by a state, with an label equal to the name of the
activity, in Rialto and an activity parameter is used to declare an extern variable
for usage in the activity. Still more important is the policy step: Policy ac-
tivity parameter, which specifies the policy to be used for scheduling the activity.
If this activity parameter is omitted the policy step is used since it implements
the model of computation used for activities in UML. The MOC states that the
computation should proceed in steps, where a statement or a block is executed in
each concurrent thread at each step [3]. The step policy is introduced in chapter
2, while a complete listing of the policy is available in appendix B.3. As men-
tioned, activity parameters can be used to make a variable, defined externally in
a native library, available to the activity. Sometimes it is also desirable to be able
to declare a new Rialto variable in the activity and to achieve this we use data
stores. Data stores are central buffer nodes that can be used to contain data.
The name of the data store should be equal to a normal variable declaration in
Rialto, for instance will the name var i : Integer create an integer i of type
var.

Actions together with control flows are the fundamental building blocks in
activities. An action is a unit of work that needs to be carried out. The extent
of an action is depending very much on the abstraction level of our model, from



46

Activity and
Activity Parameter

externvariable b: Boolean;
myActivity: state
policy step;
begin

endstate;

Action

Action: state
policy default;
begin

endstate;

Data Store
own d : Double;
var i : Integer;

Intitial Node,
Activity Final and
Control Flow

A: state
begin
goto B;

endstate;
B: state
begin
goto actFinalNode;

endstate;
actFinalNode: state
begin
goto ...;

endstate;

Decision and
Merge

A: state
begin
if a < 2 then
goto B1;

else
goto B2;

endif;
endstate;
B1: state begin goto C; endstate;
B2: state begin goto C; endstate;
C: state begin endstate;

Fork and Join

A: state begin goto Fork;
endstate;
Fork: state
begin
par
B1: state begin endstate;

||
B2: state begin endstate;

endpar;
goto C;

endstate;
C: state begin endstate;

Figure 4.7: Translation of activity diagram elements to Rialto.



47

a single program instruction to a time consuming calculation. Actions can also
be seen as internal states of the activity, hence they are represented by states
(labelled according to the name of the actions) in Rialto. Each action can contain
an effect that describes the work to be performed in the action. The effect is
inserted unmodified in the body of the corresponding Rialto state. In figure 4.7
we see a simple example where two actions A and B are linked together using
control flow edges. Additionally, an activity initial node is included to represent
the entry point to the flow and an activity final node is there to mark the end
of the control flow, i.e. the completion of the activity. There can be only one
initial node per activity but several final nodes. The initial node has an outgoing
control flow to the action A, which results in a Rialto translation where the state
originating from A is placed in the beginning of the activity state body. The
control flow between A and B should move the control from A to B when the
effect of A is completed, according to the UML superstructure definition [12].
It says that control flow edges can be seen as transitions triggered by implicit
completion events. This behaviour is simply achieved by a goto statement at
the end of a completed action. The activity final node is represented as a state,
which will receive control upon B ’s completion. The behaviour of the activity
final state depends on the overall model translated.

The control flow in an activity diagram does not always follow a single pre-
defined path; quite often, it is necessary to choose different paths or branches
depending on some condition. A decision node is used to create branches in ac-
tivity diagrams. The decision node has one incoming control flow and several
outgoing control flows. A condition that can be expressed in any language, deter-
mines which outgoing control flow should be chosen. The decision is represented
by if statements in Rialto. Another node, the merge node, is used to bring a
number of alternative flows together. It is important to use merge nodes only to
bring together flows created by decisions nodes, and not the parallel flows created
by fork nodes.

Fork nodes are used when it makes sense to allow a number of actions to run
in parallel. A fork node will split the incoming flow into several parallel outgoing
flows. The parallel flows can be seen as threads running in parallel. Each of the
threads can contain an arbitrary number of actions and actions with different
execution times. Because of this, a join node must be used to synchronize the
threads by waiting for each thread to complete before the control will be given
to the action after the join node. Fork and decision nodes that have only one
outgoing control flow, as well as join and merge nodes with only one incoming
control flow are superfluous, hence they are ignored in the translation.



48

Figure 4.8: A use case diagram describing event simulation

4.6 Simulation of Events using Use Case Dia-

grams

Sometimes it can be useful to see how the modelled system reacts on events
during a simulation of the system. Events generated and consumed internally
in the system are covered by state machines according to the rules presented in
section 4.4, but what about the events generated outside the modelled system
(external events). How can they be considered? The mechanism for handling
external events presented in section 3.4.3 is using an event file to describe the
external events. The file specifies at which point of time a certain event will
occur, as well as in which part of the system the event will occur. The simulation
of external events is currently not defined in the Rialto language and it should
therefore be considered as a feature of the JRialto implementation. In this section,
we will present a way in which UML use case diagrams and sequence diagrams
can be used for the generation of the event file.

Use case diagrams are often used to overview the usage requirement for a
system and to effectively share information about the system with project stake-
holders [19]. A use case diagram shows how use cases and actors are associated
to each other, which means that the only notational elements needed are actors,
associations and use cases. An actor is a person or system that interacts with
a use case, while a use case describes a sequence of actions that a system needs
to perform to produce a result of value to the actor. Associations provide a link
between the actor and the use case with which the actor interacts. The other
diagram type used in this section is the sequence diagram. Sequence diagrams
are used to model interaction between class instances by showing the sequential
messages that are exchanged between different instances. Instances and messages
are modelled in the same way they are modelled in communication diagrams, i.e.
by lifelines and messages. However, they are presented by a different graphic
notation in communication diagrams and sequence diagrams.

In the context of external event handling in JRialto, use case diagrams and
sequence diagrams are used for describing different scenarios consisting of a cer-
tain sequential event sequence. The behaviour of each use case is specified by
a sequence diagram interaction that is linked to the particular use case. The
generation of an event file from a use case diagram is performed by analyzing the



49

Figure 4.9: A sequence diagram describing the details of a certain use case

associations from each actor within the diagram. From this follows that actors
or use cases without any associations are ignored. For instance, the use case
Another Use Case in the use case diagram in figure 4.8 would be ignored for
event generation. One of the actors, Actor, has an association to the use case
Count up. The behaviour of Count up is specified by a sequence of events in
the sequence diagram in figure 4.9. Each sequence diagram that describes a use
case should contain at least two lifelines. One of the lifelines must be named
EventGenerator, which is a predefined lifeline that generates all events. Apart
from this lifeline, at least one lifeline representing a queue defined in the Rialto
program should as well be present in the diagram. The lifelines must be named
same way as an FIFO queue existing in the Rialto program. The name of an
event to be generated is equal to the name of the message. Another important
feature of messages is also taken into consideration, namely the sequential order
among messages. By using the sequential id of each message as a time tag for
the generated event, we can specify the point of time when an event should occur
to the system. Furthermore, messages can only have EventGenerator as their
source, while their destination can be any of the other lifelines. The generation
of events from the sequence diagram in figure 4.9 produces the following output
to the event file:

// Events from ’Count up’ use case

{5, eventStart, externalEventQueue};

{20, eventPrint, anotherQueue};

{54, eventStop, externalEventQueue};

From the output, we can see that all three messages in the sequence diagram
are represented as events. For instance, the message eventStart is now repre-
sented by an event named the same way. Please see section 3.4.4 for a detailed
presentation of the content of event files. A corresponding section with event
information is generated for each use case with which an actor interacts.



50

Figure 4.10: Dining philosophers problem overview and the corresponding UML
communication diagram

4.7 Automated UML to Rialto Translation

In the previous sections of this chapter, we have presented translation of the
different diagrams to Rialto. The focus has been on translation of single inde-
pendent diagrams, rather than translation of different combinations of diagrams.
In this section, we will focus on how Rialto code can be automatically generated
from not only a single diagram, but also from combinations of different diagrams.
A well-known problem in computer science is used to illustrate and make the
translation process easier to understand.

The Dining philosophers problem is an often-used example of a common com-
puting problem in concurrency. It concerns synchronization of multiple processes,
something that is very essential in computer programming. In computer program-
ming, locking of shared resources is often used to guarantee that only one thread
or process at a time is accessing the resource. In the dining philosophers prob-
lem there are a number of philosophers spending their time eating and thinking
around a table. Each philosopher has a plate of spaghetti in front of him and a
fork on each side of the plate. In other words, there is one fork between each plate.
As the philosophers do not speak to each other, the risk that every philosopher
holds a left fork and forever waits for a right fork (and vice versa) arises. This
situation, where a system cannot move on to another state, is called a deadlock.
Obviously, the philosophers will suffer from starvation due to the deadlock, but
starvation can also occur independently of a deadlock situation if a livelock situ-
ation occurs. Livelock means that the system can always advance to a different
state, but the processes involved are not really making any progress although they
are changing. For instance, livelock can occur if all philosophers pick up their left
fork at exactly the same time, but in order to avoid deadlock, all philopsophers
will put down their forks for a certain time and then try to pick up the left fork
again. As they all waited the same amount of time, they will also this time end
up waiting another certain amount of time.



51

In the example used here for code generation, the number of philosophers is
two. An overview of this particular setup of the dining philosophers problem is
illustrated to the left in figure 4.10. The corresponding communication diagram
representation is to the right in figure 4.10. In the diagram, we can see that we
have two philosophers and two forks represented by four different objects. The
philosophers, called Paul and John, are instances of the class Philosopher, while
each fork is an instance of the Fork class. The communication channels between
the instances are also defined here. Each philosopher is connected to the fork on
his left hand side, as well as to the fork on his right hand side. Observe that no
communication channel is available between the two philosophers, which originate
from the fact that the philosophers do not speak or communicate in any other way
with each other. The automatic translation process uses the interaction in this
communication diagram as its starting point. The Rialto program stub including
the name of the program is generated here. We can see that the interaction in
the communication diagram is named DiningPhilosophers and that is why the
program generated will be named DiningPhilosophers. The complete code listing
for the code generated is available in Appendix C.2. A policy is chosen according
to the rules described in section 4.2. The interleaving policy will be used for
scheduling this interaction because the interleaving policy is the default one for
communication diagrams and in this case, no custom policy has been specified
in the interaction. The declaration of the interleaving policy is included in the
generated Rialto source code as well.

In order to know the behaviour and structure of each of the instances found
in the interaction, parsing of the classes and state machines associated with each
instance is necessary. We let philosopher Paul illustrate the parsing process.
From figure 4.10, we can see that Paul is an instance of the class Philosopher and
thus Paul’s static structure is described in the mentioned class. The Philosopher
class, illustrated in a class diagram in figure 4.11a, contains variable declarations
and associations to the Fork class. The variable declarations eat, sleep, gotIt and
ftaken, are of type string as their intended use are as events in our model. The
String data type is used for event representation in Rialto 2.0. Furthermore,
no policy is associated to classes because they represent static structure and not
behaviour. The associations between the Philosopher and the Fork classes are not
considered at this stage, but they will play an important role in the translation
of the state machines to Rialto.

This far we have considered the translation of different instances and the ways
they are interacting at a more abstract level, as well as the static structure of
the classes from which they are instantiated. The most important part, the exact
behaviour of the instance, is still to be covered. The behaviour of an instance is
in this case considered the same as the behaviour of the instantiated class. Paul is
a philosopher; hence, his behaviour is explained by the state machine describing
the behaviour of the philosopher class. The graphical presentation of the men-
tioned state machine can be found in figure 4.11c. The state machine has four
states representing the states a philosopher can be in, which are sleeping, eating,
waitLeft and waitRight. Additionally there are appropriate transitions between
these states. It should be observed that the events triggering the state transitions



52

a)

b)

c)

Figure 4.11: The static structure described in a a) class diagram and the be-
haviour of b) a fork and c) a philosopher represented by state machines.



53

are the same as the events declared in the class diagram. The translation of the
state machine follows the procedure described in section 4.4 and hence this state
machine will be scheduled using the run-to-completion (rtc) policy.

As previously mentioned, associations between classes are taken into account
when translating the state machine for a class. To illustrate it, the transition
from the sleeping state to the waitLeft state will be analyzed. The transition is
triggered by the eat event, but besides the transition there is also an effect taking
place as a result of the event. The effect is left.add(ltake) (it can be found in
the diagram to the right of the event). It means that the event ltake should be
put into a queue named left. The philosopher class has an association also named
left (figure 4.11a) and it associates to class Fork. By combining this information
with the information found in the communication diagram, we see that the queue
left in the state machine actually refers to the queue attached to fork2. Because
of this, the queue name left is replaced with the name of the queue attached to
fork1, which is the queue fork2q.

As we can see in figure 4.11b, the behaviour of a fork is also modelled using a
state machine. As a fork can only be taken or available, its state machine requires
only those two states. In the dining philsophers model presented here both classes
were modelled by one state machine each. In the general case, there is no reason
to limit the modelling to only one state machine per class and not even to limit
the modelling to state machines. The behaviour could be modelled by activities
as well, or in an arbitrary combination of state machines and activities. The
translation procedure for philosopher Paul that was explained here above holds
for each of the instances, i.e. fork1, fork2 and John are also translated using the
same procedure. The result, after all instances have been parsed, is a complete
and executable Rialto program conforming to the Rialto 2.0 syntax.



54

5. Case Study - JPEG Encoder

In this chapter, the case study performed as a part of this thesis work will be
presented. The goal was to produce a JPEG compressed image from an un-
compressed bitmap, using Rialto 2.0. The conceptual idea is to use Rialto for
scheduling the different stages in the JPEG algorithm, which are provided by a
JPEG library. This involves automated translation of the JPEG encoder model
from UML to Rialto, as well as the possibility to use native method calls for real
simulation of the model in JRialto. In the following section the underlying JPEG
theory necessary in this case study is covered.

5.1 JPEG Encoder Theory

Multimedia data compression has become increasingly important in today’s dig-
ital world. The various types of multimedia, image, video, audio, text, etc.,
requires different types of compression algorithms in order to compress the con-
tent in an efficient way. In the field of image compression two important inter-
national bodies exist, International Organization for Standardization (ISO) and
International Telecommunication Union - Telecommunications Sector (ITU-T).
ISO focuses on issues such as storage and retrieval of an image, whereas ITU-
T focuses on how the image is transmitted. JPEG (Joint Photographic Expert
Group) is a standard for still image compression developed jointly by ISO and
ITU-T in 1992. The JPEG standard is officially referred to as ISO/IEC IS
10918-1: Digital Compression and Coding of Continuous-tone Still images and
also as ITU-T Recommendation T.81. The JPEG theory in this section is
based on [25].

JPEG is the first international image compression standard for continuous-
tone images. An image is continuous-tone if each colour at any point in it can
be produced as a single tone, for instance colour photographs. Its purpose is
to support many different applications that need compression of continuous-tone
images, for instance a photo editing application. Support for most image sizes in
any colour space and adjustable compression ratios are necessary for such a stan-
dard. Another criterion is also important if a standard should become widespread
with many practical implementations on platforms with different computational
power, that criterion is the performance. As a result JPEG has manageable com-
putational complexity even on small platforms with low computational power.
To be able to adapt to different requirements on compression quality and speed
as well as to the constraints that different transmission channels have, the JPEG
defines four modes of operations. The lossless mode, Sequential Lossless Mode, is
relying on the principles of predictive encoding to be able to compress an image in
a single scan without losing any relevant information. In other words, the decoded
image is an exact replica of the original image. The three other modes Sequential
DCT-based Mode, Progressive DCT-based Mode and Hierarchical Mode provide
lossy compression based on the Discrete Cosine Transform (DCT). The reasons



55

why none of these three modes can provide lossless compression are the preci-
sion loss in the digitally computed DCT and rounding errors introduced in the
quantization process. In progressive DCT-based mode the image is compressed
in multiple scans, each scan enhances the image quality. A coarse version of the
image is transmitted in the first scan, while the latter scans progressively improve
the image quality. The advantage of this approach is noticed while decompress-
ing an image for viewing, for instance in a web browser. The user can see a
course approximation of the image even if the entire image is not transferred yet
and then choose to continue loading the image for full quality or otherwise stop
loading it. Hierarchical DCT-based mode does provide different resolutions of the
image inside one compressed bit stream. This kind of pyramidal multiresolution
approach becomes useful when a high-resolution image is viewed on a device with
a low-resolution display. The simplest form of the sequential DCT-based JPEG
algorithm is called the baseline JPEG algorithm. In the rest of this chapter we
will focus on the baseline JPEG algorithm because the JPEG library used in this
case study is an implementation of that algorithm.

5.1.1 Baseline JPEG Compression

The baseline JPEG compression algorithm is widely used for both commercial
and educational purposes. It is fairly easy to understand and implement in a
number of programming languages. Baseline JPEG is defined for images with
up to four components. Greyscale images are represented by one component,
while RGB (Red, Green and Blue) images use three colour components. The
samples inside every component are 8-bit each. A problem with compressing an
RGB-image is the significant correlation between red, green and blue colours. The
solution here is to convert the image into a decorrelated colour space, for instance
the luminance-chrominance colour space YCbCr. The chrominance channels, Cb
and Cr, contain much redundant information meaning that it is possible to sub-
sample the channels without reducing the image quality.

When an uncompressed bitmap should be compressed, the first step is to
convert the colour space to YCbCr, as mentioned above, if the source bitmap is
not already in that colour space. There are several ways to do this conversion
by simple mathematical operations as shown in [25, Page 60]. The chrominance
channels can now be sub-sampled horizontally and/or vertically in order to remove
the redundant information and reduce the data size of these components. It is
important to point out that subsampling is optional. Each colour component
should now be divided into minimum coded units (MCU), which are data blocks
of 8 x 8 samples.

As the baseline JPEG algorithm follows the principles of block-based trans-
form coding, the algorithm should be applied in each of the 8 x 8 data blocks
in all components. As shown in Figure 5.1, the following operations are ap-
plied to each block (in order): DCT, Quantization and Entropy encoding. The
Discrete Cosine Transform used is the two dimensional DCT because an image
actually is a two-dimensional signal. The 2-D DCT can be calculated by applying
one-dimensional DCT first row-wise and then column-wise. In practical imple-



56

Figure 5.1: Baseline JPEG compression

mentations, more sophisticated and fast algorithms are often used. The results
of the DCT calculation are 64 DCT coefficients that should be quantized. The
quantization step is primarily responsible for the loss of information and thereby
reduction in image quality. The level of quantization is adjustable and in fact
the level is exactly what can be found as a JPEG quality factor setting in some
photo editing applications.

In the entropy encoding all values are first reordered in Zigzag ordering. The
values are now run-length encoded (RLE). Run-length encoding is a very simple
form of data compression, in which sequences of the same data value are repre-
sented as the value and a number indicating the length of the sequence. The last
step is to Huffman encode the run-length encoded values. Huffman encoding is
a lossless data compression algorithm that compresses the data by replacing se-
quences of data with a symbol. The symbol tables, called Huffman tables, contain
the lookup symbol and the corresponding data sequence. Finally, the huffman
encoded sequence is written to the bit-stream.

5.1.2 JPEG File Interchange Format

The JPEG standard defines the content of the compressed bit stream, but it
does not specify any inherent file format in the standard. The absence of a
standardized file format resulted in creation of several file formats to store JPEG
compressed images. One of these file formats is JFIF. JFIF stands for JPEG File
Interchange Format and is one of the most used file formats for storing of JPEG
compressed images. It is a small file format focusing on exchange of JPEG bit
streams between platforms and applications, but without any advanced features.
The simplicity is also its greatest strength and the file format is now available for
a wide variety of platforms. It is strongly recommended to use the baseline JPEG
mode with JFIF, although any of the four JPEG operation modes are supported.
By using the baseline mode, maximum compatibility with all applications and
platforms is achieved. Details on the exact syntax of JFIF can be found in [7].



57

5.2 Modelling the Encoder using Rialto

There are several ways to model a JPEG encoder in Rialto. The model used in
this case study is simple but still useful for showing how Rialto can be used for
modelling and simulation of real world problems. It makes use of both UML to
Rialto translation (covered in Chapter 4) and simulation of external events using
Java Native Interface (covered in Section 3.4.3, page 24).

The different inputs to JRialto as well as the output are illustrated in Figure
5.2. To be able to simulate the encoder four inputs are necessary. Obviously, the
UML 2.0 Model is the most important input as it models the entire problem; in
fact, this single input is sufficient if the purpose of the simulation is not to produce
concrete output. The three other inputs enable real simulation in JRialto. An
uncompressed bitmap is provided to the system as an image source and the JPEG
library supplies a native implementation of the necessary methods, while the JNI
Wrapper acts as a bridge between the library and JRialto. The JPEG library
used in this case study is a simple implementation of the baseline JPEG algorithm
in the C language. It takes care of all system specific operations as well as the
computational operations and provides a public interface consisting of methods
without return value and parameters. Implementation details on the library can
be found in [9]. In order to use native libraries together with JRialto a wrapper
must be used, otherwise JRialto cannot call upon the native functions. The
requirement to use a wrapper comes from the fact that JRialto is implemented
in Java language. The Java Virtual Machine features an interface, JNI, which
provides access to native method calls.

The UML 2.0 Model in this case consist of one activity diagram (see Figure
5.3), describing not only the behavioural properties of the encoder but also its
static structure. Many of the actions in the activity diagram can easily be derived
from the baseline JPEG algorithm covered in the previous section, while other ac-
tions and elements need a more thorough explanation. The activity encodeImage
encapsulates all actions necessary to perform the encoding of the uncompressed
bitmap. Activity parameters declare the external variables that are available to
the activity, in this case they reside in the native JPEG library. One of the ac-
tivity parameters, policy default : Policy, specifies that the activity should be
scheduled using policy default, instead of the RTC policy normally used for ac-
tivity diagrams. The default policy is used here because our encoder model is
sequential. In order to collect statistics from the execution a counter is incre-
mented in each of the actions. These counters are declared as Rialto integers by
the data store boxes (found in the bottom of the activity).

Before the actual encoding can begin, the uncompressed image file has to
be opened for reading. Read BMP File tells the JPEG library which file to
open by writing the filename to a variable and then call upon the native method
r_read_file(). All counters are also reset in this action. After the image is
opened, the colour space of the entire image is converted from RGB to YUV. The
image is split into the three components Y, U and V. We are now ready to request
a component by executing r_get_next_component(). This method updates the
variables component_available and downsample_enabled to reflect the current



58

Figure 5.2: JPEG Encoder simulation inputs and output

situation. For instance if we use 4:2:2 downsampling, downsample_enabled has
value false while processing the Y-component and value true while processing
the other two components. Rialto will schedule the next action to be executed
based on these two variables. If there is no component left for processing, the
actions WriteJFIF and Print Counters are executed to write out the compressed
bit stream to a file and finally print encoding statistics to standard out, before
terminating the activity. Otherwise, if a component is available, downsampling
is performed on the component only if it should be downsampled and afterwards
the first block of the selected component is read.

The Read block action calls upon the native method r_read_block().
r_read_block() tries to read a block from the component, and sets
block_available to true if a block could be read. In the case that all blocks in
the selected component already have been read, block_available will contain
value false and the next component is chosen by executing Get A Component
again. Otherwise, if a block could be read, the procedures defined in the baseline
JPEG standard should be applied to this block. In our activity diagram, these
procedures correspond to the actions DCT, Quantize, Zig Zag and RLE and Huff-
man. In the JPEG library used, the last mentioned action is also responsible for
writing the encoded block to the compressed output stream. The next block is
now read by executing Read Block again.

Finally, in the situation where the last block of the last component has been
encoded, the compressed bit stream is encapsulated in a JFIF header and written
to the specified file. Encoding statistics are written to standard output. The full
Rialto source code listing for this case study is available in Appendix C.3.



59

Figure 5.3: Activity diagram describing the encoding of an image



60

5.3 Simulation Results

The simulation was performed on a computer equipped with an Intel Pentium D
at 3.2 GHz and 2 GB of system memory. The operating system running on the
computer was Linux (Fedora Core 4). JRialto was running on Suns Java virtual
machine (Sun JDK 1.5.6), while the JPEG library was compiled with GNU GCC
version 4.0.2. The uncompressed image is 640x480 pixels and it uses the 24-bit
RGB colour space.

Encoding the image using JRialto roughly doubled the time consumption
compared to encoding the image using a native application written in C, and
statically linked together with the JPEG library. In the previous section, we
mentioned the usage of counters in our model. The counters are useful to collect
statistics about the encoding process and thereby making it possible to verify, not
only by viewing the compressed image, that the encoding is scheduled correctly.
The output below is the textual output written to standard output by JRialto.

Parsing JPEG_Rialto.jr
Parsing of ../CaseStudy/JPEG_Rialto.jr successful.
External library ’../CaseStudy/JPEG_Rialto.so’ loaded successfully
Interpreter initialized.
Interpreting...
RialtoPrint:Encoding_Statistics
RialtoPrint:____________________
RialtoPrint:ReadBMPFile executed 1 times
RialtoPrint:ConvertColorSpace executed 1 times
RialtoPrint:SplitIntoComponents executed 1 times
RialtoPrint:GetAComponent executed 4 times
RialtoPrint:Downsample executed 2 times
RialtoPrint:ReadBlock executed 9603 times
RialtoPrint:DCT executed 9600 times
RialtoPrint:Quantize executed 9600 times
RialtoPrint:ZigZag executed 9600 times
RialtoPrint:RLEandHuffman executed 9600 times
RialtoPrint:WriteJFIF executed 1 times
Interpretation successful.

From the output, we can find out the name of the Rialto program executed.
We can also see that an external native library (the JPEG library) was success-
fully loaded before the interpretation begun. The lines prefixed RialtoPrint are
the lines that are produced by the print statements in our encoder model. From
those lines we can easily see how many times every single action in the model was
executed. We know that our image has three components, but why has Get A
Component been executed four times? This happens because Get A Component
must always be executed one time more than the number of components in the
image, in order to find out that there are no more components available. The
same reason makes Read Block execute one time more per component than there
are blocks in each component. An image of size 640 x 480 pixels in RGB colour
space consists of 80 x 60 = 4800 blocks per component. In our simulation, the
chrominance components in the compressed image were sub-sampled horizontally



61

a) b)

Figure 5.4: a) The original and b) the baseline JPEG compressed image

reducing the required amount of data to 66% of the original amount (4:2:2 sub-
sampling format). As a result, the two chrominance components only consist of
2400 blocks each and thus the total amount of blocks in the image will be 4800
+ 2400 + 2400 = 9600 blocks. We know that for instance the DCT should be
applied once to every block, resulting in a total of 9 600 executions of the DCT
action. The statistics shows that this is exactly the number of times that the
DCT action actually has been executed.

A visual verification of the result can be seen in Figure 5.4. It is possible to
see that the compressed image is of lower quality than the original image due to
the lossy baseline JPEG compression. However, the human eye can also detect
that the compressed image is encoded correctly, as no major defect exists in the
image.



62

6. Conclusions and Future Work

In this final chapter, we summarize the contents of this thesis. Conclusions on
the progress made and the current state of Rialto are presented, as well as the
lessons learned during the development of the language implementation from
scratch. Proposals for future work concerning both the Rialto language and the
JRialto implementation are discussed.

6.1 Summary

This work has presented an initial implementation of the second version of the Ri-
alto language and covered how UML models can be translated to Rialto models.
Rialto 2.0 is an evolution from version 1.0; hence, they have the same approach for
describing systems with several underlying models of computation. The novelty
of the Rialto approach lies in the way the semantics of a model of computation is
captured. The computational model is described in so-called scheduling policies.
The Rialto approach aims to be able to describe systems consisting of hierarchies
of computational models, where a subsystem described using a certain model of
computation is encapsulated by a state block. Each state block is attached with
a scheduling policy corresponding to the computational model of the subsystem.
Scheduling policies can be expressed in the Rialto language, which means that
existing policies can be modified and new policies can be created without mod-
ifying the interpreter. The policies in this thesis that have been expressed in
Rialto show that the language currently is capable of describing computational
models correctly. However, the writing of a policy is still quite complicated and
cumbersome.

Rialto is intended to be used as an intermediate language between platform
independent modelling languages and platform specific executable code. It is
important to be able to reuse existing modelling tools for the creation of the
models to be executed in Rialto, since the development of a new tool would be
very time consuming but also out of scope for the Rialto project. The unified
modeling language is a natural choice of language to support in Rialto, since
a great number of graphical editors and modelling tools for UML already exist
today. We have showed how UML models can be translated to Rialto models
and thereby showed on the possibility also to use Rialto for code synthesis from
UML models. Behavioural diagrams are the most interesting diagram type in
UML from a Rialto point of view, because the behavioural properties of a system
are by far more important to us than the static structure. Each of the different
UML diagrams used for translation into Rialto, rely on their own computational
model. The computational model is captured in the translation process by the
assignment of a corresponding Rialto scheduling policy to the state block that
encapsulates the diagram content. Any custom policy can be specified to schedule
the state block if it is necessary.



63

Our Rialto implementation is called JRialto since it is developed in Java.
The software development was performed in a two-person team. Besides the
core interpreter, JRialto does also make it possible to simulate the modelled
systems and verify, from the graphical user interface, that the model behaves as
intended. The graphical user interface was also of great importance for debugging
the interpreter during the development process. Now afterwards, we can state
that Java is a suitable and productive language for the implementation of an
interpreter for a new language. Java makes it easy and not too time consuming
to start producing early prototypes of the final product, while its support for
object-oriented programming ensures a straightforward use of modern object-
oriented design patterns and techniques. Software developed purely in Java is
executable on most computer platforms without any modifications to the source
code, which is of clear benefit to a small resource project. In the following section,
some future work and improvements to both Rialto and JRialto will be presented.

6.2 Future Work

The implementation of Rialto 2.0 presented in this thesis should, as earlier men-
tioned, be considered as an initial implementation. At this stage, JRialto should
only be used for developing and evaluating the features of Rialto. Additional
features should be incorporated into the language itself, as well as into the next
version of JRialto.

Currently it is very cumbersome to write a scheduling policy in Rialto 2.0.
Even a simple policy requires a considerable amount of code lines, including quite
complex control structures, to work properly. Implementation specific knowledge
about the stack is also necessary in order to be able to write successfully a pol-
icy. By using a policy abstraction layer, the creation of new policies would be
easier. The layer should be able to hide implementation specific details and pro-
vide the user with a relatively easy and intuitive interface. Besides the policy
abstraction layer, support for user defined initial values of variables should be
included in Rialto. The support for initial values in Rialto would result in a more
intuitive translation of UML class attributes. Other necessary improvements to
the included data types are support for arbitrary strings (including white spaces
and special characters) and the possibility to store container data types inside
container data types, i.e. a set should be able to contain a set.

Regarding JRialto, the automatic translation of UML models to Rialto could
use an external library or tool for the translation, instead of using a translation
implementation inside JRialto. That kind of solution would not require instant
changes to JRialto in order to support new versions of UML and perhaps even
other visual modelling languages. However, a well-specified interface for the trans-
lation module is necessary. Two other major features that should be implemented
in JRialto are the optimization and code writer modules, currently only available
in the implementation of Rialto 1.0.



64

A. Usage of Documentation
Comments in JRialto

A.1 Introduction

The JRialto source code is, in addition to traditional comments inside the source
files, also documented using documentation comments. These comments are de-
limited by /** ... */ in the source code. Documentation comments provide
an efficient way to document the parts of the source code that should be avail-
able to the public. Furthermore, the API documentation can automatically be
generated from the documentation comments with the javadoc tool [23]. The
generated documentation is easily browsable and therefore an excellent support
while developing software. The documentation comments can contain normal
language and predefined tags as well as custom tags that help the javadoc tool
generate correct and properly formatted documentation.

A.2 Complexity Tag

A new custom tag @complexity is introduced in the JRialto source code docu-
mentation. The complexity tag briefly describes the CPU time usage and memory
consumption of a method or constructor. The intention with this tag is not to
provide the developer with an exact metric, but to give a picture of the relative
complexity among methods used in JRialto. Integer values [0, 8] are allowed to
describe the complexity.

A.3 Guidelines

The guidelines presented here are based on the document How to Write Doc
Comments for the Javadoc Tool [20] published by Sun Microsystems. In addition,
guidelines for the usage of the complexity tag are presented. The type of source

Table A.1: Complexity levels

Complexity CPU Memory Documentation text
intensive intensive

0 - - No complexity classification available
1 - 2 No No Not CPU or Memory intensive
3 - 4 Yes No CPU intensive
5 - 6 No Yes Memory intensive
7 - 8 Yes Yes CPU and Memory intensive



65

code documentation used should reflect the purpose and intended use of the
documentation. Short and concise implementation comments are sufficient in
the private scope sections of the source code, but in more public code sections
additional documentation comments are of great benefit as they can be separated
from the source code files if necessary. The following guidelines are applied on
JRialto source files:

• Public classes, fields and methods should be documented

• Protected classes, fields and methods should be documented

• Private classes, fields and methods should not be documented using docu-
mentation comments

A different set of tags are suitable for public and protected classes/interfaces,
methods and fields. The list below contains the recommended tags and a short
description. A detailed reference on these tags can be found in How to Write Doc
Comments for the Javadoc Tool [20].

1. Classes and Interfaces

@author Name of the author(s). The creator should be listed first.

@see Adds a reference to some other part of the API documentation.

@since Specifies the product version. Always specify a @since tag for
classes and interfaces.

{@link} In-line tag to create a link.

2. Constructors

@param Parameter list, parameters should be in the same order as in the
argument declaration list.

@throws Exceptions thrown, should be listed alphabetically by the excep-
tion names.

@see Adds a reference to some other part of the API documentation.

@since Specifies the product version. Use only when a constructor has
been added to the class after the class was created.

@complexity Description of the complexity of the constructor.

3. Methods

@param Parameter list, parameters should be in the same order as in the
argument declaration list.

@return Description of the return value. Should be omitted for methods
that returns void.

@throws Exceptions thrown, should be listed alphabetically by the excep-
tion names.



66

@see Adds a reference to some other part of the API documentation.

@since Specifies the product version. Use only when a method has been
added to the class after the class was created.

@complexity Description of the complexity of the method.

4. Fields

@since Specifies the product version. Use only when a field has been added
to the class after the class was created.

@see Adds a reference to some other part of the API documentation.

{@value} Represents the value of a field. This tag is not important.

Deciding the Complexity of a Method

Because of the non-exact nature of the complexity tag, it is impossible to provide
any exact set of rules for the classification process. By examining existing source
code documentation in the JRialto project, the programmer should get a good
starting point for classification of new methods. The by far most important rule
when deciding the complexity is that a method cannot have a lower complexity
level than any method it is calling upon. Classification example:

0 A method that has not been classified yet or a method to which complexity
classification is irrelevant.

1 All get/set methods that do not call any method or does not use any loop. If
statements and case switches are allowed.

2 All get/set methods that use relatively simple looping (not nested loops) or
only a few method calls to methods with complexity 1.

3 Methods using nested loops, advanced algorithms or a great amount of method
calls. Memory consumption should be low.

4 Methods that could cause a reduced responsiveness in the application due too
heavy CPU usage. Memory consumption should however remain at a low
level.

5 Methods handling memory allocation for new objects. Constructors that are
more complex could also be in this category.

6 Very frequent memory access and/or memory allocation for large data struc-
tures.

7 Complex methods consuming both memory and CPU time.

8 Very complex methods consuming both memory and CPU time. This com-
plexity level should not be used to often.



67

Example of a Documented Class

package fi.abo.cs.JRialto.TreeNodes;

import java.util.Vector;
...

/**
* The RialtoMetamodelObject class represents the basic
* metamodel object in Rialto programs.
*
* @author John Johnson
* @since 1.6
* @see RialtoTreeNode
*/
public class RialtoMetamodelObject implements RialtoTreeNode
{
/**
* The type of the node represented as an integer.
* The value is {@value} for RialtoMetamodelObject
* @since 1.7
*/
public final int nodeType = 1;

/**
* The label assigned to this object.
* A label is valid only for statements.
*/
protected RialtoLabel label;

// Reference to the tree node
private DefaultMutableTreeNode thisNode;

/**
* Creates a new metamodel object with label, type
* and the source line number.
*
* @param l the label of the metamodel object
* @param t the type of the metamodel object
* @param lineNr the line number for this object in

the rialto source code
* @complexity 3
*/
public RialtoMetamodelObject(String l, int t, String lineNr)
{
...

}



68

/**
* Finds out the scheduling policy.
*
* @return the policy assigned to this metamodel object
* @complexity 1
*/
public RialtoPolicyDeclaration getPolicy()
{
DefaultMutableTreeNode dmt = getTreeNode().getParent();
return dmt.getUserObject().getPolicy();

}
...

}

Figure A.1: API documentation generated from the example class



69

B. Listing of Policies

B.1 Default Policy

policy default
own indefault: Boolean;
var l: Label;
begin
l := sc.prevProgCtx.getLabelFromActiveSet();
if indefault == true then
indefault := false;
sc.bottom().getActiveSet().add(l);
if sc.size() > 2 then
sc.popFromPrevProgCtx();

else
endif;
return __;

else
indefault := true && !sc.inPolicyMode();
return l;

endif;
end;

B.2 Interleaving Policy

policy interleaving
own instep : Boolean;
own stackSize : Integer;
own lubLabel : Label;
var labelFound : Boolean;
var step : FifoQueueOfLabel;
var l : Label;
var labelToRun : Label;
var currentStepSet : SetOfLabel;
var resultLabels : SetOfLabel;
var sconfig : StateConfig;
var labelAsString : String;

begin
if instep then
goto interleaving_end;

else
goto interleaving_init;

endif;



70

// Initialisation state
interleaving_init:
instep := true;
resultLabels := sc.prevProgCtx.getActiveSet();
labelToRun := sc.prevProgCtx.getRandomLabelFromActiveSet();
step := calculateStep(currentPc);
sc.prevProgCtx.getActiveSet().clear();
lubLabel := step.poll();
sc.prevProgCtx.getActiveSet().add(lubLabel);
step.poll();

interleaving_loop: if step.empty() == false then
labelAsString := step.poll();
if labelAsString == __ then
if labelFound == true then
sconfig.getActiveSet().add(currentStepSet);
sc.pushAbovePrevProgCtx(sconfig);
sconfig.clear();
resultLabels.remove(currentStepSet);
labelFound := false;

else
currentStepSet.clear();
goto interleaving_loop;

endif;
else
l := labelAsString;
currentStepSet.add(l);
labelFound := (labelFound == false && l == labelToRun)

|| labelFound == true;
goto interleaving_loop;

endif;
else
endif;

sconfig.getActiveSet().add(resultLabels);
sc.pushToBottom(sconfig);
stackSize := sc.size();

if lubLabel == labelToRun then
return labelToRun;

else
return __;

endif;

// End interleaving step state
interleaving_end:
instep := false;



71

sconfig := sc.popFromPrevProgCtx();
sconfig.getActiveSet().remove(lubLabel);
currentStepSet := sconfig.getActiveSet();
sc.bottom().getActiveSet().add(currentStepSet);

if stackSize - sc.size() == 1 then
sc.popFromPrevProgCtx();

else
endif;

if sc.size() > 2 then
sconfig := sc.popFromBottom();
currentStepSet := sconfig.getActiveSet();
sc.bottom().getActiveSet().add(currentStepSet);

else
endif;

return __;
end;

B.3 Step Policy

policy step
own instep : Boolean;
own stackSize : Integer;
own lubLabel : Label;
var step : FifoQueueOfLabel;
var l : Label;
var currentStepSet : SetOfLabel;
var sconfig : StateConfig;
var labelAsString : String;

begin
if instep then
goto step_end;

else
goto step_init;

endif;

// Initialisation state
step_init:
instep := true;
step := calculateStep(currentPc);
sc.prevProgCtx.getActiveSet().clear();
lubLabel := step.poll();
sc.prevProgCtx.getActiveSet().add(lubLabel);



72

step.poll();

step_loop: if step.empty() == false then
labelAsString := step.poll();
if labelAsString == __ then
sconfig.getActiveSet().add(currentStepSet);
sc.pushAbovePrevProgCtx(sconfig);
sconfig.clear();
currentStepSet.clear();

else
l := labelAsString;
currentStepSet.add(l);

endif;
goto step_loop;

else
endif;

sconfig.clear();
sc.pushToBottom(sconfig);
stackSize := sc.size();

if lubLabel == labelToRun then
return labelToRun;

else
return __;

endif;

// End of step state
step_end:
instep := false;
sc.popFromPrevProgCtx();
sconfig.getActiveSet().remove(lubLabel);
currentStepSet := sconfig.getActiveSet();
sc.bottom().getActiveSet().add(currentStepSet);

if stackSize - sc.size() == 1 then
sc.popFromPrevProgCtx();

else
endif;

if sc.size() > 2 then
sconfig := sc.popFromBottom();
currentStepSet := sconfig.getActiveSet();
sc.bottom().getActiveSet().add(currentStepSet);

else
endif;

return __;
end;



73

B.4 Synchronous Dataflow Policy

policy sdf
// Policy sdf reads the execution sequence
// from the global variable sdfSequence
own insdf : Boolean;
own remainSeq : FifoQueueOfLabel;
own currentLabel : Label;
own eosLabel : Label;
own myLabel : Label;
var bottomLabel : Label;
var bottomSet : SetOfLabel;
var sconfig : StateConfig;

begin
if insdf then
goto sdf_continue;

else
goto sdf_init;

endif;

sdf_init:
insdf := true;
remainSeq := sdfSequence;
currentLabel := sdf_continue;
myLabel := sc.prevProgCtx.getLabelFromActiveSet();
sc.pushToBottom(sconfig);

sdf_continue:
sc.prevProgCtx.getActiveSet().clear();
bottomSet := sc.bottom().getActiveSet();
if bottomSet.empty() == false then
bottomLabel := bottomSet.getObjectFromSet();
sc.bottom().getActiveSet().remove(bottomLabel);

else
endif;

if currentLabel == bottomLabel
|| currentLabel == sdf_continue then

bottomLabel := remainSeq.poll();
if remainSeq.empty() then
goto sdf_end;

else
currentLabel := bottomLabel;

endif;
else
endif;



74

sc.prevProgCtx.getActiveSet().add(myLabel);
sc.pushAbovePrevProgCtx(sconfig);
sc.prevProgCtx.getActiveSet().add(bottomLabel);
return __;

sdf_end:
insdf := false;
sc.popFromBottom();
sc.prevProgCtx.getActiveSet().add(bottomLabel);
return bottomLabel;

end;



75

C. Source Code Listing

C.1 Step Example

program Step
policy interleaving
// policy body omitted

end;

policy step
// policy body omitted

end;

begin
s: state
policy step;
begin
s_par: par
sp1: state
policy default;
begin
s2: state
policy default;
begin
goto s3;

endstate;

s3: state
policy default;
begin
goto s2;

endstate;
endstate;

||

sp2: state
policy interleaving;
begin
sp2_par: par
sp2_parleft: state
policy default;
begin
s4: state
policy default;



76

begin
goto s5;

endstate;

s5: state
policy default;
begin
goto s4;

endstate;
endstate;

||

sp2_parright: state
policy default;
begin
s6: state
policy default;
begin
goto s7;

endstate;

s7: state
policy default;
begin
goto s6;

endstate;
endstate;

endpar;
endstate;

endpar;
endstate;

end;

C.2 Dining Philosophers Example

program DiningPhilosophers
policy interleaving
// policy body omitted

end;

policy rtc
// policy body omitted

end;

begin
dinner: state



77

policy interleaving;
own fork1q : FifoQueueOfString;
own fork2q : FifoQueueOfString;
own johnq : FifoQueueOfString;
own paulq : FifoQueueOfString;
begin
par
// Fork 1
fork1: state
policy rtc;
own ltake : String;
own rtake : String;
own release : String;
begin
ltake := ltake;
rtake := rtake;
release := release;

fork1_available: state
begin
trap fork1q.peek() == ltake
do [fork1q.poll(); paulq.add(gotIt);goto fork1_taken;]

endtrap;
trap fork1q.peek() == rtake
do [fork1q.poll(); johnq.add(gotIt);goto fork1_taken;]

endtrap;
endstate;

fork1_taken: state
begin
trap fork1q.peek() == release
do [fork1q.poll(); goto fork1_available;]

endtrap;
trap fork1q.peek() == ltake
do [fork1q.poll(); paulq.add(ftaken);]

endtrap;
trap fork1q.peek() == rtake
do [fork1q.poll(); johnq.add(ftaken);]

endtrap;
endstate;

endstate;
||
// Fork 2
fork2: state
policy rtc;
own ltake : String;
own rtake : String;
own release : String;
begin



78

ltake := ltake;
rtake := rtake;
release := release;

fork2_available: state
begin
trap fork2q.peek() == ltake
do [fork2q.poll(); johnq.add(gotIt);goto fork2_taken;]

endtrap;
trap fork2q.peek() == rtake
do [fork2q.poll(); paulq.add(gotIt);goto fork2_taken;]

endtrap;
endstate;

fork2_taken: state
begin
trap fork2q.peek() == release
do [fork2q.poll(); goto fork2_available;]

endtrap;
trap fork2q.peek() == ltake
do [fork2q.poll(); johnq.add(ftaken);]

endtrap;
trap fork2q.peek() == rtake
do [fork2q.poll(); paulq.add(ftaken);]

endtrap;
endstate;

endstate;
||
// Philosopher John
john: state
policy rtc;
own eat : String;
own sleep : String;
own gotIt : String;
own ftaken : String;
begin
eat := eat;
sleep := sleep;
gotIt := gotIt;
ftaken := ftaken;

john_sleeping: state
begin
trap johnq.peek() == eat
do [johnq.poll(); fork1q.add(ltake);

goto john_waitLeft;]
endtrap;

endstate;



79

john_eating: state
begin
trap johnq.peek() == sleep
do [johnq.poll(); fork1q.add(release);

fork2q.add(release); goto john_sleeping;]
endtrap;

endstate;

john_waitLeft: state
begin
trap johnq.peek() == gotIt
do [johnq.poll(); fork2q.add(rtaken);

goto john_waitRight;]
endtrap;
trap johnq.peek() == ftaken
do [johnq.poll(); fork1q.add(ltaken);]

endtrap;
endstate;

john_waitRight: state
begin
trap johnq.peek() == gotIt
do [johnq.poll(); goto john_eating;]

endtrap;
trap johnq.peek() == ftaken
do [johnq.poll(); fork1q.add(release);

goto john_waitLeft;]
endtrap;

endstate;
endstate;

||
// Philosopher Paul
paul: state
policy rtc;
own eat : String;
own sleep : String;
own gotIt : String;
own ftaken : String;
begin
eat := eat;
sleep := sleep;
gotIt := gotIt;
ftaken := ftaken;

paul_sleeping: state
begin
trap paulq.peek() == eat
do [paulq.poll(); fork2q.add(ltake);

goto paul_waitLeft;]



80

endtrap;
endstate;

paul_eating: state
begin
trap paulq.peek() == sleep
do [paulq.poll(); fork2q.add(release);

fork1q.add(release); goto paul_sleeping;]
endtrap;

endstate;

paul_waitLeft: state
begin
trap paulq.peek() == gotIt
do [paulq.poll(); fork1q.add(rtaken);

goto paul_waitRight;]
endtrap;
trap paulq.peek() == ftaken
do [paulq.poll(); fork2q.add(ltaken);]

endtrap;
endstate;

paul_waitRight: state
begin
trap paulq.peek() == gotIt
do [paulq.poll(); goto paul_eating;]

endtrap;
trap paulq.peek() == ftaken
do [paulq.poll(); fork2q.add(release);

goto paul_waitLeft;]
endtrap;

endstate;
endstate;

endpar;
endstate;

end;

C.3 JPEG Encoder Example

program JPEG_Rialto
externmethod r_dct();
externmethod r_downsample();
externmethod r_get_next_component();
externmethod r_quantize();
externmethod r_read_block();
externmethod r_read_file();
externmethod r_rgb_to_yuv();



81

externmethod r_rlc_vlc_encode();
externmethod r_split_to_components();
externmethod r_write_jfif();
externmethod r_zigzag();

externvariable block_available : Boolean;
externvariable component_available : Boolean;
externvariable downsample_enabled : Boolean;

begin
encodeImage: state
policy default;
var colorspaceCount : Integer;
var dctCount : Integer;
var downsampleCount : Integer;
var getcompCount : Integer;
var quantizeCount : Integer;
var readblockCount : Integer;
var readfileCount : Integer;
var rlehuffCount : Integer;
var splitCount : Integer;
var writejfifCount : Integer;
var zigzagCount : Integer;
var inputFile : String;
begin
ReadBMPFile: state
policy default;
begin
[
inputFile := myimage;
readfileCount := 0;
colorspaceCount := 0;
splitCount := 0;
getcompCount := 0;
downsampleCount := 0;
readblockCount := 0;
dctCount := 0;
quantizeCount := 0;
zigzagCount := 0;
rlehuffCount := 0;
writejfifCount := 0;
];
[
r_read_file();
readfileCount := readfileCount + 1;
];
goto ConvertColorSpace;

endstate;



82

ConvertColorSpace: state
policy default;
begin
[
r_rgb_to_yuv();
colorspaceCount := colorspaceCount + 1;
];
goto SplitIntoComponents;

endstate;

SplitIntoComponents: state
policy default;
begin
[
r_split_to_components();
splitCount := splitCount + 1;
];
goto GetAComponent;

endstate;

GetAComponent: state
policy default;
begin
[
r_get_next_component();
getcompCount := getcompCount + 1;
];

if component_available && !downsample_enabled then
goto Readblock;

else
endif;
if component_available && downsample_enabled then
goto Downsample;

else
goto WriteJFIF;

endif;
endstate;

WriteJFIF: state
policy default;
begin
[
r_write_jfif();
writejfifCount := writejfifCount + 1;
];
goto PrintCounters;

endstate;



83

Downsample: state
policy default;
begin
[
r_downsample();
downsampleCount := downsampleCount + 1;
];
goto Readblock;

endstate;

DCT: state
policy default;
begin
[
r_dct();
dctCount := dctCount + 1;
];
goto Quantize;

endstate;

Quantize: state
policy default;
begin
[
r_quantize();
quantizeCount := quantizeCount + 1;
];
goto ZigZag;

endstate;

ZigZag: state
policy default;
begin
[
r_zigzag();
zigzagCount := zigzagCount + 1;
];
goto RLEandHuffman;

endstate;

RLEandHuffman: state
policy default;
begin
[
r_rlc_vlc_encode();
rlehuffCount := rlehuffCount + 1;
];
goto Readblock;

endstate;



84

Readblock: state
policy default;
begin
[
r_read_block();
readblockCount := readblockCount + 1;
];

if block_available then
goto DCT;

else
goto GetAComponent;

endif;
endstate;

PrintCounters: state
policy default;
begin
[
print Encoding_Statistics;
print ____________________;
print ReadBMPFile, executed , readfileCount, times;
print ConvertColorSpace, executed, colorspaceCount, times;
print SplitIntoComponents, executed, splitCount, times;
print GetAComponent, executed, getcompCount, times;
print Downsample, executed, downsampleCount, times;
print ReadBlock, executed, readblockCount, times;
print DCT, executed, dctCount, times;
print Quantize, executed, quantizeCount, times;
print ZigZag, executed, zigzagCount, times;
print RLEandHuffman, executed, rlehuffCount, times;
print WriteJFIF, executed, writejfifCount, times;
];
goto encodeImage_FinalNode;

endstate;

encodeImage_FinalNode: state
begin
goto JPEG_Rialto_terminate;

endstate;
endstate;

JPEG_Rialto_terminate: null;
end;



85

Bibliography

[1] Object Management Group Website - http://www.omg.org.

[2] Axel Jantsch. Modeling Embedded Systems and SoCs. Morgan Kaufmann
Publishers, 2001.

[3] Dag Björklund. A Kernel Language for Unified Code Synthesis. PhD thesis,
2005.

[4] Dag Björklund, Johan Lilius and Ivan Porres. A Unified Approach to Code
Generation from Behavioral Diagrams. Technical report, 2003.

[5] Markus Dahlg̊ard. Modelling Techniques and a Compiler Front End Imple-
mentation for the Rialto modelling language. Master’s thesis, 2007.

[6] Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs and Koen G. Langendoen.
Modern Compiler Design. Wiley, 2000.

[7] Eric Hamilton. JPEG File Interchange Format. http://www.w3.org/

Graphics/JPEG/jfif3.pdf, 1992.

[8] Erik Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design
Patterns. Addison-Wesley, 1995.

[9] Johan Ersfolk. Code Generation for Heterogeneous Platforms. Master’s
thesis, 2007.

[10] Johan Lilius and Lionel Morel. Rialto 2.0: a language for heterogeneous
computations. Technical report, 2006.

[11] Object Management Group. Meta Object Facility 2.0 XMI Mapping Specifi-
cation, v2.1. http://www.omg.org/cgi-bin/doc?formal/05-09-01, 2005.

[12] Object Management Group. UML Superstructure Specification, v2.0. http:
//www.omg.org/cgi-bin/doc?formal/05-07-04, 2005.

[13] Peter Marwedel. Embedded Systems Design. Springer, 2006.

[14] Scott W. Ambler. Introduction to the Diagrams of UML 2.0. http://www.

agilemodeling.com/essays/umlDiagrams.htm, 2006.

[15] Scott W. Ambler. UML 2 Activity Diagrams. http://www.agilemodeling.
com/artifacts/activityDiagram.htm, 2006.



86

[16] Scott W. Ambler. UML 2 Class Diagrams. http://www.agilemodeling.

com/artifacts/classDiagram.htm, 2006.

[17] Scott W. Ambler. UML 2 Communication Diagrams. http://www.

agilemodeling.com/artifacts/communicationDiagram.htm, 2006.

[18] Scott W. Ambler. UML 2 State Machine Diagrams. http://www.

agilemodeling.com/artifacts/stateMachineDiagram.htm, 2006.

[19] Simon Bennett, John Skelton and Ken Lunn. UML. McGraw-Hill Interna-
tional, 2005.

[20] Sun MicroSystems. How to Write Doc Comments for the Javadoc Tool.
http://java.sun.com/j2se/javadoc/writingdoccomments/, 2006.

[21] Sun Microsystems. Java 2 Platform Standard Edition 5.0 API Specification.
http://java.sun.com/j2se/1.5.0/docs/api/, 2006.

[22] Sun Microsystems. Java Native Interface 5.0 Specification. http://java.

sun.com/j2se/1.5.0/docs/guide/jni/, 2006.

[23] Sun Microsystems. Javadoc Tool Home Page. http://java.sun.com/j2se/
javadoc/, 2006.

[24] Max Söderström. vUML - A Tool for Verifying Collaborations of UML
Statecharts. Master’s thesis, 2004.

[25] Tinku Acharya and Ping-Sing Tsai. JPEG2000 Standard for Image Com-
pression. Wiley, 2005.


